Research article

An image encryption algorithm based on heat flow cryptosystems

  • Received: 03 January 2023 Revised: 08 March 2023 Accepted: 27 March 2023 Published: 25 April 2023
  • Image encryption has been an important research topic in information security. Different from traditional encryption methods, heat flow cryptosystem is a new encryption method. This paper proposes an image encryption algorithm based on heat flow cryptosystem. First, a class of heat flow cryptosystem based on nonlinear pseudo-parabolic equations are given in this paper. Second, a numerical method with high precision namely barycentric Lagrange interpolation collocation method is proposed to solve the nonlinear pseudo-parabolic equation. Third, an image encryption algorithm based on the heat flow cryptosystem is designed, the detailed process of encryption and decryption algorithm is given, the flow diagram of algorithm is showed. Finally, the proposed encryption algorithm is applied to various image with gray and RGB format and compared with the current popular chaotic encryption algorithm. Many indicators such as histograms, information entropy and correlation are used to objectively evaluate the image encryption algorithm. The experimental results show that the proposed image encryption algorithm is better in most indicators and the algorithm is sensitive to the change of key and plaintext.

    Citation: Jin Li, Jinzheng Qu, Xibo Duan, Xiaoning Su. An image encryption algorithm based on heat flow cryptosystems[J]. Networks and Heterogeneous Media, 2023, 18(3): 1260-1287. doi: 10.3934/nhm.2023055

    Related Papers:

  • Image encryption has been an important research topic in information security. Different from traditional encryption methods, heat flow cryptosystem is a new encryption method. This paper proposes an image encryption algorithm based on heat flow cryptosystem. First, a class of heat flow cryptosystem based on nonlinear pseudo-parabolic equations are given in this paper. Second, a numerical method with high precision namely barycentric Lagrange interpolation collocation method is proposed to solve the nonlinear pseudo-parabolic equation. Third, an image encryption algorithm based on the heat flow cryptosystem is designed, the detailed process of encryption and decryption algorithm is given, the flow diagram of algorithm is showed. Finally, the proposed encryption algorithm is applied to various image with gray and RGB format and compared with the current popular chaotic encryption algorithm. Many indicators such as histograms, information entropy and correlation are used to objectively evaluate the image encryption algorithm. The experimental results show that the proposed image encryption algorithm is better in most indicators and the algorithm is sensitive to the change of key and plaintext.



    加载中


    [1] P. Mahajan, A. Sachdeva, A study of encryption algorithms AES, DES and RSA for security, Glob. J. Comput. Sci. Technol., 13 (2013), 32–40. https://computerresearch.org/index.php/computer/article/view/272
    [2] K. Y. Sha, Z. X. Wang, Research on image encryption algorithms based on chaos, (in Chinese), Audio engineering, 43 (2019), 64–67. https://doi.org/10.16311/j.audioe.2019.01.018 doi: 10.16311/j.audioe.2019.01.018
    [3] W. W. Yuan, C. C. Zhang, Research on chaotic encryption algorithm of binary image, (in Chinese), Techniques of Automation and Applications, 41 (2022), 87–90.
    [4] S. Y. Jiang, G. Y. Wang, P. P. Jin, A new image encryption algorithm based on improved Henon mapping, (in Chinese), Journal of Hangzhou Dianzi University (Natural Sciences), 37 (2017), 1–6. https://doi.org/10.13954/j.cnki.hdu.2017.05.001 doi: 10.13954/j.cnki.hdu.2017.05.001
    [5] K. Zeng, S. M. Yu, Y. C. Hu, Z. Q. Zhang, Image encryption using 3D Logistic-Sine cascade map, (in Chinese), Application of Electronic Technique, 46 (2020), 86–91. https://doi.org/10.16157/j.issn.0258-7998.190966 doi: 10.16157/j.issn.0258-7998.190966
    [6] J. Y. Liu, J. K. Ge, J. T. Tang, A Fast chaotic image encryption algorithm based on improved sine map, (in Chinese), Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 41 (2022), 87–90. https://doi.org/10.19406/j.cnki.cqkjxyxbzkb.2020.05.016 doi: 10.19406/j.cnki.cqkjxyxbzkb.2020.05.016
    [7] X. Y. Wang, S. N. Chen, Y. Q. Zhang, A chaotic image encryption algorithm based on random dynamic mixing, Opt. Laser Technol., 138 (2021), 106837. https://doi.org/10.1016/j.optlastec.2020.106837 doi: 10.1016/j.optlastec.2020.106837
    [8] S. C. Wang, C. H. Wang, C. Xu, An image encryption algorithm based on a hidden attractor chaos system and the Knuth-Durstenfeld algorithm, Opt Lasers Eng, 128 (2020), 105995. https://doi.org/10.1016/j.optlaseng.2019.105995 doi: 10.1016/j.optlaseng.2019.105995
    [9] Z. G. Xiong, Y. Wu, C. H. Ye, X. M. Zhang, F. Xu, Color image chaos encryption algorithm combining CRC and nine palace map, Multimed. Tools. Appl., 78 (2019), 31035–31055. https://doi.org/10.1007/s11042-018-7081-3 doi: 10.1007/s11042-018-7081-3
    [10] M. M. Guan, X. L. Yang, W. S. Hu, Chaotic image encryption algorithm using frequency-domain DNA encoding, IET Image Process, 13 (2019), 1535–1539. https://doi.org/10.1049/iet-ipr.2019.0051 doi: 10.1049/iet-ipr.2019.0051
    [11] Eduardo Rodríguez-Orozco, Enrique Efren García-Guerrero, Everardo Inzunza-Gonzalez, O. R. López-Bonilla, A. Flores-Vergara, J. R. Cárdenas-Valdez, et al., FPGA-based chaotic cryptosystem by using voice recognition as access key, Electronics, 7 (2018), 414. https://doi.org/10.3390/electronics7120414
    [12] X. Wang, X. Chen, An image encryption algorithm based on dynamic row scrambling and Zigzag transformation, Chaos Solitons Fractals, 147 (2021), 10962. https://doi.org/10.1016/j.chaos.2021.110962 doi: 10.1016/j.chaos.2021.110962
    [13] M. L. Sahari, I. Boukemara, A pseudo-random numbers generator based on a novel 3D chaotic map with an application to color image encryption, Nonlinear Dyn., 94 (2018), 723–744. https://doi.org/10.1007/s11071-018-4390-z doi: 10.1007/s11071-018-4390-z
    [14] S. Zhou, X. Y. Wang, M. X. Wang, Y. Q. Zhang, Simple colour image cryptosystem with very high level of security, Chaos Solitons Fractals, 141 (2020), 110225. https://doi.org/10.1016/j.chaos.2020.110225 doi: 10.1016/j.chaos.2020.110225
    [15] M. Nazari, M. Mehrabian, A novel chaotic IWT-LSB blind watermarking approach with flexible capacity for secure transmission of authenticated medical images, Multimed. Tools. Appl., 80 (2021), 10615–10655. https://doi.org/10.1007/s11042-020-10032-2 doi: 10.1007/s11042-020-10032-2
    [16] P. El-kafrawy, M. Aboghazalah, A. M. Ahmed, Hanaa Torkey, Ayman El-Sayed, An efficient encryption and compression of sensed IoT medical images using auto-encoder, Comput Model Eng Sci, 134 (2023), 909–926. https://doi.org/10.32604/cmes.2022.021713 doi: 10.32604/cmes.2022.021713
    [17] D. A. Trujillo-Toledo, O. R. López-Bonilla, E. E. García-Guerrero, J. J. Esqueda-Elizondo, J. R. Cárdenas-Valdez, U. J. Tamayo-Pérez, et al., Real-time medical image encryption for H-IoT applications using improved sequences from chaotic maps, Integration, 90 (2023), 131–145. https://doi.org/10.1016/j.vlsi.2023.01.008 doi: 10.1016/j.vlsi.2023.01.008
    [18] P. Sarosh, S. A. Parah, G. M. Bhat. An efficient image encryption scheme for healthcare applications, Multimedia Tools and Applications, 81 (2022), 7253–7270. https://doi.org/10.1007/s11042-021-11812-0 doi: 10.1007/s11042-021-11812-0
    [19] E. E. García-Guerrero, E. Inzunza-González, O. R. López-Bonilla, J. R. Cárdenas-Valdez, Close E. Tlelo-Cuautle, Randomness improvement of chaotic maps for image encryption in a wireless communication scheme using PIC-microcontroller via Zigbee channels, Chaos Soliton Fract, 133 (2020), 109646. https://doi.org/10.1016/j.chaos.2020.109646 doi: 10.1016/j.chaos.2020.109646
    [20] D. A. Trujillo-Toledo, O. R. López-Bonilla, E. E. García-Guerrero, E. Tlelo-Cuautle, D. López-Mancilla, O. Guillén-Fernández, et al., Real-time RGB image encryption for IoT applications using enhanced sequences from chaotic maps, Chaos Solitons Fractals, 153 (2021), 111506. https://doi.org/10.1016/j.chaos.2021.111506
    [21] A. Kifouche, M. S. Azzaz, R. Hamouche, R. Kocik, Design and implementation of a new lightweight chaos-based cryptosystem to secure IoT communications, Int. J. Inf. Secur., 21 (2022), 1247–1262. https://doi.org/10.1007/s10207-022-00609-3 doi: 10.1007/s10207-022-00609-3
    [22] Z. X. Jia, Y. P. Liu, Novel image encryption algorithm based on self-adaptive diffusion and combined global scrambling, (in Chinese), Journal of East China Normal University (Natural Science), 6 (2019), 61–72. https://doi.org/10.3969/j.issn.1000-5641.2019.06.007 doi: 10.3969/j.issn.1000-5641.2019.06.007
    [23] H. Ren, S. Z. Niu, R. Y. Ren, Z. Yue, Research on meaningful image encryption algorithm based on 2-dimensional compressive sensing, (in Chinese), Journal on Communications, 43 (2022), 45–57. https://doi.org/10.11959/j.issn.1000-436x.2022101 doi: 10.11959/j.issn.1000-436x.2022101
    [24] X. Y. Wang, L. Feng, H. Y. Zhao, Fast image encryption algorithm based on parallel computing system, Inf. Sci., 486 (2019), 340–358. https://doi.org/10.1016/j.ins.2019.02.049 doi: 10.1016/j.ins.2019.02.049
    [25] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, A statistical test suite for random and pseudorandom number generators for cryptographic applications, Booz-allen and hamilton inc mclean va, (2001).
    [26] L. Sleem, R. Couturier, TestU01 and Practrand: Tools for a randomness evaluation for famous multimedia ciphers, Multimed Tools Appl, 79 (2020), 24075–24088. https://doi.org/10.1007/s11042-020-09108-w doi: 10.1007/s11042-020-09108-w
    [27] W. Marszalek, M. Walczak, J. Sadecki, Two-parameter 0-1 test for chaos and sample entropy bifurcation diagrams for nonlinear oscillating systems, IEEE Access, 9 (2021), 22679–22687. https://doi.org/10.1109/ACCESS.2021.3055715 doi: 10.1109/ACCESS.2021.3055715
    [28] G. R. Blakley, W. Rundell, Cryptosystems Based on an Analog of Heat Flow, Berlin: Springer Berlin Heidelberg, 1988,306–329.
    [29] L. H. Yang, J. Li, The research on the Reproducing Kernel method of Pseudo-parabolic equation in Heat Flow Cryptosystem, (in Chinese), Natural Science Journal of Harbin Normal University, 27 (2011), 12–15. https://doi.org/10.3969/j.issn.1000-5617.2010.05.006 doi: 10.3969/j.issn.1000-5617.2010.05.006
    [30] L. W. Liu, Fourier Pseudo-spectral Method for Some Sobolev Equation and Its Applications in Heat Flow Cryptosystem, (Chinese), Doctoral Thesis of PLA Information Engineering University, Zhengzhou, 2006.
    [31] N. Li, Y. Guo, W. P. Qin, H. H. Lu, A finite element algorithm used for nonlinear heat flow cryptosystems, (in Chinese), Journal of Nanjing University of Posts and Telecommunications (Natural Science), 21 (2001), 43–45. https://doi.org/10.3969/j.issn.1673-5439.2001.03.009 doi: 10.3969/j.issn.1673-5439.2001.03.009
    [32] G. Q. Gu, Q. Yang, Mixed volume element method of two-dimensional nonlinear pseudo-parabolic equation, (in Chinese), Science Technology and Engineering, 11 (2011), 1766–1768. https://doi.org/10.3969/j.issn.1671-1815.2011.08.025 doi: 10.3969/j.issn.1671-1815.2011.08.025
    [33] C. Z. Gao, H. Tu, H. Y. Song, A Class of heat flow cryptosystems and analysis of results of computer simulations, (in Chinese), Journal of Information Enqineering University, 5 (2004), 28–31. https://doi.org/10.3969/j.issn.1671-0673.2004.04.009 doi: 10.3969/j.issn.1671-0673.2004.04.009
    [34] L. S. Tang, C. S. Jiang, Image encryption algorithm based on heat flow cryptosystem and chaos, (in Chinese), Computer Engineering and Applications, 43 (2007), 37–39. https://doi.org/10.3321/j.issn:1002-8331.2007.03.011 doi: 10.3321/j.issn:1002-8331.2007.03.011
    [35] Z. Q. Wang, S. P. Li, B. T. Tang, Formulations, algorithms and applications on barycentric interpolation in 1D, (in Chinese), Journal of Shandong Jianzhu University, 22 (2007), 448–453. https://doi.org/10.3969/j.issn.1673-7644.2007.05.018 doi: 10.3969/j.issn.1673-7644.2007.05.018
    [36] J. Li, X. N. Su, J. Z. Qu, Linear barycentric rational collocation method for solving telegraph equation, Math. Methods Appl. Sci., 44 (2021), 11720–11737. https://doi.org/10.1002/mma.7548 doi: 10.1002/mma.7548
    [37] J. Z. Qu, J. Li, X. N. Su, Barycentric Lagrange interpolation collocation method for solving nonlinear, (in Chinese), Journal of Shandong University (Natural Science), (2022). https://kns.cnki.net/kcms/detail/37.1389.N.20221026.1645.002.html
    [38] H. R. Shakir, An image encryption method based on selective AES coding of wavelet transform and chaotic pixel shuffling, Multimed. Tools. Appl., 78 (2019), 26073–26087. https://doi.org/10.1007/s11042-019-07766-z doi: 10.1007/s11042-019-07766-z
    [39] W. K. Lee, R. C. W. Phan, W. S. Yap, B. M. Goi, SPRING: a novel parallel chaos-based image encryption scheme, Nonlinear Dyn., 92 (2018), 575–593. https://doi.org/10.1007/s11071-018-4076-6 doi: 10.1007/s11071-018-4076-6
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(871) PDF downloads(52) Cited by(0)

Article outline

Figures and Tables

Figures(14)  /  Tables(14)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog