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Abstract—The study explores how students, who had 
completed the AP calculus course, mathematized the opti-
mal navigation real-life problem simulated in the Second 
Life Virtual Environment. The particular research interest 
was to investigate whether/how students’ empirical activity 
in VE influences the way of their mathematizing.  

Index Terms—Calculus, Realistic Mathematics Education, 
Virtual Environment.  

I. INTRODUCTION 

A troubling problem with current education is the prac-
tical application of knowledge. Graduates do not know 
how to apply knowledge to many problems that arise 
outside the walls of school [1]. A serious mismatch exists 
and is growing between the skills obtained at schools and 
the kind of understanding and abilities that are needed for 
success beyond school [2]. The problem of ‘the practical 
application of knowledge’ is especially significant for 
calculus, which has numerous applications, including a 
wide variety of engineering tasks.  

The idea of including the out-of-school world in 
mathematics education, implying that focus be put on real-
life applications, is not new and was emphasized in 
education policy in many countries [3-4]. Regarding 
teaching and learning calculus, in the late 1980s the 
Calculus Reform movement began in the USA. The 
Calculus Consortium at Harvard (CCH) was funded by the 
National Science Foundation to redesign the curriculum 
with a view of making calculus more understandable, 
more applied, and more relevant for a wider range of 
students. One of the desired characteristics of calculus 
course was that students and instructors would find the 
applications real and compelling [5]. Consequently, many 
teachers and textbook writers have been working on the 
development of mathematical school tasks that resemble 
out-of-school situations. Palm and Burman [6] reported 
that, in Finland and Sweden, in many of the tasks encoun-
tered by students in school mathematics the situation 
described in the task, is a situation from real life.  

A traditional way of description of the contextualized 
tasks containing out-of-school real life situations is a so 
called ‘word problems’. Word problems are firmly en-
trenched as a classroom tradition, particularly in North 
American schools [7]. And yet, there has been long lasting 
debates about the reasons for the lack of word problems’ 
effectiveness as a link between abstract mathematics and 
real-life phenomena. Gravemeijer [8] notes that research 

on word problems has revealed the complex nature of the 
processes that lead to the lack of students’ activation of 
their real-world knowledge. Palm [9] stresses that in a 
large number of studies students do not pay much atten-
tion to the realities of the situations described in the word 
problems. As such, students have a tendency not to make 
proper use of their real-world knowledge. Toom [10] 
believes that not all word problems are difficult in mathe-
matical sense, but all of them need understanding of 
language and different modes of representation such as 
words, symbols, and images. 

The contemporary computer technologies can provide 
much better simulations of real world situations in 
mathematical classrooms for connecting the mathematical 
abstract with out-of-school situations, which is a point of 
this research. It should be also mentioned that there exist 
the real-life situations which cannot be simulated on the 
computer screens and the word problem format may be 
the only way of their description. Our point is that bal-
anced use of both, the word problem format and the 
computer simulations on the basis of an appropriate 
instructional design theory is a possible solution of the 
problem of practical application of knowledge.  

The purpose of this study is to utilize Virtual Environ-
ment (VE) as a method of simulating real-life situations so 
that to bring the reality to the calculus classrooms. The 
task for the students was to find the optimal path in VE 
empirically, and then to transfer the simulated in VE real-
life situation into a mathematical formal task. The particu-
lar research interest was to investigate whether/how 
students’ empirical activity in VE influences their mathe-
matical activity.  

II. THEORETICAL BACKGROUND 

More than forty years ago Freudenthal [11] posed the 
problem of lack of connection between mathematical 
knowledge and its real-life object. The Freudenthal 
Institute has developed a theoretical framework of Realis-
tic Mathematics Education (RME) [11-13], which is based 
on Freudenthal’s idea that mathematics must be connected 
to reality. The use of realistic contexts became one of the 
determining characteristics of RME approach to mathe-
matics education. For Freudenthal mathematics was not 
the body of mathematical knowledge, but the activity of 
organizing matter from reality or mathematical matter, the 
activity called mathematization [14]. The most general 
characteristic of RME is mathematizing, wherein the 
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realistic contexts must be used as a source for mathematiz-
ing. 

According to Freudenthal [12], there is another impor-
tant characteristic of RME closely related to mathematiz-
ing and which could be called the ‘level principle’. The 
main idea of the principle is that students pass through 
different levels of understanding: from devising informal 
context-connected solutions to reaching some level of 
schematization. Finally they should have insight into the 
general principles behind a problem and should be able to 
see the overall picture. Essential for this ‘level principle’ 
is that the activity of mathematizing on a lower level can 
be the subject of inquiry on a higher level. One of the 
basic principles of RME is Freudenthal’s view that 
mathematics is an activity, which is reflected in guided 
reinvention approach to teaching and learning. 

 Treffers [15] formulated the idea of ‘progressive 
mathematizing’ as a sequence of two types of mathemati-
cal activity – horizontal mathematizing and vertical 
mathematizing. He suggested that horizontal mathematiz-
ing consists of non-mathematical real world situations, 
transforming the situations into mathematical problems. 
Vertical mathematizing is grounded on horizontal mathe-
matizing and includes reasoning about abstracts within the 
mathematical system itself. The process of extracting the 
appropriate concept from a concrete situation is stated by 
De Lange [16] as 'conceptual mathematization'. This 
process forces the students to explore the situation, find 
and identify the relevant mathematics, schematize, visual-
ize, and develop a corresponding mathematical concept. 
By reflecting and generalizing the students will be able to 
apply the mathematical concept to new areas of the real 
world.  

Another important aspect of RME is a special role of 
models. Particularly, models are seen as representation of 
problem situation and play the role of bridging the gap 
between the informal understanding (connected to the 
‘real world’ and ‘imagined reality’) on the one side, and 
the understanding of formal systems on the other [17]. 
According to Streefland, cited in [14], models can fulfill 
the bridging function between the informal and the formal 
level: by shifting from a ‘model-of’ to a ‘model-for’. At 
first, the model is a model-of a situation that is familiar to 
the students. By a process of generalizing and formalizing, 
the model eventually becomes an entity on its own. It 
becomes possible to use it as a model-for mathematical 
reasoning. 

In the USA, RME was adopted in the ‘Mathematics in 
Context’ project whose aim was to develop a mathematics 
curriculum for the U.S. middle school. The project was 
funded by the National Science Foundation and executed 
by the Center for Research in Mathematical Sciences 
Education at the University of Wisconsin-Madison, and 
the Freudenthal Institute of Utrecht University. The 
philosophy of the curriculum and its development is based 
on the belief that mathematics, like any other body of 
knowledge, is the product of human inventiveness and 
social activities [14].  

The RME theory has been accepted and adopted by 
some educational institutions of England, Germany, 
Denmark, Spain, Portugal, South Africa, Brazil, Japan, 
and Malaysia [16]. Regarding calculus, adaptations, 
development, and modification of RME instructional 
design theory for teaching and learning differential equa-

tions are thoroughly performed in a number of publica-
tions, e.g.[18-22]. 

 In spite wide acceptance and adaptation of RME, the 
recent research shows that there is still a wide gap be-
tween the world of knowledge obtained at school and the 
world of conceptions found in real-life experiences. The 
claim of this paper is that the reason of why students do 
not connect the mathematical world with reality is because 
they continue mathematizing only ‘word problems’ but 
not real-life situations which include the students’ activi-
ties directed at the objects to be mathematized. Mathema-
tizing a personal participation in a real-life situation may 
involve intuitive cognition, which in turn forms one of the 
basic components of mathematical activity along with 
formal aspects such as axioms, definitions, and algorithms 
[23]. 

III. MATERIALS, METHODS, AND PARTICIPANTS  

Second Life VE was used for programming an interac-
tive setting for the empirical real-life optimal path finding 
task. The simulated setting includes a pond with shallow 
water and two platforms: one platform is located on land 
near the water’s edge; another is located in the water 
(Fig.1). 

The depth of the pond allows walking in water (instead 
of swimming) which in turn prevents from possible 
anxieties connected with absence of swimming skills. On 
the other hand, the depth of the pond allows feeling water 
resistance and therefore, speed difference in water and on 
land.  The setting was programmed so that walk-
ing/running speed on land is twice as fast as walk-
ing/running speed in water. The Second Life VE allows 
utilizing both egocentric and allocentric view perspectives 
(Fig.1). Before completing each trip the participant has to 
reset the recorded from the previous trip data double 
clicking on the nearest pink flamingo. At the moments of 
leaving one green platform and stepping on another green 
platform there are the bell sounds informing about the 
beginning and finishing the trip.   

The task for the student in this VE was to travel be-
tween the two green platforms trying to find the path 
which would give the shortest time of travel. The envi-
ronment was programmed to record the time spent for 
each trip with a corresponding distance traveled by land 
and to display this information on the banners (Fig.1).  
After each trip the student had to transfer the data into a 
specially designed guiding–reflecting journal, which was 
an integral part of the instructional/experimental design 
(Fig. 2). 

 
Figure 1.  Simulated in the Second Life VE interactive setting. 
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Figure 2.  Working with guiding–reflecting journal. 

The aim of the guiding–reflecting journal is to connect 
the student’s optimal navigation practice in the VE with 
the calculus optimal path finding task, which in turn is 
available in almost every calculus textbook [24]. Accord-
ing to RME instructional design theory, the teacher 
provides guidance, playing a ‘proactive role’ within the 
classroom setting. In this study every student decides 
whether and to what extent he/she needs guidance. In 
other words, the students had a free choice: either to 
construct and develop their own models-of the situational 
problem or to accept and develop the journal’s model. The 
journal contains blank space for independent reasoning 
and provides help/hints/directions for those students who 
need guidance and/or additional information.   

The first part of the journal contains the instructions for 
VE activity followed by some information about water 
and land components of a path. After each trip the student 
had to describe briefly why he/she chose the particular 
trip. From the research aspect, these reflections could 
provide additional information for data analysis including 
the intuitive cognition impact. The journal provides tables 
for 10 attempts after which the student had to record the 
best (minimal) time out of these attempts with correspond-
ing value of distance traveled by land.  There is question 
in the journal about student’s preferable path in case if the 
‘water’ platform would be located closer to the beach. 
This question purposes to encourage student’s reasoning 
about optimal path and platform location.  The journal 
offers another 6 attempts of optimal navigation in the VE 
with new platform location. Then the journal suggests the 
student to try to solve the problem mathematically. At this 
point the student chooses whether to develop his/her own 
model-of the situational problem or to accept the model 
offered in the next page. The back page of the journal 
contains informational tips. From the research aspect, the 
back page location of the tips allowed to observe and 
videotape the particular moments when students used the 
provided information. 

The model offered in the journal corresponds to the 
calculus optimal path finding task described in [24]. 
Namely, the task is to reach an object B, located in water, 
from the position A, located on land close to water edge, 
and to find such a path that would minimizes the time of 
travel from A to B (Fig. 3). 

Path AB is the most direct and shortest, but also is of 
the longest water distance. Since the speed in water is 
slower than speed on land, the choice could be to use the 
shortest water distance which means sprinting down the 
beach to the point on shore closest to the ‘water’ platform, 
which is C, and then turning a right angle and moving to 
B.  Finally, there is the option of using a portion of the 
land path, up to D, and then entering into the water at D 
and moving diagonally to the water platform.  

 

Figure 3.  Possible paths: from location A on Land to location B in 
water. 

Let z denote the distance between A and C.  Let y= z - 
dl, and x represents distance between B and C.  Speed 

on land is sl ; speed in water is sw. Then time spent for the 
trip is 

 

                           (3) 
 

The final solution (3) shows that the optimal path does 
not depend on z, as long as z is larger than y. There is no 
solution if sl is smaller than sw.  

The  designed study contained three main stages. The 
exploration trial was the first stage of experimental design 
with unlimited duration until the student feels comfortable 
in the environment and announced that he/she was ready 
to start the next stage.  The exploration trial allowed 
students to explore the pond with its shallow water and to 
feel the speed difference on land and in water. It also gave 
the students the opportunity to try egocentric and allocen-
tric view perspectives and to choose the preferable one. 
Altogether, the goal of exploration trial was to let students 
get feeling of ‘being’ in the environment before starting 
the next, second, stage of the designed study which is an 
optimal navigation in the VE. The third stage of the 
designed study is mathematizing the VE activity which 
implies the journal work only. 
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Students ranging in age from 17 to 18 years, who had 
almost completed the AP calculus course at a high school 
of Vancouver (Canada), participated in the research study. 
Each participant provided a signed Parent Consent Form. 
They also read and signed the Assent Form before partici-
pating. The experiments were conducted in the school’s 
Teacher’s room, outside of regular calculus class time. 
Each session lasted 60-90 minutes. The participants’ 
exploration of the computer environment was screen 
recorded by SMR software. Their work with the journals 
was video-recorded. 

IV. RESULTS  

The first participant, named Kenneth, performed fully 
independent, non-guided mathematizing. His VE activity 
was characterized by deliberate planning, realizing the trip 
strategies, and collecting empirical data for ‘transforming 
a problem field into a mathematical problem’ [15]. We 
call such activity ‘empirical mathematizing’.  

Kenneth spent 3.45 min exploring the environment - 
moving in water and on land, therefore he had an opportu-
nity to feel the speed difference in two different mediums. 
Moreover, he was informed by journal instructions and by 
the researcher that the speed on land is two times faster 
than the speed in water. Nevertheless Kenneth’s first two 
trips were straight lines between the platforms which 
maximize lower speed water part of his path (Fig. 4). 

 
Figure 4.  Kenneth’s first trip diagram. 

For Kenneth it was self-evident, certain and intrinsic, 
that the shortest distance between two points should be a 
straight line. Obviously, Kenneth chose the straight line as 
a shortest distance having in mind an intuitive model that 
the shortest distance would give him the shortest time. 
Kenneth’s tacit intuitive model prevailed over his knowl-
edge about speed difference due to its robustness [25].  

Remarkably, that already after two trips in VE Kenneth 
asked, “Actually, can I do math?” which means that his 
level of confidence in calculus application was very high 
and not typical for the school student [26]. At that moment 
Kenneth had in mind an implicit way of problem solving 
which can be referred to intuitive mathematizing from the 
viewpoint of its implicitness and globality, as described in 
[27]. Not relying on this intuitive approach, Kenneth 
decided to continue empirical mathematizing. Kenneth 
used the strategy of minimizing distance in water in third 
and fourth trips in VE. His best time strategy was the path 
between minimal and maximal water distances (Fig. 5). 

 
Figure 5.  Kenneth’s second and third strategies. The second is 

minimizing water distance (left diagram); the third strategy is Kenneth’s 
best time trip (right diagram). 

Altogether, Kenneth used three strategies and realized 
two trips (forward and return) using each of them. After 
testing all three strategies Kenneth decided that he had 

enough empirical knowledge and constructed his graphi-
cal model-of the situational problem which was fully 
grounded on his empirical activity (Fig.6). 

 
Figure 6.  Kenneth’s graphical model-of the problem. 

Kenneth has a natural habit to think aloud which gave 
valuable additional information for data analysis. Particu-
larly, while writing a relation in symbols between dis-
tances, speeds and time, Kenneth reasoned aloud and in 
‘real-life’ terms. In other words, Kenneth was writing a 
formula containing abstract variables. According to 
Treffers’s [15] classification, such activity relates to 
vertical mathematizing. On the other hand, while writing 
the formula, Kenneth articulated in terms of the variables’ 
physical meanings. That means that the variables were 
attached to the physical reality in Kenneth’s mind and as 
such, this activity can be also referred to horizontal 
mathematizing, or to border-line between them, or to 
vertical mathematizing intertwined with horizontal. Such 
interrelation agrees with Freudenthal’s [12] viewpoint that 
distinction between horizontal and vertical activity is not 
rigid and structural. Then Kenneth transferred to vertical 
activity detached from horizontal manipulating with 
mathematical symbols. Interesting moment happened 
when Kenneth’s vertical mathematizing resulted in “plus 
or minus” land distance, which obviously was a mathe-
matical abstraction. This turned Kenneth back to situ-
ational horizontal layer for verification the plausibility of 
the obtained formal results.  

Altogether, a few stages can be extracted from Ken-
neth’s mental course: (a) from real-life situation via 
perception, intuitive cognition, and empirical mathematiz-
ing Kenneth shifts to the creation of a graphical model-of 
the situational problem in order to formalize it into the 
abstract mathematical idea. (b) He develops the graphical 
‘model-of’ into a model-for mathematical reasoning. (c) 
Via progressive mathematization Kenneth goes to the 
formal mathematical world of vertical activity. (d) After 
utilization of some algorithms Kenneth turns back to 
situational physical world of horizontal layer to verify the 
plausibility of the obtained formal results. 

In contrast to the first participant, the second student, 
named Jason, performed almost fully guided horizontal 
mathematizing. Starting from exploration trial, Jason 
spent less than 30 sec for it being in water during a very 
short time. He refused to explore the environment longer, 
so, obviously he didn’t have an opportunity to feel the 
difference between speeds in water and on land. Neverthe-
less, he chose first trip strategy under the influence of 
information that speed on land was faster than speed in 
water (Fig.7). 

 
Figure 7.  Jason’s first trip diagram. 
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Jason received this information before his first trip from 
the journal, and from the researcher. Jason commented 
this strategy as “Land is faster” and completed the next 
trip according to the same strategy of trying to minimize 
the distance in water (Fig.8). 

 
Figure 8.  Jason’s second trip diagram. 

Overall, Jason completed 10 trips the strategies of which, 
according to his comments, were either maximal or 
minimal water distances. The result of Jason’s empirical 
mathematizing did not allow him to construct such model-
of the situational problem, which would allow him to 
develop a model-for mathematical reasoning (Fig. 9).  

 
Figure 9.  Jason’s graphical model-of the problem. 

Partly it happened because of the computer error, partly 
because of his limited choice of trip strategies. This right 
rectangle graphical model-of Jason’s empirical activity 
was not a subject to further mathematical development 
because of absence of variables for mathematical explora-
tion. As a result, Jason decided to develop the journal 
model. He demonstrated excellent independent vertical 
mathematizing which included application of the chain 
rule algorithm. Jason’s mental course included the follow-
ing stages: (a) From real-life situation via empirical 
mathematizing (which generated invalid empirical knowl-
edge), to the creation of corresponding graphical model-of 
the situation. (b) Following the journal guidance of 
horizontal mathematizing. (c) Transferring to independent 
vertical activity. 

The third student, named Nick, performed guided 
mathematizing which, from the viewpoint of the guidance, 
can be placed between the Kenneth’s fully non-guided and 
Jason’s guided activities. Nick spent 3.5 minutes for the 
exploration trial. He was the first participant who, during 
the exploration trial, tried to utilize both egocentric and 
allocentric view perspectives. Exploring the environment 
during 3.5 minutes Nick traveled in water and on land and 
had enough time to feel the speed difference in two 
mediums. Nevertheless, Nick’s first trip was of the same 
strategy as the Kenneth’s first trip-the strategy of a 
straight line between the platforms giving the shortest 
distance between the platforms but longest water distance 
(Fig.3). Both Kenneth’s and Nick, prior to their first trips, 
knew from the journal instructions, from the researcher, 
and from their experience during the exploration trials, 
that the speed on land was faster than speed in water. But 
their tacit intuitive model that shortest distance should 
give the shortest time prevailed over knowing that the 
speeds were different in different mediums. The remark-

able change in Nick’s empirical mathematizing approach 
happened after 6 trips of different strategies, when he 
wrote in his comments, “I noticed the angle in which I 
enter the land from water is key in reducing the time”. He 
planned all the other trips according to his new ‘angle’ 
approach. 

Nick demonstrated how empirical mathematizing can 
result in the construction of his own original model-of the 
situational problem which he developed into model-for 
mathematical reasoning (Fig. 10). 

 
Figure 10.  Nick’s graphical model-of the problem. 

Nick was persistent in mathematical verification of his 
empirical finding. He spent more than 10 minutes working 
on his original model independently, and another 6 min-
utes working on the journal model development. Notably, 
during this last 6 minute period Nick continued to write on 
the page containing his own model, which indicates that 
he tried to keep some independence from the journal 
guidance. He performed all stages of mathematizing: from 
empirical to horizontal, grounded on empirical; from 
horizontal to vertical grounded on horizontal.  

All three students demonstrated the crucial role of em-
pirical mathematizing in construction of the models-of the 
situational problem. During empirical activity all three 
participants demonstrated the interference of intuitive 
cognition on planning some trip strategies. Particularly, 
Kenneth’s and Nick’s first trip strategies were determined 
by tacit intuitive model which prevailed over newly 
received knowledge about speed differences in different 
mediums. This agrees with tacit intuitive models’ funda-
mental characteristic of robustness. On the other hand, all 
three participants demonstrated that empirical knowledge 
obtained from their empirical mathematizing prevailed 
over intuitive cognition/intuitive models and fully deter-
mined the models-of the situational problem. This in turn 
may suggest that new empirical activity forms new em-
pirical knowledge which in turn either agrees with the 
intuitive cognition formed on the basis of previous em-
pirical knowledge or prevails over it and forms new 
intuitions. If students mathematize the real-life problem 
presented in the format of word problem, the intuitive 
cognition based on their previous empirical experience 
may play the prevailing role at the stage of horizontal 
mathematizing. If students are provided with opportunity 
for empirical mathematizing, their new empirical knowl-
edge prevails over intuitions; their horizontal mathematiz-
ing is fully grounded on empirical mathematizing. 

The students’ ability to mathematize the situational 
problem with or without guidance depends on their stage 
of knowledge, according to the epistemological empow-
erment model, described by Ernest [26]. Particularly, 
Kenneth demonstrated the Constructed Knowledge Stage, 
characterized by confidence for integrating Connected 
Knowing (the intuitive knowing) and Separated Knowing 
(the impersonal rational reasoning). Being a constructing 
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knower, Kenneth was confident in mathematical knowl-
edge and in the ability to apply his knowledge. He also 
had a sense of mathematical self-efficacy. Unlike Ken-
neth, Jason’s epistemological empowerment relates to the 
earlier, Separate Knowing stage. This earlier stage of 
knowing is a rational mode in which the subject realizes 
that there are objective logical rules, impersonal rational 
reasoning and uses them. Nick’s confidence in developing 
his own model allows relating his empowerment to the 
Constructed Knowledge stage. On the other hand, at some 
point Nick lost his confidence and decided to develop the 
journal model. Therefore, his epistemological empower-
ment may correspond to the stage between the Connected 
Knowing and the Constructed Knowledge. 

V. CONCLUSIONS 

We demonstrated that instead of real-life situations 
described by ‘word problems’ with ready-made images to 
be mathematized, the real-life activity can be simulated in 
VE. A background assumption which was made at the 
beginning of the research was that the VE technology, and 
particularly the Second Life VE provides simulation on 
the computer screens close to the reality; and the real-life 
problems simulated in VE can be considered as the 
problems of the real physical world. The fact that all three 
students developed their models-of the situational problem 
on the basis of their empirical activity in VE suggests that 
VE indeed provides simulation close to reality; close 
enough to meet the purpose of this study, to bring the real-
life problem from outside the school into the classroom. 
This, in turn, contributes to fundamental principle of RME 
by making formal mathematics as a natural extension of 
students’ experiential reality. Another contribution to 
RME is connected with identifying the role of empirical 
mathematizing and empirical knowledge in construction 
of the models-of the situational problems and as such, in 
horizontal and vertical mathematizing. 

Interesting finding concerns the role the intuitive 
cognition plays on different stages of mathematizing. 
Particularly, on the basis of the research results it was 
suggested that new empirical knowledge obtained from 
empirical mathematizing prevails over intuitions formed 
from a previous experience.  

We also showed that the way of mathematizing depends 
on the stage of epistemological empowerment which is 
especially important for the ability to apply calculus for 
the beyond the school tasks, including a variety of engi-
neering problems. Therefore, the instructional design 
based on utilization of VE simulations should develop 
students’ epistemological empowerment through the 
development of their applicable skills.  

VE environment simulations of real-life problems can 
be used for a variety of mathematics and science prob-
lems, preparing students for their future engineering 
careers, implying application of theoretical knowledge for 
practical tasks. 
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