
SPECIAL FOCUS PAPER
A NEW APPROACH TO PROGRAMMING LANGUAGE EDUCATION FOR BEGINNERS WITH TOP-DOWN LEARNING

A New Approach to Programming Language
Education for Beginners with

Top-Down Learning
http://dx.doi.org/10.3991/ijep.v3iS4.3216

Daisuke Saito, and Tsuneo Yamauara
Tokai University, Tokyo, Japan

Abstract—There are two basic approaches in learning new
programming language: a bottom-up approach and a top-
down approach. It has been said that if a learner has
already acquired one language, the top-down approach is
more efficient to learn another while, for a person who has
absolutely no knowledge of any programming languages;
the bottom-up approach is preferable. The major problem
of the bottom-up approach is that it requires longer period
to acquire the language. For quicker learning, this paper
applies a top-down approach for a beginners who has not
yet acquired any programming languages.

Index Terms—Introduction: Bottom-up-approach,
Learning-approach, Programming-language-learning, and
Top-down-approach

I. INTRODUCTION
A programming language education is one of the most

serious issues in software development, and is quite time-
consuming, in particular when targeting a person who has
never learned any language before [1].

Usually, when learning a new programming language, a
bottom-up approach is taken in many cases [2]. That is,
first learning the data definition and grammar of the
targeted language, and coding a sample program, then
developing the actual software with a newly learned
language.

Let’s suppose the situation where an engineer with a
full command of English must write a resume in French.
In the bottom-up approach, he first learns the basics of
French grammar, then takes the step of writing a resume
in French. In the top-down approach, he gets “examples of
French resumes," and changes some parts of the example
to fit his purpose.

When beginners need linguistic acquirement, a bottom-
up approach is used in many cases, and there are many
case studies. As for a top-down approach, on the other
hand, there is very little research in the programming
learning method. And there are very few examples that
can be used as a canonical programming.

II. LANGUAGE LEARNING APPROACH
There are two approaches in learning a programming

language: a bottom-up approach (BUA) and a top-down
approach (TDA).

A. Bottom Up Approach(BUA)
The bottom-up approach is a learning approach

generally starting from the basics and moving to details.
For a person who tries to learn C for example, he first
studies grammar and data definition, then learns how to
program. This approach is very frequently used in an
educational institution and a book which teaches a
programming language to beginners.

B. Top Down Approach(TDA)
The top-down approach mentioned in this paper is a

learning method that first uses sample programming to
acquire the language ability, then studying the details of
the language, i.e., grammar and data definition. TDA
approach uses sample coding. When a programmer
learns C, for example, a simple and canonical sample
program written in C is used, and he learns programming
by understanding and changing the sample code.

TDA has many advantages over BU. Firstly TDA
requires shorter period to acquire the programming
language skill than BUA. TDA gives a final program, or a
targeted goal to a learner and what he has to do is copy,
think, change and verify. For the learner, each program
presented to him gives a clear picture and goal of “This is
the program that you will learn,” and he can focus on a
“block” of a program rather than a small piece of a
program. He understands the program as a whole, a
meaningful block of programming.

Since pieces of sample coding referred by the learner
are picked up from the programs that furnish textbook-
style and canonical programming style, he is expected that
he will be able to simultaneously learn the coding style as
well.

A typical learning process of TDA is, (1) read a block
of source code with referring the comments, (2) guess and
understand the meaning of a program sentence. The
repetition of this process surely increases the program
understandability, or the ability to understand someone
else’s programs.

Another advantage that a learner can enjoy from TDA
is that he can acquire the sense of reusability, i.e.,
increasing the productivity by applying the copy-and-
paste-based developing methodology. The software
reusability is supposed to be one of the most promising
remedies to improve the development productivity, which
has only showed quite sluggish improvement for the last 4
decades. The basic idea of TDA is “using and changing

16 http://www.i-jep.org

SPECIAL FOCUS PAPER
A NEW APPROACH TO PROGRAMMING LANGUAGE EDUCATION FOR BEGINNERS WITH TOP-DOWN LEARNING

the already existing programs,” and is very similar to that
of reusability.

The primary shortcoming of TDA, however, is that a
learner can easily catch the overview of the program, but
may not understand the details [2]. We named this
mentality the ITIUE-syndrome (I Think I Understand
Everything syndrome), and addresses this issue lately.

C. Applicability of TDA
TDA is expected to have many advantages, but is

scarcely seen in the actual programming language
education in particular when targeting a first-time learner.
A rare case that TDA is used is in the situation where an
advanced programmer, i.e., a software engineer who has a
full command of one or more programming language,
learns second or more language.

The major issue that prevents the wide dissemination of
TDA even among advanced programmers is the
difficulties in selecting sample programs to be used for
TDA, i.e., the sample programs must be pragmatic, well-
written, and obeying the programming style.

Based upon our teaching experience of programming
languages, we tended to develop the confidence that TDA
can be applicable to the novice learner’s language learning,
and conduct TDA is applicable in the programming
language education targeting a first-time learner.
• TDA is applicable in the programming language

education targeting a first-time learner.
• The first-time learner can enjoy the advantages of

TDA.

III. OVERVIEW EXPERIMENT
The overview of the experiments to measure the

effectiveness of TDA for the first-time learner is as
follows:

A. Select language
C was selected as the target programming language.

B. The detaile of laeners
Six students (BU1, BU2, BU3 and TD1, TD2, TD3)

were picked up, and BU1, BU2, BU3 were grouped for
BUA while TD1, TD2, TD3 were for TDA. The details of
six students are:
• BU1: An 18-year-old freshman majoring Information

Engineering. No programming experience.
• BU2: A 23-year-old senior majoring electronics Eng.

Almost no programming experience.
• BU3: A 23-year-old senior majoring Information Eng.

Has experience of Jave programming only.
• TD1: An 18-year-old freshman majoring Information

Engineering. No programming experience.
• TD2: A 23-year-old senior majoring Material

Engineering. No programming experience.
• TD3: A 23-year-old junior majoring Psychology. No

programming experience.

C. Programming Sentences to Be Learned
Six students were divided into 2 groups, i.e., the Three

BUA learners and Three TDA learners, and were expected
to learn the following 3 sentences:

• if Sentence
• for Sentence
• while Sentence

D. Pre-Education
Prior to the experiments (or, a programming contest),

both groups received the pre-education as follows:
1) BUA Group
Three tutors, or programming experts, with using

textbooks, taught 3 BU learners the basics of C including
how to use variables and grammar of “if,” “for” and
“while.” The tutoring period was approximately 90
minutes a person.

2) TDA Group
No tutors were assigned to TDA group (no advice or

guidance were given), instead only the following 3 sample
programs were showed:

Figure 1. A Sample Program for “if-sentence”

Figure 2. A Sample Program for “for-sentence”

#include <stdio.h>

int main(void){

int i; // Define “loop counter”

// Define “total number,” and set zero.
int sum=0;

// Repeat i times
for(i=1;i<=10;i++)
{

 sum=sum+i; // Add “ i” to the sum
}
printf("Total is% d",sum);
//Display the value of the sum

}

#include <stdio.h>

int main(void){

 //Define “inputted number to be judged”

int num;

printf("Please enter an integer:");

/ A value is inputted
scanf("%d",&num); /

// Judge if the value is even or odd //
if((num%2)==0){

 printf("an even number");
}

else{
 printf("an odd number");

}
}

iJEP ‒ Volume 3, Special Issue 4: "TALE2013", December 2013 17

SPECIAL FOCUS PAPER
A NEW APPROACH TO PROGRAMMING LANGUAGE EDUCATION FOR BEGINNERS WITH TOP-DOWN LEARNING

Figure 3. A Sample Program for “while-sentence”

The program in Fig.1 judges if the inputted value is odd
or even. The program in Fig.2 calculates the total number
from 1 to 10 with using an “if statement,” and Fig.3 does
the same thing with a “while-statement.” When 3 TDA
learners received the above 3 programs, they tried to
understand the meanings of each sentence by comparing
the coding and comments, and repeated “change-and-run
the programs” to verify that their understanding was
correct.

E. Specifications of the Program to Be Developed
After 2 groups completed 90-minute learning, the

following simple specification was presented to measure
the effectiveness of TDA:

Figure 4. Specification of the Problem to Be Developed

In order for the 6 participants to make the required
program, 30 minutes were given as their first trial of
programming, but, as we anticipated, none of 6
participants have come out a correct one (a few of them
were close, but were not good enough). We then gave a
few clues (we gave more clues to the BUA group than the
TDA team) and another 30 minutes.

IV. RESULTS, ANALYSIS AND INTERPRETATION

A. Results
TABLE1 shows the overall results of this programming

experiment. “Minutes to code” is the duration time needed
to code in minutes. “Correctness” is whether the program
is functionally correct or not, or if the program works as
defined in the specification (we applied 5-point grading
system where, from 5 to 1, grading changes from excellent
to poor). “Structure” refers to the program structure, and
evaluates if the program follows the programming style
including logic structure, data structure, indentation,
naming conversion etc [3]. “Comments” evaluates
whether or not comments are properly attached [4]. The
“LOC” stands for “Lines of Code,” or a number of
program lines. The “Grammar” means whether the
program is grammatically correct or not, or a participant
can code the program without compilation errors within
the given time.

We also conducted an interview with 6 participants to
analyze the “program understandability” and
“motivation,”

TABLE I.
PROGRAMMING RESULTS

BUA / TDA BUA TDA
Participants BU1 BU2 BU3 TD1 TD2 TD3

minutes to code 51 60 24 32 29 26
Correctness 4 4 5 4 4 4

Structure 5 5 5 5 5 4
Comments no No yes yes Yes yes

LOC 31 30 29 36 34 33
Grammar 5 5 5 5 5 5

B. Analysis
Here is one thing that we have to consider when the

results are analyzed: BU3 was selected because he has the
programming experience of Java (not C) only, but he
extended his knowledge and experience to C
programming, and showed quite high performance as is
illustrated in TABLE1. We assumed that BU3 was an odd
one to exclude from the results.

1) Minutes to Code
If BU3 is excluded because he is a semi-expert of Java,

or an “odd man out,” the learners of BUA takes nearly
100% more than the TDA learners to develop the program.
Please note that, prior to the experiments, the 3 BUA
learners took a C programming language lesson in a man-
to-man fashion while the 3 TDA was given only sample
programs, i.e., they acquired the programming ability by
self-learning.

2) Correctness
All the programs made by 6 people worked as specified

in the requirement specification illustrated in Fig.4. Thus,
in terms of the functional quality, we do not see any
differences between BUA and TDA, or another
interpretation is “Shorter learning period did not bring
poorer quality.”

3) Structure
Structure” here means whether or not the developed

program follows the coding rules. Even if BU3 is
excluded as an “odd man out” same as in “Minutes to

#include <stdio.h>
int main(void){

int i=1; // Define “loop counter”

// Define “total number,” and set zero.
int sum=0;

// Repeat while ”i" is ten or less.
while(i<=10){

// Add “ i” to the sum
sum=sum+i;

 // Add 1 to the loop counter.
 i++;

}

printf("Total is% d",sum)
 // Display the value of the sum

}

Make a “guess the secret number” program that
satisfies the following requirements:
1. Get an inputted “guessed number.”
2. A player can try 10 times.
3. Compare the guessed number and the secret

number.
4. If the guessed number is not right, display a

message like “The guessed number was larger
(smaller). You can try 7 times.”

5. If the guessed number is correct, end the
program.

6. Set “256” as the secret number.

18 http://www.i-jep.org

SPECIAL FOCUS PAPER
A NEW APPROACH TO PROGRAMMING LANGUAGE EDUCATION FOR BEGINNERS WITH TOP-DOWN LEARNING

Code,” the learners of BUA showed (slightly) better
performance than the TDA people. This is the only
instance that did not go as we anticipated before we
conducted the experiments. We had an intensive interview
with TD3 to figure out that he did not like programming
(or, he tended to think that he was forced to joine the
experiments), and reiterated copy-and-paste without any
deeper consideration. It would be better, same as BU3, to
assume TD3 as an “odd one out.”

4) Comments
Same as in “Minutes to Code,” if BU3 is excluded as an

“odd man out,” the learners of BUA did not write any
comments while 100% of the TDA learners put comments.
The TDA people wrote comments, because the TDA
people always saw the well-commented program, and
assumed that comments are must. The TDA-styled
learning is also good for better program readability.

5) LOC (Lines of Code)
In terms of the number of program lines developed by 6

learners, there were not significant differences between
the BUA learners and the TDA people.

6) Grammar
We checked grammatical errors that were rejected by C

compiler: none of 6 programs had uncompilable errors.

C. Further Analysis
Here we develop further analysis. Fig. 5 through Fig. 10

illustrate the source programs that were actually made by
6 examinees of the TDA group and the BUA group
(Comments and messages in the source code were
translated in English for readers’ better understanding).

Figure 5. TD1 Result Code

Figure 6. TD2 Result-Code

Figure 7. TD3 Result Code

iJEP ‒ Volume 3, Special Issue 4: "TALE2013", December 2013 19

SPECIAL FOCUS PAPER
A NEW APPROACH TO PROGRAMMING LANGUAGE EDUCATION FOR BEGINNERS WITH TOP-DOWN LEARNING

Figure 8. BU1 Result Code

Figure 9. BU2 Result Code

1) Quality
We compared the source code of TDA and BUA to

figure out little differences. The differences were very
little but obvious in “comments” and “naming.”

a) Comment
Only one person of the BUA group described

comments while all the three of the TDA group added
comments. This is because (1) all the sample programs
had comments, the TDA examinees assumed that a source
program must have comments, (2) we put emphasis on the
importance of the comments prior to the programming, (3)

Figure 10. BU3 Result Code

we asked the TDA examinees to understand the meaning
of the source code by comparing each program sentence
and the attached comment. For the BUA learners,
commenting or not commenting heavily depends on the
educators: whether or not he teaches the importance of
comments.

b) Naming variables
Between the TDA and BUA learners, there were

significant differences in the “naming convention,” or
naming rules. Fig.11 illustrates examples of the variable
names made by a BUA examinee. The variable names do
not show or suggest the actual meanings of the variables.

Figure 11.

Fig.12 shows an example of the variable names used by
a TDA learner. Compared to the names of the BUA
examinees, the variable names have some meanings, and
suggest the usage of the variables. These better naming
came from the sample source code that applies textbook-
style naming convention.

Figure 12.

There is a tendency that put more of a group of TDA is
to understand the Naming of Things also when you look at
the code of the other.

2) Time
In terms of the duration time to develop, even though

there are individual differences, the TDA learners tended
to spend shorter time than the BUA examinees as shown
in Tbl 1.

20 http://www.i-jep.org

SPECIAL FOCUS PAPER
A NEW APPROACH TO PROGRAMMING LANGUAGE EDUCATION FOR BEGINNERS WITH TOP-DOWN LEARNING

D. Interpretation
1) Program Understandability
We conducted an interview with BUA people to find

out that they (except for BU3) even did not have the sense
of the programing understandability. This is because they
wrote a program, but did not read it. On the other hand,
the TDA learners started from reading programs with
referring to comments. This unconsciously increased the
learners’ program understandability.

2) Motivation
Retaining motivation is extremely important and

difficult when learning something, and many studies have
addressed this issue of programming language learning [5]
[6].

The interview revealed that TDA learners could retain
the motivation much longer than the BUA people. The
TDA learners clearly understood their goals because
samples were given. People can retain motivation if a goal
is showed.

V. ISSUE OF TDA
TDA has some issues: When we conducted the

interview, the three participants of the TDA group
mentioned the following comments:
• “I think I understood everything"(actually he did not)
• "I understood the process” (actually he does not

know how to use it)
• "Because I see the goal, I thought it must be easy to

overcome the problem"

 We suspect that this is an undesirable side effect of
TDA, and we name it ITIUE-syndrome (I Think I
Understood Everything syndrome). Since the basic idea of
TDA is, firstly, TDA clearly shows where to start and its
goal by sample programs, then a learner studies
programming, he tends to think that “I think I can easily
make it,” or in the worst case, “I completely understood
everything” even though what he has to learn is how to
actually and practically program.

This mentality must be corrected. One of the possible
remedies will be to provide a program with some blank
lines, or a “fill-in-the-blanks” type of programming
questions to see how deeply the learner understands.

In addition, one must also consider the sample code to
be provided. The sample code must furnish canonical
coding style, naming convention, and algorithm so that a
learner assumes the code as a textbook. We need criterion
for choosing the sample source code.

VI. FUTURE WORK
Our experiments showed that TDA is quite effective for

a beginner education. In order for us to analyze the more
details of TDA, in particular the applicability and
relationship between TDA and a programming language,
we will conduct a larger scale programming experiments.

One of the most crucial issues that we have to tackle is
that how we will be able to furnish canonical or textbook-
styled programs which perfectly follow programming
rules, use good algorithm, have proper comments, etc.

Also we will have to come out a language learning
process based upon TDA to generalize the language
education.

VII. CONCLUSION
When learning a new programming language, those

who are familiar with programming languages tend to
apply top-down approach or TDA, i.e., firstly attempting
to understand program sentences then moving to grammar
and details. Although this approach will surely bring a
quicker learning compared to a bottom-up approach, or
BUA, which starts from grammar then goes to program
sentence, many education organizations for programming
language have supposed that TDA was not good for
beginners.

We picked up 6 students, who have never learned any
programming language, and applied a top-down approach
in their new programming language learning education.

The results revealed that TDA is quite effective even
when a beginner is targeted: although there is no
noticeable improvement in program writing between TDA
and BUA, the learners in the TDA group significantly
increased the program understandability (i.e.,
understanding other person’s programming) because they
reiterated “read and understand the sample programs.
They also acquired the sense of reusability.

ACKNOWLEDGEMENT
We thank Hiroki Hayashi, Sho Takahashi, Yuta Saito,

Ryo Masuoka, Hiroto Baba, Hirotaka Suma who
participated into our programming experiments. Also we
thank Daisuke Moriya, Yuya Hukuyama, Tomoyasu
Tanaka for conducting the experiments, summarizing the
data, and proof reading.

REFERENCES
[1] Lahtinen, E., Ala-Mutka, K., and Järvinen,, A study of the

difficulties of novice programmers, ACM SIGCSE Bulletin, Sept
2005, Volume 37 Issue 3, pp. 14-18

[2] Margaret M. Reek, A TOP-DOWN APPROACH TO TEACHING
PROGRAMMING, ACM SIGCS, Mar. 1995, pp. 6-9

[3] Brian W. Pike, Rob Kernighan, Practice of Programming, The
(Addison-Wesley Professional Computing Series), Addison-
Wesley Professional, Feb. 1999

[4] Xuefen Fang, Quality Software, 2001. Proceedings.Second Asia-
Pacific Conference on, 2001, pp.73 – 78

[5] Tony Jenkins, The motivation of students of programming, ACM
SIGCSE Bulletin, Sept. 2001, Volume 33 Issue 3, pp. 53-56
http://dx.doi.org/10.1145/507758.377472

[6] Takemura, Y.; Nagumo, H.; Nitta, N, Work in progress: Analysis
of the relationship between teaching contents and motivation in
programming education, Frontiers in Education Conference (FIE),
Oct. 2012, pp. 1 – 2

AUTHORS
D Saito is with the Information and Communication

Technology Department, Tokai University (e-mail:
3bjnm007@ mail.tokai-u.jp).

T Yamaura is with the Information and
Communication Technology Department, Tokai
University (e-mail: yamaura@keyaki.cc.u-tokai.ac.jp)

This article is an extended and modified version of a paper presented
at the 2013 IEEE International Conference on Teaching, Assessment and
Learning for Engineering (TALE2013), held 26-29 August 2013, Bali
Dynasty Resort, Kuta, Indonesia. Submitted 30 September. Published as
re-submitted by the authors 01 December 2013.

iJEP ‒ Volume 3, Special Issue 4: "TALE2013", December 2013 21

	iJEP – Vol. 3, Special Issue 4: "TALE 2013", December 2013
	A New Approach to Programming Language Education for Beginners with Top-Down Learning

