
Paper—Analysis of Pattern Searching Algorithms and Their Application

Analysis of Pattern Searching Algorithms
and Their Application

https://doi.org/10.3991/ijes.v10i04.35295

Festinë Retkoceri(*), Florim Idrizi, Shpend Ismaili, Florinda Imeri, Agon Memeti
Department of Informatics, Faculty of Natural Sciences and Mathematics, University of Tetovo,

Tetovo, Republic of North Macedonia
f.retkoceri3182021@unite.edu.mk

Abstract—Nowadays data is growing tremendously. Therefore, there is a
great need to store and process data. The problem of Pattern Searching has dif-
ferent applications. When searching for text or words in computer application
systems, Pattern searching is used to display the search results. The purpose of
Pattern searching is to find text within another text. For example, searching for
text in books will take a long time and is hard work. Using Pattern searching will
save you time and effort. If similar words are found within the requested text,
it will underline the word similar to what was requested, otherwise it does not
display any matches if there are no similar words within a text. This paper pres-
ents comparisons of the speed of different Pattern searching algorithms, precisely
the Naive, KMP, Rabin-Karp, Finite Automata, Boyer-Moore, Aho-Corasick,
Z Algorithm algorithms. We will test the time complexity of these algorithms
in the three programming languages C#, Java and Python using three different
CPUs. According to the results that appear in this comparison, we are able to per-
form the comparison between the programming languages and the comparison
between the CPUs used in this research.

Keywords—pattern searching, algorithm, string matching, comparison of
pattern searching

1	 Introduction

Pattern searching is an important problem in computer science that is used to show
search results in text editing to find unique patterns in the text editor, data compression,
DNA sequence matching – of, spell checking, computer viruses, signature matching,
dictionary-based language translation [1], World Wide Web search engines and other
computer application systems [2], in biology [3], most of major data processing in
bioinformatics involves in one way or another the recognition of certain patterns within
DNA, RNA or protein sequences [4], and the detection of face masks in real time [5].
A pattern represents a non-empty language that contains strings other than the empty
string. It can be described by a string, by a finite set of strings, or by other means.
A string is a set of characters that can contain spaces and numbers. A string can be
ordered or unordered because the main task of string matching is to find string A within

32 http://www.i-jes.org

https://doi.org/10.3991/ijes.v10i04.35295
mailto:f.retkoceri3182021@unite.edu.mk

Paper—Analysis of Pattern Searching Algorithms and Their Application

string B, regardless of alphabetic order [6]. The problem of pattern searching is to
search for occurrences of strings of language in other strings – or in texts that are less
formal [7]. String matching can be understood as the problem of finding a pattern with
some property within a given sequence of symbols. The simplest case is that of finding
a certain string within the model [8]. Pattern searching are very useful when performing
database search operation, they are also useful in finding patterns in substring from a
larger string. We have problems that need fast and efficient algorithms for computa-
tion. There are many applications that require search process and thus we need Pattern
searching algorithms [9]. One thing is certain, that each algorithm that exists depending
on the environment where it is implemented has its advantages and disadvantages,
which are different from another algorithm. The availability of data is increasing day
by day tremendously. Therefore, a great need has arisen to store and process data. The
Pattern Searching problem has various applications. The main objective of Pattern
Searching is to search for a particular pattern for a position in a large piece of text
(eg from a book, a paragraph, a sentence, etc.). The goal is to find the representation of
a text within another text. For example, when we need to find a text in the text editor, it
is a difficult task to find that word or text manually. If similar words are found then we
will highlight all occurrences of the string we are looking for, otherwise it will show no
matches if there are zero occurrences of the string [2]. To search for a pattern within a
string, an algorithm is needed to find the pattern, as well as to recognize the locations
where it is found in a given pattern of characters. Determining which of the algorithms
is the best to use depends on the application where the algorithm will be used [10], and
many current algorithms may not scale well for large databases or sequences of DNA
due to high computational costs [11]. Each algorithm tries to avoid problems that have
been encountered in existing algorithms.

2	 Background

There are many applications that have search functionality such as performing data-
base search operations, and that is why Pattern Searching algorithms are necessary.
Each algorithm has its advantages and disadvantages. In the context of our research,
Pattern searching algorithms will be experimented on computers with different per-
formances, with different inputs, with the sole purpose of having accurate conclusions
about their speed and ranking. Although there are a large number of research where
various analyses and comparisons have been made between the algorithms that cur-
rently exist, there is still a dilemma as to how accurate such research are since it must
be taken into account that we are dealing with analyses, tests that are carried out in
computers and such analyses besides depending on the complexity of the algorithm
that is executed, also depend on the performance of the computer, the active processes
that are running in the operating system, the operating system itself etc. Based on these
circumstances, we will elaborate our analyses several times in order to reach the most
approximate and reliable results.

We will test the Pattern searching algorithms in C#, Java and Python programming
languages, with inputs from various sources. However, to be as accurate as possible

iJES ‒ Vol. 10, No. 04, 2022 33

Paper—Analysis of Pattern Searching Algorithms and Their Application

in the analysis, we will use the same inputs to all pattern searching algorithms, and
based on the results that will come out from the selected programming languages, we
will make their comparisons. The accuracy of these results also depends on the code
sequence that will measure the execution of the algorithms in question. After the anal-
yses and comparisons, we will elaborate the results together with the relevant clar-
ifications through tables, where in the tables we will have the time of the speed of
the algorithms. Our research is firstly related to the comparison of pattern searching
algorithms. Comparison of algorithms between different CPUs using strings of differ-
ent sizes, and comparison of programming languages ​​implemented on different CPUs.
The results of the execution time of the Pattern Searching algorithms will be displayed
in tables where we can then make comparisons between programming languages ​​and
comparisons between CPUs.

2.1	 Analysis of algorithms

In order to find which algorithm is better than another algorithm, analyses and
comparisons between them should be done. To compare algorithms, their complexity
should be calculated. There are two types of complexity as well [12] [13]:

•	 Space Complexity – which actually represents the necessary memory or space
required by the algorithm to correctly execute the inputs, and

•	 Time Complexity – which actually represents the time required for the algorithm to
correctly execute the inputs.

Nowadays, temporal complexity is more important than spatial complexity. We say
such a thing based on the fact that always when we talk about the complexity of algo-
rithms, it is meant how fast the algorithm manages to execute a certain code in propor-
tion to the memory it uses. To make the time comparison of the algorithms is actually
a very difficult task, a task that implies that the running time of the algorithm must be
calculated, and such a calculation always depends on the processor, the programming
language where it is executed and many other factors. Even if the processor and the
programming language are the same, it is still difficult to determine the exact time
interval of the execution of the algorithms, since they cannot be the same, the use of the
processor in the same way by different processes within the operating system. How-
ever, we will talk about the complexity of the algorithms and their calculation after the
description of the most popular Pattern Searching algorithms today and the description
of their code. Algorithm analysis defines the estimation of the resources needed for an
algorithm to solve a given problem. Sometimes the resources include memory, time and
communication spaces. Obviously, an algorithm that takes months or years to solve a
given problem is not useful. In addition, the algorithm that requires gigabytes (GB) of
main memory to solve certain problems is not efficient. In general, the time required by
an algorithm increases with the size of the input, so it is normal to describe the execu-
tion time of a program as a function of the size of its input.

34 http://www.i-jes.org

Paper—Analysis of Pattern Searching Algorithms and Their Application

3	 Comparison of each pattern searching algorithm in C#, Java,
and Python programming languages

In order to make a comparison with the algorithms used to find the model, in this
research, we used three computers with different processors:

I.	Processor: AMD A9-9410 RADEON R5, 5 COMPUTE CORES 2C +3G 2.90GHz
Installed RAM: 8.00 GB System type 64 bit operating system, x64-based processor,

II.	Processor: Intel ® Core ™ i7-2620m CPU @ 2.70 GHz Installed memory (RAM):
8.00 GB System Type: 64-bit,

III.	Processor Intel ® Core ™ i5-6200U CPU @ 2.30GHz 2.40GHz Installed Ram
4.00GB System type 64 bit operating system, x64 based processor.

We implemented the algorithms in the C# programming language in Visual Studio
2017, in the Java programming language in Eclipse, and in Python 3.10 in PyCharm
2022.2. The program measures the execution time of the algorithms, while in the exper-
iment we will use text of different sizes, where we will see more clearly the changes in
the execution time of the algorithms. Below are the tables with the data obtained from
the experiment performed comparing the speed of algorithms in C#, Java and Python
programming languages on all three CPUs.

In the tables below, we can see the comparison of the execution time of the pro-
gramming languages C#, Java and Python using three different CPUs AMD A9-9410
RADEON R5, CPUs i7-2620m and i5-6200U which shows which of the programming
languages performs better depending on which CPU they are implemented on. From
the tables it is clear that text sizes (characters) ranging from 100 characters to 1 million
were used. Whereas, the figures are given as execution time in milliseconds. According
to the results shown in the tables below Naive algorithm, KMP algorithm, Rabin-Karp
algorithm, Finite Automata algorithm, Boyer-Moore algorithm, Aho-Corasick algo-
rithm, Z algorithm, Java programming language is faster in time complexity than C#
programming language and Python. While the Python programming language is the
language that takes the most time during the execution time of the algorithm.

iJES ‒ Vol. 10, No. 04, 2022 35

Paper—Analysis of Pattern Searching Algorithms and Their Application

Table 1. Running time of Naive algorithm in C#, Java and Python programming languages

Naïve Algorithm

Text Size
(Characters)

C# Java Python

AMD
A9-9410

RADEON
R5 (ms)

i7-2620m
(ms)

i5-6200U
(ms)

AMD
A9-9410

RADEON
R5 (ms)

i7-2620m
(ms)

i5-6200U
(ms)

AMD
A9-9410

RADEON
R5 (ms)

i7-2620m
(ms)

i5-6200U
(ms)

100.00 0.1095 0.0024 0.1131 0.0027 0.0011 0 0.0989 0 0.0998

500.00 0.2403 0.004 0.0993 0.0032 0.0022 0.0002 0.3059 0.09984 0.1004

1,000.00 0.2998 0.0032 0.2292 0.0033 0.0009 0.0002 0.7999 0.19991 0.8761

5,000.00 0.3727 0.0126 1.207 0.0126 0.0018 0.0018 1.6972 1.49795 2.5211

10,000.00 0.3782 0.0169 2.078 0.0197 0.003 0.0025 3.4681 2.39724 6.5556

50,000.00 1.2706 0.1486 5.9197 0.0415 0.0137 0.0175 12.7561 12.3919 28.7274

100,000.00 2.151 1.7691 12.1105 0.2254 0.0301 0.0448 28.8799 25.3835 87.7738

1,000,000.00 9.3829 2.067 30.5555 0.4168 0.1108 0.1291 509.911 305.6094 1202.025

In Table 1, at text size 500 to 1 million on the three CPUs, the Java programming
language is faster in time complexity. According to data on CPU i7-2620m at text
size 100, programming language Python (0 ms) performs better than Java (0.0011 ms)
and C# (0.0024 ms).

Table 2. Running time of KMP algorithm in C#, Java and Python programming languages

KMP Algorithm

Text Size
(Characters)

C# Java Python

AMD
A9-9410

RADEON
R5 (ms)

i7-2620m
(ms)

i5-6200U
(ms)

AMD
A9-9410

RADEON
R5 (ms)

i7-2620m
(ms)

i5-6200U
(ms)

AMD
A9-9410

RADEON
R5 (ms)

i7-2620m
(ms)

i5-6200U
(ms)

100.00 0.0597 0.0047 0.0028 0.0018 0.0007 0 0.2 0 0.1999

500.00 0.1435 0.0064 0.0052 0.0029 0.0011 0.0001 0.3185 0.0998 0.7235

1,000.00 0.1792 0.0048 0.0695 0.0033 0.0011 0.0003 0.6993 0.3996 1.1483

5,000.00 0.409 0.014 0.1338 0.0104 0.0028 0.0018 7.4838 2.0979 4.6741

10,000.00 0.4406 0.0029 0.1263 0.0135 0.0045 0.0044 6.6664 4.6961 10.2164

50,000.00 0.4108 0.0471 0.4665 0.0516 0.0152 0.0175 31.273 22.3855 50.278

100,000.00 0.7288 0.025 0.7814 0.1147 0.0312 0.0413 86.97 46.0711 129.7641

1,000,000.00 2.9468 0.53772 2.4765 0.3946 0.0943 0.3367 876.39 522.8753 1680.35

According to Table 2 in the KMP algorithm, on the data on the CPU i7-2620m,
at the text size of 100, the programming language Python (0 ms) is faster than Java
(0.0007 ms) and C# (0.0047) and at the text size of 100,000.00, the programming lan-
guage C# (0.025 ms) outperforms Java (0.0312 ms) and Python (46.0711 ms).

36 http://www.i-jes.org

Paper—Analysis of Pattern Searching Algorithms and Their Application

Table 3. Running time of Rabin-Karp algorithm in C#, Java
and Python programming languages

Rabin-Karp Algorithm

Text Size
(Characters)

C# Java Python

AMD
A9-9410

RADEON
R5 (ms)

i7-2620m
(ms)

i5-6200U
(ms)

AMD
A9-9410

RADEON
R5 (ms)

i7-2620m
(ms)

i5-6200U
(ms)

AMD
A9-9410

RADEON
R5 (ms)

i7-2620m
(ms)

i5-6200U
(ms)

100.00 0.1676 0.003 0.0036 0.004 0.0003 0.0002 0.3 0.2 0.777

500.00 0.1655 0.0044 0.0055 0.0029 0.001 0.0002 0.5987 0.0999 1.011556

1,000.00 0.343 0.0144 0.0143 0.0032 0.001 0.0002 1.2244 0.4995 2.477222

5,000.00 0.4669 0.0061 0.1688 0.0108 0.0022 0.0025 3.275 2.9973 6.882556

10,000.00 0.811 0.0351 0.1413 0.0143 0.0042 0.0049 9.17 6.7946 15.62733

50,000.00 1.3802 0.0675 0.4631 0.0744 0.0163 0.0254 47.693 30.4802 82.46944

100,000.00 2.0835 0.115 0.611 0.0976 0.0299 0.0375 191.45 61.7618 154.3688

1,000,000.00 9.416 1.3168 4.6868 0.5017 0.1015 0.2278 1710.356 696.1685 2313.46

In the Rabin Karp algorithm (Table 3), for all text sizes, the Java programming lan-
guage performs faster in time complexity than the other two programming languages.

Table 4. Running time of Finite Automata algorithm in C#, Java
and Python programming languages

Finite Automata Algorithm

Text Size
(Characters)

C# Java Python

AMD
A9-9410

RADEON
R5 (ms)

i7-2620m
(ms)

i5-6200U
(ms)

AMD
A9-9410

RADEON
R5 (ms)

i7-2620m
(ms)

i5-6200U
(ms)

AMD
A9-9410

RADEON
R5 (ms)

i7-2620m
(ms)

i5-6200U
(ms)

100.00 0.0253 0.0019 0.018 0.0273 0.001 0.0746 1.021 1.0986 2.466333

500.00 0.164 0.0025 0.0075 0.0285 0.001 0.1291 1.658 1.0986 2.955556

1,000.00 0.1671 0.0023 0.0613 0.0305 0.001 0.2024 1.606 1.2982 3.232889

5,000.00 0.3861 0.4484 0.4591 0.0364 0.1122 0.1873 53.01 36.6744 91.31444

10,000.00 0.5908 0.5362 0.5632 0.0337 0.1094 0.1602 53.16 37.1761 101.8878

50,000.00 1.0932 0.5741 0.6388 0.2718 0.1142 0.1421 55.167 44.4715 114.8871

100,000.00 1.2509 0.5197 0.8178 0.2873 0.1192 0.1988 79.954 57.1635 203.288

1,000,000.00 5.9415 0.9367 3.8872 0.5108 0.1567 0.3465 575.92 258.8382 1001.616

On the AMD A9-9410 RADEON R5 CPU (Table 4) we can see that at text size 100,
the programming language C# (0.0253 ms) is faster than Java (0.0273 ms) and Python
(1.021 ms).

iJES ‒ Vol. 10, No. 04, 2022 37

Paper—Analysis of Pattern Searching Algorithms and Their Application

Table 5. Running time of Boyer Moore Bad Suffix algorithm in C#, Java
and Python programming languages

Boyer Moore Bad Suffix Algorithm

Tezt Size
(Characters)

C# Java Python

AMD
A9-9410

RADEON
R5 (ms)

i7-2620m
(ms)

i5-6200U
(ms)

AMD
A9-9410

RADEON
R5 (ms)

i7-2620m
(ms)

i5-6200U
(ms)

AMD
A9-9410

RADEON
R5 (ms)

i7-2620m
(ms)

i5-6200U
(ms)

100.00 0.1197 0.0011 0.0166 0.0021 0.0003 0 0.199 0 0.199

500.00 0.1758 0.0016 0.0694 0.0036 0.0006 0.0012 0.114 0.2997 0.659

1,000.00 0.2448 0.0017 0.1082 0.0037 0.001 0.0047 0.5325 0.2996 0.811

5,000.00 0.4558 0.0058 0.0746 0.0042 0.0011 0.0014 1.6166 1.3987 3.848

10,000.00 0.336 0.0031 0.3034 0.0093 0.002 0.0031 3.3007 2.9976 7.222

50,000.00 0.936 0.0545 0.6545 0.0443 0.0087 0.0142 17.949 13.3904 33.349

100,000.00 1.7607 0.1523 0.5918 0.0794 0.0167 0.0263 33.831 25.5835 69.011

1,000,000.00 10.2255 1.4839 3.8882 0.385 0.0815 0.1262 534.418 288.8207 732.8062

Whilst, on CPU i7-2620m (Table 5), at text size 100, the programming language
Python (0 ms) is faster than Java (0.0003 ms) and C# (0.0011 ms).

Table 6. Running time of Boyer Moore Good Suffix algorithm in C#, Java
and Python programming languages

Boyer Moore Good Suffix Algorithm

Text size
(characters)

C# Java Python

AMD
A9-9410

RADEON
R5 (ms)

i7-2620m
(ms)

i5-6200U
(ms)

AMD
A9-9410

RADEON
R5 (ms)

i7-2620m
(ms)

i5-6200U
(ms)

AMD
A9-9410

RADEON
R5 (ms)

i7-2620m
(ms)

i5-6200U
(ms)

100.00 0.0147 0.0013 0.0075 0.0502 0.045 0.0038 0.333 0 0.3

500.00 0.1087 0.0047 0.0083 0.0966 0.0501 0.0045 0.0999 0.2065 0.8135

1,000.00 0.1057 0.0049 0.0095 0.1009 0.0495 0.0047 0.6095 2.4231 0.7977

5,000.00 0.106 0.0042 0.0179 0.1137 0.0483 0.0054 2.4358 4.7497 3.363

10,000.00 0.434 0.0446 0.0287 0.1643 0.0568 0.0064 5.317 5.2542 6.2557

50,000.00 1.4238 0.1477 0.1124 0.3022 0.0762 0.0167 23.728 25.4049 33.4562

100,000.00 1.709 0.2293 0.2435 0.3776 0.0965 0.0374 44.537 48.4697 68.965

1,000,000.00 9.4931 1.7069 1.8788 0.7122 0.3052 0.1561 638.524 500.1895 1044.973

According to the figures given in Table 6, we see that Java is faster in the time com-
plexity starting from text size 500, 5000, 10000, 50000, 100000, 1 million on CPUs
i5-6200U, AMD A9-9410 RADEON R5 and i7-2620m. At text size 100, on CPU AMD
A9-9410 RADEON R5, programming language C# (0.0147 ms) is faster than Java
(0.0502 ms) and Python (0.333 ms) and on CPU i7-2620m at text size 1000 languages
C# programmer (0.0049 ms) is faster than Java (0.0495 ms) and Python (2.4231 ms).

38 http://www.i-jes.org

Paper—Analysis of Pattern Searching Algorithms and Their Application

Table 7. Running time of Aho-Corasick algorithm in C#, Java
and Python programming languages

Aho-Corasick Algorithm

Text Size
(Characters)

C# Java Python

AMD
A9-9410

RADEON
R5 (ms)

i7-2620m
(ms)

i5-6200U
(ms)

AMD
A9-9410

RADEON
R5 (ms)

i7-2620m
(ms)

i5-6200U
(ms)

AMD
A9-9410

RADEON
R5 (ms)

i7-2620m
(ms)

i5-6200U
(ms)

100.00 0.1894 0.0311 0.0341 0.1776 0.0054 0.0805 1.5142 0.9987 2.6653

500.00 2.4155 0.3886 1.149 0.2791 0.6107 0.1034 10.683 5.995 16.761

1,000.00 5.8538 1.057 3.6734 0.3221 0.0828 0.1373 24.279 11.2952 22.358

5,000.00 27.1367 5.7329 24.0303 0.8081 0.3138 0.636 188.476 50.1705 126.885

10,000.00 32.6798 7.7263 32.2051 1.3178 0.5649 1.9564 241.673 98.7371 403.9206

50,000.00 95.4286 21.8297 63.0902 3.5016 2.0498 7.7035 1402.934 865.183 2953.963

100,000.00 122.1663 38.6392 95.8691 7.1604 3.8423 13.4349 3611.075 2231.214 6224.795

1,000,000.00 710.9564 356.3263 738.5208 51.5319 33.8784 122.0073 111579.2 114310.6 293299.4

In programming languages C#, Java and Python in the Aho-Corasick algorithm
(Table 7), it is obvious that Java is faster in time complexity starting from text size 1000,
5000, 10000, 50000, 100000, 1 million in CPUs i5-6200U, AMD A9-9410 RADEON
R5 and i7-2620m. According to data on CPU i5-6200U, at text size 100, programming
language C# (0.0341 ms) is faster than Java (0.0805 ms) and Python (2.6653 ms) and
on CPU i7-2620m at text size 500 languages programming C# (0.3886 ms) is faster
than Java (0.6107 ms) and Python (5.995 ms).

Table 8. Running time of Z algorithm in C#, Java and Python programming languages

Z Algorithm

Text Size
(Characters)

C# Java Python

AMD
A9-9410

RADEON
R5 (ms)

i7-2620m
(ms)

i5-6200U
(ms)

AMD
A9-9410

RADEON
R5 (ms)

i7-2620m
(ms)

i5-6200U
(ms)

AMD
A9-9410

RADEON
R5 (ms)

i7-2620m
(ms)

i5-6200U
(ms)

100.00 0.2526 0.001 0.011 0.0031 0.0001 0 0.2 0 0.3

500.00 0.3528 0.0022 0.0264 0.0045 0.0011 0.0002 0.2 0 0.799

1,000.00 0.3561 0.0018 0.0788 0.0037 0.0011 0.0004 0.609 0.6995 1.3095

5,000.00 0.5011 0.0027 0.1892 0.0139 0.0026 0.0045 3.558 2.7977 6.4652

10,000.00 0.4571 0.0129 0.1486 0.0212 0.004 0.0057 7.2608 6.0946 11.288

50,000.00 1.3906 0.0768 0.4773 0.0433 0.0147 0.0309 32.982 28.8819 58.439

100,000.00 2.3978 0.1101 0.7666 0.1119 0.029 0.0438 68.101 64.0594 116.506

1,000,000.00 6.6865 1.5972 4.3924 0.4333 0.2021 0.1767 531.993 603.0241 1151.778

In Table 8, we see that Java is faster in time complexity starting from text size 1000,
5000, 10000, 50000, 100000, 1 million on AMD A9-9410 RADEON R5, i7-2620m
and i5-6200U on this CPU even at text size 100, Java programming language is
faster. Python programming language (0 ms) is faster than Java (0.0001 ms) and C#

iJES ‒ Vol. 10, No. 04, 2022 39

Paper—Analysis of Pattern Searching Algorithms and Their Application

(0.001 ms) and at text size 500 Python programming language (0 ms) is faster than Java
(0.0011 ms) and C# (0.0022 ms) on the i7-2620m CPU, at text size 100.

4	 Comparison of pattern searching algorithms in different
processors

To compare the CPUs speed among themselves, only the font size of 1 million
was used.

According to Tables 1–8 shown in Section 3, if we look at the figures for the C#
programming language, we see that the CPU i7-2620m is faster in executing all algo-
rithms. Then, CPU i5-6200U is ranked second in Z algorithm, Boyer Moore Bad Suffix,
Boyer Moore Good Suffix, Finite Automata, Rabin Karp, KMP for execution speed.
While, in the Aho-Corasick algorithms and the Naive algorithm, the CPU i5-6200U
ranks last in speed. In general, it is clear that the AMD A9-9410 RADEON R5 CPU
takes more time when running the Z algorithm, Boyer Moore Bad Suffix, Boyer Moore
Good Suffix, Finite Automata, Rabin Karp, KMP which made it third in ranking.

Referring to Tables 1–8 in Section 3, in the Java programming language they show
that the CPU i7-2620m ranks first for speed in executing the Aho-Corasick, Boyer
Moore Bad Suffix, Finite Automata, Rabin Karp, KMP, Naive algorithms. Whereas, in
the Boyer Moore Good Suffix and Z algorithms, the CPU i5-6200U is ranked first and
the CPU i7-2620m is second for execution speed. Whereas, in the Aho Corasick algo-
rithm CPU AMD A9-9410 RADEON R5 is the second in the ranking for speed, while
in the other algorithms it is in the third ranking for execution speed.

In Section 3, if we look at Tables 1–8, to the figures given in the Python program-
ming language, we notice that the CPU i7-2620m is faster in executing the algorithms
Boyer Moore Bad Suffix, Boyer Moore Good Suffix, Finite Automata, Rabin Karp,
KMP, Naive while the AMD A9-9410 RADEON R5 CPU ranks second among these
algorithms for execution speed. Meanwhile, the AMD A9-9410 RADEON R5 CPU in
the Aho-Corasick and Z algorithms ranks first for execution speed, while the i7-2620m
CPU in these algorithms ranks second for execution speed.

Across all algorithms, the i5-6200U CPU is ranked last for execution speed.

5	 Conclusion

In this paper, a comparative study was conducted between Pattern Searching algo-
rithms and between different CPUs using text of different sizes. What was gained as a
result was that the speed of the algorithms depends on the memory of the laptop and in
which programming language it is implemented. Implementation of algorithms Naive,
KMP, Rabin-Karp, Finite Automata, Boyer-Moore Bad Suffix, Boyer-Moore Good Suf-
fix, Aho-Corasick, Z Algorithm in Java, C# and Python programming language, CPU
i7-2620m is faster than the other two CPUs. The result differs for the Boyer-Moore
Good Suffix algorithm and the Z algorithm implemented in the Java programming lan-
guage, where the i5-6200U CPU is faster than the other two CPUs. And the result
differs in the Aho-Corasick and Z algorithms implemented in the Python programming

40 http://www.i-jes.org

Paper—Analysis of Pattern Searching Algorithms and Their Application

language, where the AMD A9-9410 RADEON R5 CPU is faster than the other two
CPUs. All algorithms implemented in Java programming language when there is more
text are faster than their implementation in C# and Python programming languages
using AMD A9-9410 RADEON R5 CPU, i7-2620m CPU, i5-6200U CPU. In cases
where, text has much less programming languages C# and Python perform better.

In general, with the increase in characters, the execution time of the algorithms also
increases in all three CPUs and programming languages, except for some cases where
even though the text size increases there is better execution performance than when the
text size is smaller. Pattern searching has an incredibly important role in many different
fields. As it enables searching for pattern within text to be as easy as possible in so
much data floating around the internet.

6	 References

	 [1]	Wirawan, I. M. A., & Paryatna, I. B. M. L. (2020). Implementation of the String Match-
ing Method on Anggah-Ungguhing Balinese Language Dictionary. International Journal
of Interactive Mobile Technologies (iJIM), 14(1), pp. 15–30. [Online]. Available: https://
online-journals.org/ [Accessed: October 22, 2022]. https://doi.org/10.3991/ijim.v14i01.
11109

	 [2]	Prof. I.V. Srinivas, Moez Samnani, & Mohammed Shafaat Shaikh, “Study of String Match-
ing Algorithm”, IOSR Journal of Computer Engineering (IOSR-JCE), 1(7), pp. 32–35.
[Online]. Available: https://www.iosrjournals.org/iosr-jce/papers/Conf.17025-2017/Vol-
ume-1/7.%2032-35.pdf [Accessed: October 4, 2021].

	 [3]	Mourad Elloumi, Algorithms for Next-Generation Sequencing Data: Techniques,
Approaches, and Applications, Springer International Publishing AG 2017. (eBook) Avail-
able: Springer. https://doi.org/10.1007/978-3-319-59826-0

	 [4]	Akhtar Rasool, Amrita Tiwari, Gunjan Singla, & Nilay Khare. (2012). String Matching Meth-
odologies: A Comparative Analysis. International Journal of Computer Science and Infor-
mation Technologies, 3(2), pp. 3394–3397. [Online]. Available: https://www.studocu.com
[Accessed: October 4, 2021].

	 [5]	Santhosh, C., Ravi Kumar, M., Lakshmi Prasanna, J., Ram Kumar, I., Vinay Kumar, U.,
& Navya Sri, S. (2021). Face Mask Detection Using LabView. International Journal of
Online and Biomedical Engineering (iJOE), 17(6), pp. 49–57. [Online]. Available: https://
online-journals.org/ [Accessed: October 21, 2022]. https://doi.org/10.3991/ijoe.v17i06.
21995

	 [6]	Saqib Iqbal Hakak, Amirrudin Kamsin, Palaiahnakote shivakumara, Gulsham Amin Gilkar,
Wazir Zada Khan, (Senior Member, IEEE), & Muhammad Imran. (2019). Exact String
Matching Algorithms: Survey, Issues, and Future Research Directions. Vol. 7, https://ieeex-
plore.ieee.org/ [Accessed: April 7, 2022]. https://doi.org/10.1109/ACCESS.2019.2914071

	 [7]	Maxime Crochemore, Christophe Hancart, & Thierry Lecroq. (2007). Algorithms on String,
Cambridge University Press. (eBook) Available: z-lib.org

	 [8]	Gonzalo Navarro & Mathieu Raffinot. (2002). Flexible Pattern Matching in Strings: Prac-
tical On-Line Search Algorithms for Texts and Biological Sequences, Cambridge University
Press. (eBook) Available: z-lib.org

	 [9]	Dan Gusfield. (1997). Algorithms on Strings, Trees, and Sequences Computer Science And
Computational Biology, Cambridge University Press, Available: z-lib.org

	[10]	Ababneh Mohammd, Oqeili Saleh, & Rawan A. Abdeen. (2006). Occurrences Algorithm for
String Searching Based on Brute-force Algorithm. Journal of Computer Science, 2(1), pp. 82–85.
Available: https://www.semanticscholar.org/; https://doi.org/10.3844/jcssp.2006.82.85

iJES ‒ Vol. 10, No. 04, 2022 41

https://online-journals.org/
https://online-journals.org/
https://doi.org/10.3991/ijim.v14i01.11109
https://doi.org/10.3991/ijim.v14i01.11109
https://www.iosrjournals.org/iosr-jce/papers/Conf.17025-2017/Volume-1/7.%2032-35.pdf
https://www.iosrjournals.org/iosr-jce/papers/Conf.17025-2017/Volume-1/7.%2032-35.pdf
https://doi.org/10.1007/978-3-319-59826-0
https://www.studocu.com
https://online-journals.org/
https://online-journals.org/
https://doi.org/10.3991/ijoe.v17i06.21995
https://doi.org/10.3991/ijoe.v17i06.21995
https://ieeexplore.ieee.org/
https://ieeexplore.ieee.org/
https://doi.org/10.1109/ACCESS.2019.2914071
http://z-lib.org
http://z-lib.org
http://z-lib.org
https://www.semanticscholar.org/
https://doi.org/10.3844/jcssp.2006.82.85

Paper—Analysis of Pattern Searching Algorithms and Their Application

	[11]	Peyman Neamatollahi, Montassir Hadi, & Mahmoud Naghibzadeh. (2020). Simple and
Efficient Pattern Matching Algorithms for Biological Sequences. IEEE Access, Vol. XX,
pp. 1–1. [Online]. Available: https://www.researchgate.net/ [Accessed: April 12, 2022].

	[12]	Antti Laaksonen. (2019). Competitive Programmer’s Handbook, Available: z-lib.org
	[13]	Borivoj Melichar, Jan Holub, & Tomas Polcar. (2005). Text Searching Algorithms Volume I:

Forward String Matching, Czech Technical University in Prague Faculty of Electrical Engi-
neering Department of Computer Science and Engineering, Available: docslib.org

7	 Authors

Festinë Retkoceri received her first degree in Computer Science in 2018 from Uni-
versum College, Ferizaj, Republic of Kosovo. She is one of the master’s students in the
Informatics department at the State University of Tetovo, Republic of North Macedonia
(Email: f.retkoceri3182021@unite.edu.mk).

Florim Idrizi – Professor at Department of Informatics, State University of Tetovo,
teaches the following subjects: Cryptography, Data Structures, Computer security,
Algorithm, information security and Web Technologies (Email: florim.idrizi@unite.
edu.mk).

Shpend Ismaili – Professor at Department of Informatics, State University of
Tetovo, teaches the following subjects: Artificial Intelligence, information security,
Software Engineering (Email: Shpend.ismaili@unite.edu.mk).

Florinda Imeri – Professor at Department of Informatics, State University of Tetovo,
teaches the following subjects: Software engineering, Software reuse, Software reuse.
software project management, e-Learning (Email: florinda.imeri@unite.edu.mk).

Agon Memeti – Professor at Department of Informatics, State University of Tetovo,
teaches the following subjects: Operating Systems, Web Programming (Email: agon.
memti@unite.edu.mk).

Article submitted 2022-09-13. Resubmitted 2022-10-26. Final acceptance 2022-10-27. Final version
published as submitted by the authors.

42 http://www.i-jes.org

https://www.researchgate.net
http://z-lib.org
http://docslib.org
mailto:f.retkoceri3182021@unite.edu.mk
mailto:florim.idrizi@unite.edu.mk
mailto:florim.idrizi@unite.edu.mk
mailto:Shpend.ismaili@unite.edu.mk
mailto:florinda.imeri@unite.edu.mk
mailto:agon.memti@unite.edu.mk
mailto:agon.memti@unite.edu.mk

