
PAPER
REDUCING DISK STORAGE WITH SQLITE INTO BITCOIN ARCHITECTURE

Reducing Disk Storage with SQLite into BitCoin
Architecture

http://dx.doi.org/10.3991/ijes.v3i2.4490

Rodrigue Carlos Nana Mbinkeu1,2,3, Bernabé Batchakui1
1 University of Yaoundé I, Cameroon

2African Centre of Excellence on Information and Communication Technology (CETIC)
3DBgroupLab – University of Modena, Italy

Abstract—For the past five years, the bitcoin network con-
stantly experience a growth in its size as more communities
turn to accept the currency for payment exchanges. Using
Flat File and a LevelDB of indices to save blocks on disk,
bitcoin users require more memory to save the history of
transaction. We focus on issues of memory management and
access time in the bitcoin protocol using SQLite DataBase.
With all the advantages of SQLite DataBase, it would be
efficient if it is fitted in this architecture. The SQLite comes
with many flavors one of which is its ability to support sql
queries. Thus, instead of parsing indices to search a block
from the database, a more powerful query can do the job.

Index Terms—Bitcoin, LevelDB, Flat File, Hash, Query,
SQL, SQLite, Index, Memory, Disk.

I. INTRODUCTION
A brief description of the concepts and architecture

schematics of the Bitcoin protocol was published by pseu-
donymous developer Satoshi Nakamoto. The P2P digital
crypto-currency is described in this paper also referred to
as the original bitcoin paper, published in 2009 [1]. For
the past five years, the bitcoin network constantly experi-
ence a growth in its size as more communities turn to
accept the currency for payment exchanges.

The Bitcoin is the first electronic payment system that
is based on cryptographic proof instead of trust [1]. This
crypto-currency platform serves as the foundation of other
crypto-currencies [1, 2, 3, 4]. A lot of articles have been
written, purporting to explain the details of this crypto-
currency [1, 2, 3, 4].

It is rather unfortunate that, at a time when the bitcoin is
about exploding, many issues pops in which pose ques-
tions that require more research on the protocol in order to
answer them. Issues on security and trust in the protocol
have been discussed in many forums with more than a
hundred articles written. It is obvious that the size of the
network keeps increasing as more communities turn to
adopt the currency for payment exchange. Using Flat File
and a LevelDB of indices to save blocks on disk, bitcoin
users require more memory to save the history of transac-
tion [1, 3]. In this article, we focus on issues of memory
management and access time in the bitcoin protocol. This
is where this article comes in to propose a solution
deemed favorable to users and developers of bitcoin.

In this context, our work seeks to better understand the
Bitcoin protocol presented in section 1 and the bitcoin
architecture in section 2. Through this understanding,
explore how we can replace the Flat File and LevelDB

with SQLite, section 3. We discuss the perspectives asso-
ciated with the results obtained in section 4. Finally we
make a conclusion.

II. BIT COIN PROTOCOLE
Bitcoin is the first decentralized digital currency, devel-

oped in 2009 following the Satoshi Nakamoto’s white
paper [1]. They are digital coins that are sent from person-
to-person via the internet without going through a clearing
house [1, 3, 4]. Bitcoins are generated all over the internet
by anybody running a free application called a bitcoin
miner. Mining requires a certain amount of work for each
block of coins. This difficulty (amount of work required to
mint a bitcoin) is automatically adjusted by the network
such that the coins are always created in an unpredictable
and unlimited rate [1, 3].

Technically speaking, a bitcoin, as described in the
white paper [1], is a chain of digital signatures. Thus,
transactions in the bitcoin network are simply, the ex-
change and verification of digital signatures. Let’s recap a
few concepts used to design the bitcoin protocol [1].

A. Bit coin transaction
These are digitally signed section of data that are

broadcast to the bitcoin network. Each owner transfers the
coin to the next by digitally signing a hash of the previous
transaction and the public key (bitcoin address) of the next
owner and adding these to the end of the coin. Thus, a
transaction typically references previous transactions
(inputs) and specifies the amount of bitcoins (outputs)
from it to one or more new bitcoin addresses. Transactions
are collected in a block. A payee can verify the signatures
in order to prove that a particular amount of bitcoin belong
to an individual.

Figure 1. Chain of digital signatures

10 http://www.i-jes.org

PAPER
REDUCING DISK STORAGE WITH SQLITE INTO BITCOIN ARCHITECTURE

TABLE I.
GENERAL FORMAT OF A TRANSACTION IN BLOCK

Field Size/bytes
Version No 4
In-Counter 1-9

List of Inputs Data size
Out-Counter 1-9

List of Outputs Data size
Lock time 4

B. Bitcoin Address
Payments are made to bitcoin addresses – a string of 27

– 34 alphanumeric characters, beginning with a 1 or 3.
Properly generated bitcoin addresses have at least one
secrete information, private key, which is used to verify
ownership and validity of bitcoins and transactions respec-
tively [1].

C. Network protocol
At the core of the bitcoin network, a bitcoin is seen as a

digital file that list accounts and money like a “ledger” (in
the traditional sense). A copy of this file is maintained on
every computer in the bitcoin network. To send money,
one simply broadcast the information (transaction) to the
network. Nodes of computers in the network apply this
information to their copies of the ledger and then pass on
the transactions to other nodes. With this update of the
ledger by every node in the network, security issues are
handled [1]. Thus, opposed to banking transactions in
which one only knows about his/her own transactions, in
bitcoin, everyone knows about everyone else’s transac-
tions. Hence, bitcoin transactions take place between
anonymous strangers; the system is designed so that no
trust is needed. The network uses special mathematical
algorithms to protect various aspects of the system [1].

D. Timestamp server
A timestamp is the time at which a transaction is rec-

orded by a computer. In the bitcoin network, a timestamp
server works by taking a hash of a block of transactions to
be timestamp, and broadcasting the hash to every node in
the network. This proves that the transaction must have
existed at the time, in order to get into the hash. Each
timestamp includes the previous timestamp in its hash,
forming a chain, with each additional timestamp reinforc-
ing the ones before it [1].

E. Proof-of-work
The bitcoin protocol uses a proof-of-work system to de-

ter denial of service attacks [1, 2, 3]. The order of transac-
tions is a very crucial issue in the network. In the bitcoin
network, transactions are ordered by placing them in
groups called blocks which are then linked together in
what bitcoin refers to as a block chain [1, 5].

Each block has a reference to previous blocks. Transac-
tions in the same block are considered to have happened at
the same time. Transactions not yet in any block are called
“unconfirmed or unordered” transactions. Nodes in the
network collect a set of unconfirmed transactions into a
block and broadcast it to the network as a suggestion to
which block is to be the next in the chain. Observe that
multiple nodes could create blocks at the same time, thus,
several options to choose from as to which block is to be
the next in the chain. In such a case, the network uses the
proof-of-work system to decide which block to choose.
With this system, each valid block is to contain a very

special mathematical problem. Computers in the network
run an entire text to solve this problem by doing some
random guess. The first person to find the solution to this
problem then broadcast its block to the network as the
only valid candidate to be the next in the chain. Hence, the
randomness in the solution makes it unlikely that two
people can solve a block at the same time.

F. Bitcoin Infrastructure
Bitcoind deamon is the first bitcoin client. It is the first

computer program that implements the bitcoin protocol
for command line and remote procedure call (RPC) use. It
is now bundled as a pack with the Bitcoin-Qt. We will use
this product to illustrate our findings. When a bitcoin
client is first intalled, it downloads every transactions ever
made and checks their validity [1, 5]. The “bitcoind dae-
mon” is specially implemented to support this feature of
the protocol.

G. Architecture
The entire protocol is built on the bitcoind daemond

suit. This suit is like the core of the platform and support
all activities of the protocol; database management, trans-
action management, message signing, mining, etc. There
are various modules that are implemented in the “bitcoind
daemon” to support the bitcoin protocol [1]. The follow-
ing modules of the architecture are of interest:

• Database module
• Network module
• Serialization module

 Database Module
The bitcoin daemon is equiped with various embedded

databases that support the management of wallets, transac-
tions, blocks, and bitcoin addresses in the bitcoin network.

Flat
File

Datab
aseLevel

DB

2 U Network Module

Berkeley DB

1 U Customer App

Serialization module

Serialization module

Figure 2. Storage mechanism of the bitcoin daemon.

• Berkeley Database Engine: At the lowest level of
this program is a Berkeley DB that keeps history of
all wallets that are used in the protocol. Berkeley
DB (BDB) is a high-performance embedded data-
base engine of key/value type produced by Oracle.
In the bitcoin protocol, this database engine manag-
es wallets which contain vital informations pertain-
ing to the user such as private/public keys, name,
address, account balances, and more.

• Flat File Database: Next in this protocol is a flat
database file. Blocks, containing transactions, are
written into this file in raw database format. A
wrapper class for the C file descriptor, which im-

iJES ‒ Volume 3, Issue 2, 2015 11

PAPER
REDUCING DISK STORAGE WITH SQLITE INTO BITCOIN ARCHITECTURE

plements serialization writing and reading byte
streams to and from the file respectively is used to
read and write blocks to these files respectively.
These block files are later encrypted to prevent ac-
cess by an external application process.

• LevelDB: To improve on the access time to the in-
formation stored on the flat database, the protocol
implements this open source persistent key/value
database – leveldb. With an increase in size of the
bitcoin network, accessing information on the flat
file becomes costly, in terms of speed. Reading
blocks is made faster through the use of indices
managed by LevelDB. The bitcoin daemon uses a
leveldb database engine to store index values which
are used for accessing information on the file.

When launched, the daemon calls the “OpenBLock-
FIle()” method from “main.h” which returns the
“OpenDiskFile()” method. With the help of the “boost
filesystem” library, the flat file is created in this method.

FILE* OpenDiskFile(const CDiskBlockPos &pos,
const char *prefix, bool fReadOnly)

{
 …

 boost::filesystem::path path = GetData-
Dir() / "blocks" / strprintf("%s%05u.dat",

prefix, pos.nFile);
…
}

Serialization module
Observe that, the flat file stores data in a raw network

format. Hence, it is necessary to translate all data struc-
tures or objects in the bitcoin network into a format that
can be stored [1, 5]. The data can then be reconstructed
later in the same or another computer environment. The
serialization module is equiped with methods for the seri-
alization/unserialization of data structures in various for-
mats. Data is written and read to and from the database
module respectively. The WriteBlockToDisk() and Read-
BlockFromDisk() menthods of main.h enable the writing
and reading of blocks to and from the flat file database
respectively. The data structure has to be serial-
ized/unserialized as the need arises. With the above con-
figuration, reading block form the flat file requires parsing
the block’s position as a parameter to the ReadBlock-
FromDisk() method. This index value is stored in the
leveldb. Thus, a block in the database is both its index
value and its data.

III. USING SQLITE INTO BITCOIN ARCHITECTURE
SQLite, by design, is engineered to be a portable, effi-

cient SQL storage engine that offers maximum conven-
ience, simplicity, in a small footprint [6, 7]. SQLite is a
software library that implements a self-
contained, serverless, zero-configuration, transaction-
al SQL database engine [6, 7]. SQLite is an embedded
SQL database engine. Unlike most other SQL databases,
SQLite does not have a separate server process. SQLite
reads and writes directly to ordinary disk files [6, 7]. A
complete SQL database with multiple tables, indices,
triggers, and views, is contained in a single disk file [6, 7].
The database file format is cross-platform; you can freely

copy a database between 32-bit and 64-bit systems archi-
tectures. These features make SQLite a popular choice as
an Application File Format [6, 7].

According to the site
“http://www.sqlite.org/about.html”, with all features ena-
bled, the library size can be less than 500KiB, depending
on the target platform and compiler optimization settings.
If optional features are omitted, the size of the SQLite
library can be reduced below 300KiB. SQLite can also be
made to run in minimal stack space (4KiB) and very little
heap (100KiB), making SQLite a popular database engine
choice on memory constrained gadgets such as
Smartphones, cellphones and MP3 players. There is a
tradeoff between memory usage and speed. SQLite gener-
ally runs faster the more memory you give it. Neverthe-
less, performance is usually quite good even in low-
memory environments [6, 7].

Unlike client–server database management systems, the
SQLite engine has no standalone processes with which the
application program communicates. Instead, the
SQLite library is linked in and thus becomes an integral
part of the application program. Several computer pro-
cesses or threads may access the same database concur-
rently [6, 7]. Several read accesses can be satisfied in
parallel. Applications interact with the SQLite library
through function calls managed by the application process
which is more efficient than inter process communica-
tions. Some of these functions include:

• sqlite3_open(): Opens an SQLite database file.
• sqlite3_close(): Closes a database file.
• sqlite3_exec(): Executes SQL statements.
• sqlite3_prepare(): Used for carrying out multiple

inserts.
• sqlite3_db_mutex(): Sets the database with mutex

enabled.
• sqlite3_db_filename(): Returns a pointer to a file

name associated with a given database.

A. SQLite in Bitcoin
The decentralized paradigm of Bitcoin requires each

node of the network to retain the blockchain (i.e., entire
transaction history) [1, 8]. The block database rapidly
grows in size as new blocks with an average size of about
50 KB are added to the database after an average of 10
minutes. With this increase in size, it becomes costly to
read a particular block from the database. As a solution,
the bitcoin daemon implements a leveldb database whose
contents are indices for the blocks in the flat file. Keeping
indices and data value is yet another problem as it makes
use of resources – disk space. With all the advantages of
relational databases and sql–like database engines, sqlite,
is proposed in this architecture. Instead of storing and
retrieving serialized and unserialized data, a relational
database of tables is used to store information.

The use of SQLite make that the old system of storage
of indices (in leveldb) will be eliminated. So, this has an
effect to reduce the use of disk storage. The access time of
data may be reduced by suppressing the module of seriali-
zation/unserialization. Therefore, we are expecting to
obtain some reduction memory by using SQLite.

Database Design
The goal is to store/retrieve blocks. From the bitcoin

protocol specification, a block’s structure is comprised of

12 http://www.i-jes.org

PAPER
REDUCING DISK STORAGE WITH SQLITE INTO BITCOIN ARCHITECTURE

a header and some transactions. The header stores the
current block header version (nVersion), a reference to the
previous block (HashPrevBlock), the root of the Merkle
tree (HashMerkleRoot), a timestamp (nTime), a target
value (nBits) and a nonce (nNonce).

In the relational representation of a block, the above
structure is stored using 5 relations, namely:

• Block(block_id, hashMerkleRoot, txn_counter)
• BlockHeader(id, nVersion, hashPrevBlock,

hashMerkleRoot, nTime, nBits, nonce)
• Txn(txn_id, nVersion, inCounter, outCounter,

lock_time, block_id, id_file)
• TxnIn(id, hashPrevTxn, txnOut_id, scriptLen,

scriptSig, seq_no, txn_id)
• TxnOut(id, value, scriptLen, scriptSig, txn_id)

From the above relational schema, we observe the fol-
lowing:

Figure 3. Entity Relationship Diagram of the block in bitcoin

The entity relationship diagram of the above relational
schema is given below. A block is made up of one and
only one header which is in turn included in one and only
one block. The hashMerkleRoot attribute serves as a for-
eign key relating a block to its header meanwhile
txn_counter holds the number of transactions being stored
in the block. A BlockHeader keeps its attributes according
to the diagram for the block.

Transactions (Txn) found in a block also has a list of
inputs and outputs, the inCounter and outCounter attrib-
utes keep the number of inputs and outputs respectively
contained in a transaction. The attribute id_Block is a
foreign key that references the id of the block in which the
transaction is contained while id_file keeps the file num-
ber in which the transaction is written on disk. A Block
can contain many transactions but a transaction is found in
one and only one block.

A transaction input (TxnIn) belongs to a single transac-
tion, id_txn is a foreign key referencing the id transaction
in to which the input belongs. Just like the input, a trans-
action output belongs to a single transaction and this rela-
tionship is expressed through the possession of foreign
key referencing the transaction to which it belongs. The id
attributes of all tables act as primary keys and are set to
auto-increment; this is to enable indexing the tables and
make queries less complex to obtain desired data.

Bitcoin System Design with SQLite
The logical architecture will seem simple. No serializa-

tion is needed in this architecture. Blocks are written and
read to and from the database by parsing sql-like state-
ments. The following figure gives the logical architecture
of the system.

2 U Network Module

Berkeley DB

1 U Customer App

SQLite DB

Figure 4. Logical architecture of bitcoind daemon with SQLite

With this configuration, to read or write data, no seriali-
zation is needed since the database contains well-
structured data. Data is retrieved by writing SQL queries.
The figures below give a series of messages that are
passed when writing/reading blocks from the database.

IV. RESULTS
SQL creation scripts are written to create the database

file and its handler. This handler is then passed to func-
tions. A wrapper class with methods to perform SELECT,
INSERT, UPDATE and DELETE is coded to support the
queries passed to the program. Look below an example of
method developed into our bitcoin deamon with SQLike.

 bool FindBlockPos(CValidationState &state,
 CDiskBlockPos &pos, unsigned int nAddSize,
 unsigned int nHeight, uint64_t nTime, bool fKnown = false)
 {…

CSQLiteWrapper db = CSQLiteWrapper();

db.OpenConnection(strprintf("blk%05u.dat",pos.nFile),Get
DataDir() / "blocks");

int n = db.Execute(“SQL QUERY”);
 … }

A. Results and Perspectives

DataBase Access
Bitcoin with flat file and LevelDB: requires iterating

through a bulk of data item using an index value. For
example, reading a block from the file from the file re-
quires looking for the block’s position in the database.
This requires iterating through a list of blocks which is
time consuming. We remember that for saving or reading
data, the system use the serialization/deserialization func-
tions which are also factors that increment time consum-
ing.

Bitcoin with SQLite: SQLite stores data in structured
format, so it will be easier to find a record from multiple
set of records which is very tedious process in case of flat
file. With relational model, it is easy to construct ad-hoc
queries against the data in the database. SQLite is good for
performing complex operations on large amount of data.
For example, to read a block from the database, the fol-
lowing four queries are used to return a vector of the con-
tent of a block:

iJES ‒ Volume 3, Issue 2, 2015 13

PAPER
REDUCING DISK STORAGE WITH SQLITE INTO BITCOIN ARCHITECTURE

• "SELECT * FROM BlockHeader WHERE
id=%d",pos.nPos

• "SELECT * FROM Block WHERE
id=%d",pos.nPos

• "SELECT * FROM TxnIn WHERE
id_txn=%d",vIdTxns[i]

• "SELECT * FROM TxnOut WHERE
id_txn=%d",vIdTxns[i]

Disk Management
Using the flat file, the size of a block on disk, as of

2009, is approximately 10KB according to the site
“http://blockchain.info” Using SQLite, for 500 blocks
downloaded, we have an approximated 368 KB size on
disk. Analyzing and comparing, we observed that with
SQLite, a block has a size of approximately 0.8KB i.e.
800B. With this size we conclude that SQLite brings with
it an approximated 92% reduction of block size on disk.
The possible reasons for this reduction are:

• removal of redundant data opposed to inclusion of
redundant data during serialization in case of flat
file;

• removal of indices used to search block into the old
system storage (levelDB);

• Saving only relevant information leaving out
information generated by the protocol.

B. Perspectives
Our tests and preliminary results give us the opportuni-

ty to improve further this new architecture and analyze
deeply how we obtain this high reduction of block size on
disk. We are sure that these preliminary results are very
important because it will be easy now to implement a
bitcoind daemon client with SQLite for small devices like
as smartphones will can be downloaded more blocks from
blockchain data than before and their limit is only the
CPU computing power.

V. CONCLUSIONS
At this point, we conclude by encouraging, with all the

advantages that it brings, SQLite in the bitcoin architec-
ture. One of its features – relational model is appreciable.
The relational model structures data in a manner that

avoids complexity i.e accessing data in a database does
not require navigating a rigid pathway through a tree or
hierarchy like as done in the levelDB. This research work
is the preliminary investigation in bitcoin architecture by
replacing Flat file and LevelDB with SQLite. We obtain
some important results as memory reduction on disk and
time access of data. In the future works, we are planning
to analyze deeply the implication for using SQLite Data-
base in the bitcoin architecture.

REFERENCES
[1] Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash Sys-

tem, 2009. https://bitcoin.org/bitcoin.pdf
[2] D. Drainville., An Analysis of the Bitcoin Electronic Cash System,

2013 https://math.uwaterloo.ca/combinatorics-and-
optimization/sites/ca.combinatorics-and-
optimization/files/uploads/files/Drainville,n%20Danielle.pdf

[3] Bitcoin Gateway, A Peer-to-peer Bitcoin Vault and Payment
Network, 2011. Available from http://arimaa.com/bitcoin/.

[4] Beverly Yang and Hector Garcia-Molina. Ppay: micropayments
for peer-to-peer systems. In Proc. of Computer and communica-
tions security, 2003. http://dx.doi.org/10.1145/948109.948150

[5] Erik R. Barnett; Virtual Currencies: Safe for Business and Con-
sumers or just for Criminals? 13th European Security Conference
& Exhibition. The Hague April 2, 2014.

[6] Chunyue Bi. Research and Application of SQLite Embedded
Database Technology. WSEAS TRANSACTIONS on
COMPUTERS, Issue 1, Volume 8, January 2009.

[7] Sunguk Lee. Creating and Using Databases for Android Applica-
tions. International Journal of Database Theory and Application
Vol. 5, No. 2, June, 2012.

[8] Spagnuolo, M.: Bitiodine: Extracting intelligence from the bitcoin
network. Master’s thesis, Politecnico di Milano (December 2013).

AUTHORS
Nana MBinkeu R. C. is a Senior Lecturer in the Na-

tional Advanced School of Engineering, P.O Box 8390
ENSP, University of Yaoundé I, Cameroun (e-mail:
nanambinkeu@gmail.com).

Batchakui B. is a Senior Lecturer in the National Ad-
vanced School of Engineering, P.O. Box 8390 ENSP,
University of Yaoundé I, Cameroun (e-mail:
bbatchakui@gmail.com).

Submitted 24 February 2015. Published as resubmitted by the authors
12 May 2015.

14 http://www.i-jes.org

	iJES – Vol. 3, No. 2, 2015
	Reducing Disk Storage with SQLite into BitCoin Architecture

