
Paper—Getting Model of MVVM Pattern from UML Profile 

Getting Model of MVVM Pattern from UML Profile 
https://doi.org/10.3991/ijes.v8i1.13037 

El Omari Mouad (*), Erramdani Mohammed, Rhouati Abdelkader 
University Mohameed First, Oujda, Morocco 

elomari.mouad@gmail.com 

Abstract—The rejuvenation of applications to harmonize with technological 
watch is the major challenge for all computer boxes, frameworks and languages 
are constantly proliferating by offering a range of improvements in terms of se-
curity and performance, which pushes all applications to invest in order to align 
oneself, to orient oneself towards another perspective of application implemen-
tation has become a primacy. MVW is considered the new concept of applica-
tion models where the developer can choose according to his needs, which 
component, for example, it can be a controller, a directive or a unit test for ap-
plications where we use the AngularJS framework, modeling an application is 
one of the basic steps to reach it , the emergence of new patterns press IT com-
panies to think  to renew their application architecture for more security and 
performance, moving from an old to a new model meets this need. AngularJS is 
one of the widely used frameworks for modern single-page web application de-
velopment which is designed to support dynamic views in the applications. 

We propose an UML profile for AngularJS for building a model of an Angu-
larJS web application, and a set of transformations that transform the model into 
a code template. 

Keywords—AngularJS; code template; models; single-page web application; 
UML profile. 

1 Introduction 

We can say that in the IT field, the relevance of the information provided and its 
adaptation to user’s preferences are key factors for the success or rejection of test 
platforms. Therefore, the solution is to conquer users by providing them with person-
alized platforms adapted to their needs. A, we are looking in this. We opt for an MDA 
type approach, allowing semi-automatic generation of the platform. This approach 
respects the architecture of MDA as it has been proposed by OMG [1]. 

Our vision to achieve this work is to apply the principles of MDA and use the 
UML profile for AngularJS for this article and that will be extended to other JS librar-
ies, we will use the XML generated to have full AngularJS application by defining 
transformation rules. 

The paper is organized as follow: Section 2 is dedicated to related work. In section 
3 we present the MDA principles. Section 4 defines the MVVM pattern. Sections 5 

36 http://www.i-jes.org

https://doi.org/10.3991/ijes.v8i1.13037
https://doi.org/10.3991/ijes.v8i1.13037
mailto:example@example.org
mailto:example@example.org


Paper—Getting Model of MVVM Pattern from UML Profile 

includes the approach and presents the running example. Finally, section 6 concludes 
the work and offers some perspectives. 

2 Related Work 

Many researches on MDA and generation of code have been conducted in recent 
years. 

The authors of the work [2] show how to generate JSPs and JavaBeans using the 
UWE [3]. 

The authors of the work [4] generate the MVW application by using activity dia-
gram which will be transformed to class diagram. 

The authors of work [5] generate MVC application by using Business Process 
Model and Notation. 

Based on the same concept [6] apply MDA approach for generating PSM from 
UML design to MVC 2 Web implementation. That is why they have developed two 
meta-models handling UML class diagrams and MVC 2 Web applications, then they  
have to set up transformation rules. These last are expressed in ATL language. To 
specify the transformation rules (especially CRUD methods) we used a UML profiles. 
To clearly illustrate the result generated by this transformation. 

Unfortunately, current model transformation languages do not cover all these fea-
tures, and thus, the study of languages covering all of them should be object of study, 
this paper aims to redirect researchers to an important and actual topic which will 
allow to get MVVM pattern by applying the standard MOF 2.0 QVT to develop the 
transformation rules with an input model based on UML. 

3 Model Driven Engineering 

3.1 The OMG approach 

In November 2000, the OMG (The Object Management Group), a consortium of 
over 1,000 companies, initiated the MDE (Model Driven Engineering) approach [7] 
Models depend on metamodels; MDE operations depend on metamodels. Managing 
evolution for models requires managing the evolution of metamodels. Most solutions 
to model evolution and co-evolution have focused on metamodels. A different ap-
proach would be to discard metamodels entirely – take the view that they get in the 
way of efficiently supporting evolutionary processes. To what extent can we support 
MDE without metamodels [8]. 

MDA is a system design and development methodology intended to facilitate de-
velopment in a technology-independent approach. MDA was first described by OMG 
in 2001 [9]. One of the main objectives of the OMG is to establish an open interface, 
independent of software platforms, and therefore interoperable. In this sense, MDA 
embodies the vision presenting a global framework to support interoperability with 
specifications throughout a complete system life cycle. MDA's design philosophy 

iJES ‒ Vol. 8, No. 1, 2020 37



Paper—Getting Model of MVVM Pattern from UML Profile 

must include a description of business logic, modularization, construction and sys-
tems’ integration, as well as deployment, management and evolution [9]. A key con-
cept of MDA is the separation of the functionality specification from the implementa-
tion, integration and deployment specification [9]. This is accomplished by applying 
an abstraction to the design process. Abstraction is understood as the removal of irrel-
evant details, as motivated by the reference model for open distributed systems pro-
cessing. In the field of MDA, meta-modeling plays a very important role considered 
to be a common technique to become the abstract syntax of Models and interrelation-
ships between elements of the model. If the model is an abstraction of elements from 
the real world, the meta-model represents yet another abstraction, denying the proper-
ties of the model itself. A model is said to conform to its metamodel [10]. 

The modeling languages that are used are designed so as to be supported by tools 
that software engineers are familiar with and expect to be able to use – e.g., editors, 
syntax highlighters, debuggers, etc. Standard frameworks, such as EMF [11], exist to 
help define modeling languages in such a way so as to support this. In contrast, formal 
specification languages are designed to support mathematical reasoning, and as such 
the priority is to have a sound and complete mathematical semantics, which thereafter 
be supported by tools. 

The key principle of MDE is automating repetitive and error prone tasks. The deci-
sions that we make, with respect to use of particular technologies and theories, the 
implementation of particular tasks, and the deployment of workbenches to users, 
should always aim to support that principle. 

The transition from one level to another is provided by transformations; that can be 
defined as the operation of taking elements of one or more models (source) and to 
match them with other elements of the model (target). There are two types: Model to 
Model (M2M) and Model to Text transformation (M2T). The first lets us go from 
CIM to PIM and PIM to PSM. As for the second, it allows the generation of platform-
specific code chosen. Fig. bellow shows how the transformations are done. So we can 
say that this relationship, introduced in [12] and [13] connects two models and is the 
first step to automation and code generating [14]. 

 
Fig. 1. Model Driven Architecture layers 

38 http://www.i-jes.org



Paper—Getting Model of MVVM Pattern from UML Profile 

CIM: These models describe the system to be designed from an IT-independent 
perspective. The CIM allows a vision of the system and its environment, while hiding 
the details of structure and implementation. CIM-level Models reduce the gap be-
tween experts in the field and between designers. Therefore, a CIM model is some-
times called a domain model. The technical independence of this model allows it to 
keep its full interest over time and it is modified only if knowledge or business needs 
change. The know-how is refocused on the CIM specification instead of the imple-
mentation technology. 

PIM: It is independent of any technical platform (JEE, EJB, CORBA, .NET ,...) 
and does not contain information on the technologies that will be used to deploy the 
application. It is a computer model that represents a partial view of a CIM. The PIM 
represents the business logic specific to the system or the design model. It represents 
the functioning of entities and services. It must be lasting and last over time. It de-
scribes the system, but does not show the details of its use on the platform. At this 
level, the formalism used to express a PIM is a class diagram in UML which can be 
coupled with a constraint language like OCL * (Object Constraint Language). There 
are several levels of PIM. The PIM may contain information on persistence, transac-
tions, security. These concepts allow the PIM model to be transformed more precisely 
into the PSM model. 

PSM: It is dependent on the technical platform specified by the architect. PSM is 
essentially used as a basis for the generation of executable code towards the technical 
platform. PSM describes how the system will use this platform. There are several 
levels of PSM. The first, resulting from the transformation of a PIM, is represented by 
a UML scheme specific to a platform. The other PSMs are obtained by successive 
transformations until the code is obtained in a specific language (Java, C ++, C, etc.). 
An implementation PSM will contain, for example, information such as program 
code, types for, related programs, deployment descriptors. 

The MDA approach seems very attractive at first. However, do not be mistaken, if 
it has its fervent followers, it also has its detractors whom advance cautiously in his 
direction. We will first see the advantages of this approach, then the drawbacks that 
may result, to finally highlight some feedback on experience.  

3.2 Transformation of MDA models 

A transformation is an automatic generation of one or more target models from one 
or more source models, respecting a definition of transformation. A transformation’s 
definition is a set of transformation rules that describe how a model in the source 
language can be transformed into a model in the target language. A transformation’s 
rule is a description of how one or more constructions in the source language can be 
transformed into one or more constructions in the target language. 

To implement this transformation’s process, a transformation engine takes as input 
one or more model (s) conforming to one (s) metamodel (s) source (s) and produces 
one or more other output (s) model (s) conforming to a target metamodel (s). The 
transformation engine, composed of a set of rules, must itself be considered as being a 
model. Consequently, it is based on a corresponding metamodel, which is an abstract 

iJES ‒ Vol. 8, No. 1, 2020 39



Paper—Getting Model of MVVM Pattern from UML Profile 

definition of the transformation language used. [15] Propose a taxonomy of model 
transformations where they define two orthogonal dimensions: a horizontal transfor-
mation versus a vertical transformation and an endogenous transformation over an 
exogenous transformation. 

• Vertical transformations of the models are used to refine or abstract a model and, in 
this case, the models are located in different levels of abstraction. The horizontal 
transformations do not affect the abstraction of the models and they mainly serve to 
restructure them given that these models belong to the same level of abstraction. 

• Endogenous transformations are transformations between models that are ex-
primed in the same language while exogenous transformations are transformations 
between models of defined with the help of different languages. (Mens and Gorp, 
2006) qualify endogenous transformations by the term reformulation and sexogenic 
transformations by the term translation [15]. 

4 MVVM Design Pattern 

The Model-View-View Model (abbreviated MVVM, from the English Model 
View ViewModel) is an architecture and a design method used in software engineer-
ing. MVVM is from Microsoft and suitable for the development of applications based 
on Windows Presentation Foundation and Silverlight technologies via the MVVM 
Light tool for example. This method allows, like the MVC model (Model-View-
Controller), to separate the view from the logic and from the data access by emphasiz-
ing the principles of binding and event. 

 
Fig. 2. MVC data-binding 

• The model: represents the data received from the server. 
• The view: contains all the views displayed to the user. 
• The Template: contains the application logic. 

40 http://www.i-jes.org



Paper—Getting Model of MVVM Pattern from UML Profile 

MVVM provides powerful bidirectional data binding between model and view. 
This eliminates the need for wrappers, getters/setters or class declarations. 

It conserves the concept of data applications which are separated into multiple ti-
ers. 

The Model defines the data structure and communicates with the server. 
The View displays Model information and receives user actions. 
The Controller manages the events and the update of the View and the Model. 
We have a first breakdown of the application which already allows us to answer 

some of our problems. By clearly identifying the logical parts, we can more easily 
maintain and test our application. 

The View therefore has no connection with the Model. Thus the ViewModel takes 
care entirely of the modification cycle of the latter. It both receives and sends data to 
the View. We then speak of “data binding”. The information displayed is linked be-
tween two entities and updated in real time. 

This latter mechanism is the key to the MVVM pattern. It allows us to decouple the 
different parts of our application by being able to develop it in a modular way. 

 
Fig. 3. MVVM data-binding 

5 AngularJS as Study Case 

AngularJS enables the creation of a single page applications and allows some of 
the logic (such as validation) to be included on the client side [16]. 

 
Fig. 4. AngularJs Architecture 

iJES ‒ Vol. 8, No. 1, 2020 41



Paper—Getting Model of MVVM Pattern from UML Profile 

A module can be considered as a container of different parts of the  application like 
controllers, directives , services. 

AngularJS applications must be developed as a hierarchy of Components. Each 
Component is an isolated part of the application for maintenance reasons. 

Initially, AngularJS is a framework for developing One-Page applications. And 
therefore by definition, there is no need to change pages (since there is only one) and 
the routing is not useful. However, as the growing framework and its uses became 
more diverse, it soon became possible to integrate a routing system. In versions prior 
to 1.2, which were beta versions, developers natively integrated this routing system to 
the framework for the sake of simplicity (they had many other priorities). However, as 
of version 1.2 which is stable and which made the renown of AngularJS, it was neces-
sary to refocus it on these primary objectives: these famous applications One-Page. 
As the project progressed, many functionalities were born and the team decided to 
separate those that were not essential, a certain page load in AJAX and the result will 
be added in a portion of the DOM. 

Each view works pairwise with a controller. The view consumes data in data-
binding and calls the controller's methods. It can also include directives and use filters 
that are declared in the application. 

The logic of the views is organized in the controller, so the code in the controller 
must be simple, that is to say, the controller couldn't interact with the DOM and ma-
nipulate data. The role of the controller is to define variables, so called, $scope varia-
bles, and to encapsulate views related to logic. When executing AngularJS, the latter 
will create the different working contexts called scopes. They are organized as a tree 
of objects, with everything at the top of $rootScope. The Scope allows the join be-
tween the Controller and the View by allowing the binding of the variables in both 
directions. To ensure code capitalization, components that manipulate the DOM can 
be created as a directive. The directives are the modules used to manipulate DOM, to 
bind events and define their actions. They translate into HTML components. The 
business part of code must be in services, they are singletons, that is, single instances 
of objects. The role of a service is to provide a set of tasks necessary for the operation 
of the application. 

5.1 UML profile 

A UML profile allows you to adapt the UML language to a domain that it could 
not properly cover. Profiles are not only used to generate PIM or PSM but also to 
switch from PIM to PSM. The specificities of each platform can be modeled using 
UML extension mechanisms defined by UML profiles. For example, stereotypes 
allow the addition of new elements to the meta-model, tagged values allow the addi-
tion of properties to a meta-class and constraints allow the addition or modification of 
rules. It is possible to associate stereotypes, marked values and constraints with any 
UML concept (class, attribute, association, use case). These elements make it possible 
to establish a correspondence between UML concepts and domain concepts. 

The OMG has defined several profiles, each of which has a specific role in the 
transformations. For example: 

42 http://www.i-jes.org



Paper—Getting Model of MVVM Pattern from UML Profile 

• The EDOC profile (Enterprise Distributed Object Computing, version 1) aims to 
facilitate the development of business models, systems or organizations. 

• The EAI (Enterprise Application Integration, version 1) profile simplifies the inte-
gration of applications by standardizing the exchanges and translation of metadata. 

• The SPEM profile (Software Process Engineering Metamodel, version 1) is defined 
both as a UML profile and as a MOF meta-model. SPEM defines the ways to use 
UML in software projects and allows the creation of process models (for PIM on-
ly). 

• The Test profile (version 1 adopted) allows the specification of tests for the struc-
tural (static) aspects as well as for the behavioral (dynamic) aspects of UML mod-
els. 

• The real-time modeling profile (Schedulability Performance and Time, version 1) 
for modeling real-time applications. 

5.2 UML profile for AngularJs 

As mentioned in the introduction, MDA has made it possible to reduce the duration 
of development of computer applications by ensuring a perennial know-how using 
models. 

In the same way, we will use UML profiles for AngularJS and which will be exe-
cuted by a tool like magic draw, output will be an application of AngularJS. 

The elements of Figure. 4 present the cornerstone of our MDA profile. 
A stereotype is a model element that defines additional values [17]. 

 
Fig. 5. Panorama of AngularJS Profile 

In the diagram above, we put under the lightning different parts of our AngularJS 
profile: 

iJES ‒ Vol. 8, No. 1, 2020 43



Paper—Getting Model of MVVM Pattern from UML Profile 

Table 1.  Description ofstereotypes 

Stereotype UML Meta Class Description 
AnguarApp Class Present the facade of the application 
CSS Class CSS file to import 
javaScript Class JavaScript file to import 
AppRouter Class Configuration of navigation system 
Scope Artifact Contain data exchanged between view and model 
Controller Artifact Contain all business functions which manipulate scope 
Template Artifact View 
Directive Artifact Directive 
DirectiveController Artifact Controller of this directive 
DirectiveTemplate Artifact Template of the directive 

DirectiveScope Artifact Scope of the directive , it can be isolate or depend to 
parent scope 

RootScope Artifact Set variables when module is initialized 

Services Artifact Return Promises and contain business, it's the part which 
will interact with the backend 

Binding-Load Association Pass The data between two parts or load DOM 
 
This UML profile divides the different parts that an AngularJs application needs to 

have, the module as a container encompasses all, the routing system via predefined 
angular services, $ route is the central service of the ngroute module, $ routeProvider 
Initializes the routing, pointing to the controller and template associated with this 
route. 

The template is loaded by overloading the scope by actions described in the con-
troller, the scope inherits the rootscope, and Each AngularJS application has exactly 
one root scope, but may have any number of child scopes [18]. 

The controller can use the service methods, where processing is to be done and 
calls to other APIs, 5 types of services are present and each has its own interest, but 
the most used is the factory, one Service returns a promised in AngularJS. 

5.3 Code generation 

The tool will generate an xml that will be retrieved and parsed by a JAVA API and 
make transformations on this file in order to generate an application. 

I will give a study case of an application where well will get AngularJS applica-
tion, stereotype in this case will be replaced by AngularJS , because this profile can be 
extended to other js libraries like React or VueJS. 

44 http://www.i-jes.org



Paper—Getting Model of MVVM Pattern from UML Profile 

 
Fig. 6. Study case of AngularJS Application Profile 

The diagram above illustrates an example on which we will apply our UML pro-
file, to display a title and a label containing the name, all configuration files such as 
bower and the JSON package of nodeJS and the management of tasks by gulp will be 
generated with JSON files already defined. 

While the various other parts will be configurable by the user who will add them 
either as src for dependencies, inputs, labels and buttons for templates, injections, 
methods and scope value for the controller, Methods with add, delete, updatefollowed 
by the property to modify, will be generated for controller and services. 

An example of transformation rule: 

<<Stereotype>> will be $stateProvider.state 
(' AppRouter ', { 
AppRouterurl: '/mainState', 
stateName: "mainState"  
controller: 'AppController' 
stateUrl: "/mainState"  
templateUrl: 'templates/views/mainState.html' 

By the same concept, other transformations’ rules have been implemented for the 
other stereotypes, the generated xml file will be parsed by DOM parser and via a 
modification template we will generate js, html and css files. 

iJES ‒ Vol. 8, No. 1, 2020 45



Paper—Getting Model of MVVM Pattern from UML Profile 

6 Conclusion 

In this paper , UML profile concepts have been taken as the basis on which we can 
ensure the generation of an application, the use of an UML profile was the way in 
which we finally proceeded to generate our application, such a Methodology will 
ensure a gain on the time and durability side. 

As a perspective, it is intended to extend to other functionalities by ensuring anoth-
er user interface for the user to facilitate the description of the skeleton and adding the 
service layer interacting with the WS REST. 

This UML profile can be spread out to generate other applications based on other 
JS libraries and this will guarantee a closer coverage of the Front Party code genera-
tion. 

7 References 

[1] AngularJS Documentation,(2013) ,https://angularjs.org/. 
[2] Mbarki.S,Erramdani.M,(2008), Toward automatic generation of mvc2 web applications In-

foComp, Journal of Computer Science, Vol.7 n.4, pp. 84-91, ISSN: 1807-4545. 
[3] Kraus, Andreas & Knapp, Alexander & Koch, Nora. (2007). Model-Driven Generation of 

Web Applications in UWE. 
[4] El Omari.M, Erramdani.M, Filali.S,(2016) Getting Model of MVVM pattern from UML 

Models.Proceedings of the International Conference on Industrial Engineering and Opera-
tions Management Rabat, Morocco,April 11-13, 2017. 

[5] Rhazali, Yassine & Hadi, Youssef & Mouloudi, Abdelaaziz. (2016). Model Transfor-
mation with ATL into MDA from CIM to PIM Structured through MVC. Procedia Com-
puter Science. 83. 1096-1101. 10.1016/j.procs.2016.04.229. https://doi.org/10. 
1016/j.procs.2016.04.229 

[6] Moutaouakkil, Amine &Mbarki, Samir. (2019). MVC Frameworks Modernization Ap-
proach Adding MVC Concepts to KDM Metamodel. International Journal of Advanced 
Computer Science and Applications. 10. 304. https://doi.org/10.145 
69/ijacsa.2019.0101043 

[7] OMG. MDA. http://www.omg.org/mda. 
[8] Debnath, Narayan & Riesco, D. & Montejano, Germán & Grumelli, A. & Maccio, A. & 

Martellotto, P.. (2003). Definition of a new kind of UML stereotype based on OMG meta-
model. 49. 10.1109/AICCSA.2003.1227482. https://doi.org/10.1109/aiccsa.2003.1227482 

[9] Drozdova, Matilda &Kardos, Martin & Kurillova, Zuzana & Bucko, Boris. (2017). Trans-
formation in Model Driven Architecture. 

[10] Zhang, Yuan & Gao, Qin & Wu, Heng. (2010). Research on Model Driven Architecture. 
Applied Mechanics and Materials. 40-41. 10.4028/www.scientific.net/AMM.40-41.1012. 
https://doi.org/10.4028/www.scientific.net/amm.40-41.1012 

[11] Steinberg.D, Budinsky.F, Merks. E, and Paternostro.M, (2008) EMF: Eclipse Modeling 
Framework. Pearson Education. 

[12] Singh, Yashwant & Sood, Manu. (2009). Model Driven Architecture: A Perspective. 2009 
IEEE International Advance Computing Conference, IACC 2009. 
10.1109/IADCC.2009.4809264. https://doi.org/10.1109/iadcc.2009.4809264 

46 http://www.i-jes.org

https://angularjs.org/
https://angularjs.org/
https://doi.org/10.1016/j.procs.2016.04.229
https://doi.org/10.1016/j.procs.2016.04.229
https://doi.org/10.14569/ijacsa.2019.0101043
https://doi.org/10.14569/ijacsa.2019.0101043
https://doi.org/10.14569/ijacsa.2019.0101043
http://www.omg.org/mda
http://www.omg.org/mda
https://doi.org/10.1109/aiccsa.2003.1227482
https://doi.org/10.1109/aiccsa.2003.1227482
www.scientific.net/AMM.40-41.1012
www.scientific.net/AMM.40-41.1012
https://doi.org/10.4028/www.scientific.net/amm.40-41.1012
https://doi.org/10.4028/www.scientific.net/amm.40-41.1012
https://doi.org/10.1109/iadcc.2009.4809264


Paper—Getting Model of MVVM Pattern from UML Profile 

[13] Miller, Granville & Evans, Andy & Jacobson, Ivar & Jondell, Henrik & Kennedy, Allan & 
Mellor, Stephen & Thomas, Dave. (2003). Model driven architecture. 273. 
10.1145/949404.949409. 

[14] Ross, J. (2004). Review: Model Driven Architecture. The Computer Bulletin. 46. 31-31. 
10.1093/combul/46.1.31. https://doi.org/10.1093/combul/46.1.31 

[15] El Omari, Mouad &Erramdani, Mohammed & Hajbi, Rachid. (2017). For Formed Entre-
preneurial Culture. 10.1007/978-3-319-46568-5_47. 

[16] El Omari, Mouad &Erramdani, Mohammed & SaidaFilali(2016)Model to Model Trans-
formation by Modeling Getting Model of MVVM pattern from UML Models .Proceedings 
of the International Workshop on COmputing Sciences (WCOS’16), December, 21-22, 
2016, Kenitra, Moroc. 

[17] LisboaFilho, Jugurta&Iochpe, Cirano. (2017). Modeling with a UML Profile. 
10.1007/978-3-319-17885-1_809. 

[18] Ambler, Tim & Cloud, Nicholas. (2015). AngularJS. 10.1007/978-1-4842-0662-1_8. 

8 Authors 

Mouad El Omari is pursuing his PhD at Mohamed first University at MATSI la-
boratory. He graduates as a computer science engineer from ENSA (High School of 
Applied Science). His research activities at the MATSI Laboratory (Applied Mathe-
matics, Signal Processing and Computer Science) are focused on MDA (Model Driv-
en Architecture) approach applied to dynamic generation of code. 

Mohammed Erramdani teaches the concept of Information System at Moham-
med First University. He got his thesis of national doctorate in 2001. His activities of 
research in the MATSI Laboratory (Applied Mathematics, Signal Processing and 
Computer Science) focusing on MDA (Model Driven Architecture) integrating new 
technologies XML, EJB,MVC, Web Services, etc. 

Rhouati Abdelkader is Phd researcher a private laboratory of Novelis Company 
in Paris.He got his thesis of national doctorate in 2019 from Mohamed first University 
Morocco. His main subject of research is about Machine learning and its application 
in software engineering. 

Article submitted 2020-01-06. Resubmitted 2020-03-03. Final acceptance 2020-03-04. Final version 
published as submitted by the authors. 

iJES ‒ Vol. 8, No. 1, 2020 47

https://doi.org/10.1109/iadcc.2009.4809264
https://doi.org/10.1093/combul/46.1.31
https://doi.org/10.1093/combul/46.1.31

