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Abstract—A learning environment generates massive knowledge by means
of the services provided in MOOCs. Such knowledge is produced via learning
actor interactions. This result is a motivation for researchers to put forward so-
lutions for big data usage, depending on learning analytics techniques as well as
the big data techniques relating to the educational field. In this context, the pre-
sent article unfolds a uniform model to facilitate the exploitation of the experi-
ences produced by the interactions of the pedagogical actors. The aim of pro-
posing the said model is to make a unified analysis of the massive data generat-
ed by learning actors. This model suggests making an initial pre-processing of
the massive data produced in an e-learning system, and it’s subsequently in-
tends to produce machine learning, defined by rules of measures of actors
knowledge relevance. All the processing stages of this model will be introduced
in an algorithm that results in the production of learning actor knowledge tree.

Keywords—Ilearning analytics, operational data, machine learning, big data
analysis, knowledge management

1 Introduction

Currently, the field of education is flourishing rapidly throughout the world, due to
the changes that have been occurring in this area with the implementation of Massive
Open Online Courses MOOC:s [1]. Great many research projects have been funded in
order to draw the attention of researchers in this field to work on such massive data,
conducting in-depth studies of MOOCs (COURSERA, OPEN ODX, etc.).

MOOC:s generate big data in the form of activity traces. Such data are of three var-
ious types, namely: structured, semi-structured and unstructured data. In [2], the au-
thor has conducted an in-depth study on the types of data generated by the interac-
tions of educational actors in online learning systems. The structured data are those
found in the databases; the semi-structured are those found in the XML and JSON
files, whereas the unstructured are those found in documents, video recordings, audio,
etc.
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Big data analysis [3] represents the combination of big data techniques with learn-
ing analysis. This combination enables to envision integrating Learning analytics
(LA) algorithms with learning systems based on big data. Learning analytics (LA)
represent a set of algorithms useful for the analysis and pre-processing of the massive
data originally generated in the MOOC:s. Indeed, we find two approaches: one super-
vised and another unsupervised [4,5]. On the other side, big data represent the tenden-
cy of actors to store massive data of different natures and to process them in parallel
in tune with an architecture [6] built on three key elements: HDSF, MapReduce and
YARN.

1.1  Research problematic

The massive data generated by the services which are offered within the MOOCs
systems are structured, semi-structured and unstructured. Given such fact, prerequisite
is to make an in-depth analysis focusing on all the massive data dimensions. To this
end, the author in [7] identifies three dimensions of learning systems based on big
data. A Learning system generates massive data that are:

* Varied: these are the types of data which are structured, semi-structured and un-
structured. This constraint complicates the phases of knowledge extraction.

* Voluminous: these are big data that can reach TIRA Bit. Given this constraint,
there is a large amount of data which are generated through the actor interactions.

* Distributed: these are massive data which are stored on multiple servers as well as
different locations. It should be noted that the problem of knowledge distribution
also constitutes a major constraint in the process of knowledge extraction.

With reference to the said constraints, in order to achieve our objective, we intend
to suggest a solution to the use of the FRAMEWORK Mapreduce. This allows per-
forming the parallel processing of massive data first, and then it allows the creation of
a machine learning system based on the rules of measurement of relevance of the
knowledge acquired in a learning system MOOC:s.

The main objective of this paper is to propose a unified model for the analysis and
pre-processing of actors experiences produced during the course of on-line learning
activities, drawing on data mining algorithms and learning analytics techniques. Hav-
ing criticized learning analytics models and approaches exist in the recent works and
which deal with big data analysis problems in the area of education, the paper at hand
proposes a deep analysis model buttressed on the interactions of pedagogical actors.

Indeed, actor experiences represent their productions in an on-line learning system.
They represent the result of interactions in the system. Such interactions can be in
structured, semi-structured (i.e., the log of operations of the actors traced by the sys-
tem) and unstructured (i.e., documents, videos and audios, etc.). This results in a rich
environment for the development of an actor profile. This production represents the
input elements of the model proposed in this paper. This model will yield a tree of
relevant knowledge of learning actors.

The scope of this article allows us to undertake learning analytics for a MOOCs
platform existing in Morocco, integrating big data analytics techniques. Before de-
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scribing this proposed model and the technologies necessary to implement it, it is of
vital importance to examine the potentials of current standards and how they are to be
used to create a learning system capable of generating massive knowledge.

2 State of art

The current learning system generates knowledge in the form of educational big
data. Such knowledge is the consequence of the interactions undertaken by pedagogi-
cal actors in MOOCs. As a result of our in-depth analysis of the existing literature,
which integrates techniques of analyzing massive data in education systems, we have
noted that several outstanding research projects have been proposed by educational
experts [8]. They focus on the handling of the educational actors experiences in a
system based on big data, availing themselves of the learning analytics techniques for
the extraction of massive knowledge relating to the distance learning field.

2.1 Massive data in the education field

The field of education witnessed evolution at all levels: (1) volume, (2) storage lo-
cation, (3) the nature and type of massive data. This progress directly influences the
pool of massive knowledge produced by learning actors in MOOCs, which explains
the existence of many models and approaches in the literature that deals with massive
data in a novel architecture based on massive data [9]. This is done with the aim of
extracting the actor knowledge.

The author in [10] proposed state of art drawing on massive data produced by
learning systems, notably the massive data of pedagogical field’s which constitute the
key elements of the present work. The author in this state of art has developed some
methods dedicated to the creation of communication interfaces between a learning
system and the new big data architecture. Next, he laid out some techniques and
methods of learning analytics for such massive data. Many researchers have worked
on the open source HADOOP Ecosystem [11], a system that processes massive data.
The said architecture was proposed by the scientific community to give a large cover-
age of the massive data produced by learning actor interactions. HADOOP implemen-
tation aims at making use of its services in order to put at the disposal of educational
actors the optimal methods for exploiting the massive data generated by actor interac-
tions. A HADOOP system comprises the following elements: HDFS for the system of
distributed files, MAPREDUCE for processing, HDFS files based on the functions
that the MAPREDUCE and YARN Framework offers.

On the other hand, the author in [12] studied big data implementation in open edu-
cation. This study arouses a considerable interest among researchers due to the chang-
es in the way data are processed given the use of novel technology. The author also
laid out the challenges of the implementation of learning systems that produce mas-
sive data for open education throughout the world, focusing on the contributions of
MOOCs implementation based on big data. We find in learning system such produce
a massive data, three dimensions studied by researchers. [13] These dimensions are
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the key elements that have made researchers change their point of view and shift
away from the traditional method to No-SQL, being mindful that the bulk of the mas-
sive data generated today is characteristic of an unstructured aspect. Therefore, we are
forced to shift to the No-SQL method, which represents the mode of pre-processing
the massive data generated by learning actors.

2.2 The analysis of learning for open education

Learning analytics integration into education has emerged since 2000. This tech-
nique involves several methods for the analysis and pre-processing of the massive
data initially produced by actors in an e-learning system. These methods are useful for
the creation of relevant knowledge owing to their bearing upon the initial massive
data. Below, we present a comparative table of approaches to the learning analytics,
proposed in the existing literature [30]:

Table 1. Learning analytics methods.

Learning Analytics Methods

Content analysis: The resources created by learning actors via their interactions
Discourse analysis: The analyses are based on the approaches of human sciences.
Analysis of social networks tools: That facilitates the interactions of educational actors.

Layout analysis: it seeks to understand the learner's dispositions towards his or her own learning, and how they
relate to it.

In this connection, the author in [14] suggested some uses of leaning analysis
methods in open education. He incorporated learning analytics techniques into mas-
sive data (originally created through the interactions of the actors involved in
MOOCs) and applied several algorithms proposed by LA on them.

On the other hand, building on our analysis of the studies of the above-mentioned
models, we found among those studies that in [15] the author made a statistical study
of all the algorithms. Such a study indicates that all algorithms have borne upon the
quality of data. Besides, the study proves that classification algorithms yield a better
result in terms of massive data processing.

2.3 Analysis of massive data: technique and methods

The literature on big data based systems revealed several methods of massive data
analysis. On the one hand, we found data mining methods that deal with structured
and semi-structured data. For example, in [16] proposed a data mining model for
learners knowledge extraction based on the best of Business Intelligence (BI) meth-
odologies for dealing with massive data. The field of education has taken on an ap-
proach called EMD (Educational Data mining), which represents a range of methods
and techniques of pre-treatment for educational big data. In the same vein, in his
book, the author [17] made a review about the techniques and their contributions to
develop educational actors profile, with view to propose cases of use of classification,
clustering, association and decision trees applicable to open education systems. On
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the other hand, we noted the existence of methods that deal with unstructured data
such as videos, audios as well.

Worth noting, massive unstructured data represent a significant amount of data in learning sys-
tems that generate massive data. This claim was supported by the study conducted by the author [18].

The existing literature deals with a number of methods that tackle unstructured da-
ta. For example, the author in [19] proposed a classification model for unstructured
documents via combining the Naive Bayes classifier with the predictive analysis for
learning systems. Also, the author in [31] proposed a model of digital educational
resources indexing and dynamic user profile evolution. The aim of the model is to
develop user profiles. However, most research efforts are still to be directed towards
the operational data layer.

2.4  MOOCs (Massive Open Online Course)

MOOCs have been integrated into the field of education given the projects fi-
nanced by numerous partners. Among those projects, we may refer to the MOOC
Morocco [20]. Such projects are currently being implemented. They have been
launched recently for the setting up of an e-learning platform devoted to educational
actors. In order to implement such MOQOC:S, the author in [32] proposed to use of an
analytical formalism to diagnose and evaluate MOOC:s, using logical stepwise analyt-
ical approach.

A pedagogical actor generates knowledge through these interactions with online
educational activities occurring in the platform. In [21], the author suggested an in-
ventory of the activities performed by pedagogical actors. In his study, the author
displayed that an actor produces knowledge through a number of activities. On the
other hand, he noted that knowledge is stored in various locations and in the form of
several structures such as videos, images, texts, etc. These data are produced in educa-
tional activities including: wiki, forums, lesson, etc.

Our analysis of the massive data generated by pedagogical actors in a MOOC per-
mits to see that the MOOCs offer a significant wealth to educational actors thanks to
its important digital data, something which was proved by the author in [22]. These
massive data have been exploited by many researchers. For instance, the author in
[23] suggested the usage of data mining for the exploitation of aforementioned expe-
rience traces. He laid out an approach premised on the classification of learners.

Given the advance of the MOOCs usage, we have encountered several problems
that can be represented as research objects for experts in the field of open education.
In this connection, many authors have worked on learning analytics methods in the
field. This discipline is devoted to measuring, collecting, analyzing and reporting on
e-learning processes.

Techniques and tools integration of learning analytics into MOOCs has been ex-
ploited in many studies. For instance, in [24] the authors proposed models and ap-
proaches for the analysis and pre-processing of massive data produced by learners,
integrating data mining techniques into this domain. Other work [33], the author has
proposed strategies for enhancing the learner experience and quality of MOOCs. Edu-
cational data mining offers a range of algorithms for the field of education.
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Hypothesis

* Massive data generated by educational actors represent the best knowledge
sources.

* Learner profiles development is based on the usage of data mining algorithms and
learning analytics methods.

¢ In big data, unstructured knowledge represents the massive knowledge produced
by an actor.

* The extraction of more than 50% of the traces generated by actors in the MOOCs
represents a success factor for the e-learning system.

The massive knowledge produced by the actors of learning is useful for tutors in
stages of the development of actor profiles.

3 Methodology

In our study, we need to make a profound analysis of the MOOC:s in order to iden-
tify the core elements that can be extracted from the stored massive data of the peda-
gogical field. In doing so, we will undertake the following steps:

* Analyzing the nature and type of experiences produced by a pedagogical actor. In
this phase, focus is to be lent to some existing learning systems such as OPEN
EDX, COURSERA, MOODLE, etc. Then, we identify the massive knowledge
generated by means of educational actors interactions. To make it clear, we will
analyze the different structures of the massive data yielded by the learning actors
experiences. These experiences represent all the knowledge that can be extracted
from MOOCs. The experiences produced by pedagogical actors reflect the identi-
fied knowledge of their effects and productions in the platform, which are created
in forums, wiki, tests, homework, audio / video productions ... etc.

* Studying some techniques of massive data processing through learning analytics
and big data in order to underscore the best techniques and algorithms that will be
useful in the present study context.

* Proposing our theoretical approach which is capable of solving the research prob-
lem and thus providing a theoretical main stay for the study; then, proposing a
MapReduce model to make parallel processing of the massive data generated by
the actors of learning drawing on the analysis of the massive data in an on-line
learning system.

The following figure shows our methodological process:
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Fig. 1. The methodological process

For making the process in figure 1 succeed, we commit our efforts to a thorough
analysis of the existing approaches, suggesting the model that solves the constraints of
the approaches cited in the literature.

4 Contribution

This work proposes to tackle the layer of massive operational data. The said layer
represents one of the key elements constituting the Conceptual Framework proposed
in [25]. In the work at hand, we propose a uniform model for massive data analysis
produced in MOOC:s.

This model is concerned with operational massive data layer of our generic system,
and it can be integrated into all educational systems.

The starting point for formulating the model is to cover the massive data produced
by online learning systems; the learning systems platform implemented in Morocco is
a case in point. Then, exploit massive data techniques as well as analysis of learning
for the educational system. This exploitation technique is what makes the unstruc-
tured data, operational and exploitable by learning actors, offering more opportunities,
more competitiveness for them in an online training session.

For this purpose, we will do more research on the strengths and flaws of the ap-
proaches cited at the beginning.

4.1  Theoretical ground of the MapReduce model

In this section, we lay out an environment that has - as input- massive, varied and
voluminous data of different structures. f1, B2 and B3 are three sets of massive data:
B1 represents the massive structured massive data, B2 has to do with the semi-
structured and B3 contains the unstructured. Applying the MapReduces algorithms for
these three sets, we have three semi structured files of learning actors knowledge,
each file contain a population of knowledge.

* B1 is represented by the attributes: {@Actrorld, @Sp, @Level, @Knowledge};
* P2 is represented by the attributes: {@Actrorld, @Sp, @Level, @ Knowledge};
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* [3 is represented by the attributes: {@Actrorld, @Sp, @Level, @Url Knowledge,
@ Desc}.

The two attributes @Knowledge and @UrlKnowledge represent a set of sub-
attributes of actors experiences in learning systems that produce the massive data of
all structures (They represent all the productions of the actors in an MOOC:s).

According to these definitions, and based on the work in [25], a framework of ex-
traction of the knowledge of learning actors is proposed. It should be noted that this
framework proposes two basic layers: the first one concerns the layer of operational
massive data; whereas, the second has to do with the semantic layer for the represen-
tation of knowledge extracted by the use of domain ontology. This model deals with
the big data of the operational data layer.

Next, we account for the representation of XML tree as follows:

We have the alphabet ¢ = Weje U W at U W gara, Where e represents the set of ele-
ment names, \,; represents the set of attribute names, and y 44, is the set of data.

An XML document is represented by a triplet T = (t, type, value) like:

* The tree t represented by the function t : Pos(t) — ¥ U {n}. For each position p €
pos(t), t(p) = a indicates that the symbol a € ¥ is associated with the position node
p.

* The root is associated with the position € and the empty tree is the tree {(¢, n)}
where n € / ¥ is a reserved symbol for the empty tree. This tree t is called the
XML tree.

* The functions type and value are defined for any position p € post (t):

The type function: t x pos(t) — {data, element, attribute} is defined :

data if t(p) = Paata
type(p) = element if t(p) € Wee

attribute if t(p) € Wy

The value function: t x Pos (t) — Pos (t) U V is defined by: value (p) = p if type (p)
= element; else value (p) = val € V where V is a recursively innumerable set.

As though -t- is a tree, we can use the classical functions applied on trees: for every
node of position p in pos (t), successor(p) is the set of successor nodes of the position
p and predecessor(p) is predecessor node of p.

In this system, we have as input element the set f which includes three subsets de-
fined as follows:

¢ f1 the set of structured data;
* (2 the set of semi-structured data;
* (3 the set of unstructured data.

Each set is represented by elements defined by the attribute / values pair.
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Then we insert the massive data considered relevant for our XML tree. The inser-
tions are extracted from the interactions of learning actors in order to automate the
operational data layer of our Conceptual Framework [25] by relevant experiments
extracted from the MOOC:s learning system.

In what follows, we integrate the evaluation criteria of the actors, it should be not-
ed that these criteria have been proposed in our model proposed for qualifying learn-
ing actors knowledge [26]. Such a model integrates the criteria of evaluation in the
form of a test for assessing the actor level according to a scale of 1 to 5 for the criteria
taken to be necessary for the positioning of the systems users (Intelligence, memory,
style, etc.). The relevance matrix is defined as follows:

M= Y Mij
if7 (1)

Additionally, we exploit the MapReduce functions for the good functioning of our
target system given the contributions provided by this Framework at the level of mas-
sive data extraction. In this sense, we have two functions mapreduce: the map func-
tion and the reduce function, which are defined as follows:

* The map function => {k, v} ;
* The reduce function => list {k, v}.

In this context, these functions are used to make parallel processing of the
knowledge acquired by the processing of the massive data produced by pedagogical
actors in order to process files containing structured, semi-structured and unstructured
massive data.

4.2  The Proposed Algorithm

INPUT:
Bi,j represents the set of knowledge categories: structured, semi-structured and un-
structured as follows:

m,n
B= oy
i=T,j=1 ,
B1 is the structured knowledge;
B2 is semi structured knowledge;
B3 is unstructured knowledge.
m,n
M = Mij/ is the set of learning actors evaluation criteria, i represents
i=L,j=1
the number of lines and j represents the number of attributes.
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1. The merging of knowledge sets with the set of actors evaluation criteria produce
the set «,

m = Merge (M, B).
2. The fractionation of the input files whatever their structures, defined by the set 11
Split(m) In subsets mi, such that i from lto n

3. Path of the subset / for i from 1 to m applied the MAP function to the already split
files.

MAP (mi; ki, vi).

4. The identification of the sets of elements that consist of classes => elements: attr,
val.
5. Adding the node to the global tree:

Tree T = T.append (node).

6.1if i = m exit.

7. Marching learning step: in this step this model puts forward a machine learning
system created via rules that make the grouping of knowledge extracted from a
learning system.

We define the rules as follows:

¢ Rule 1: R 1/ empty knowledge attribute;

¢ Rule 2: R 2 / unknown actors attribute;

* Rule 3: R 3/ Repetitive Knowledge;

* Rule 4: R 4 / summation of the values of the evaluation criteria of learning actors
attribute is bigger than 9 the knowledge are irrelevant;

Rule 5: R 5/ summation of the values of the evaluation criteria of the learning ac-
tors attribute less than 9 the knowledge are relevant.

With the implementation of the rules suggested by this system, three categories of
knowledge are generated: unnecessary, irrelevant, and relevant.

8. Finally, this model is based on machine learning which will create three output
trees according to the three actors categories proposed in this article.

OUTPUT: Classification of actor knowledge in accordance with the three catego-
ries.
4.3 MapReduce model

In this model, we rest on the mapreduce functions to extract knowledge from the
educational actors in a learning system based on big data. The aim of this model is to
split the inputs files created in any educational system, transforming such data into a
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key / value pair. Such a splitting will be dealt with through several steps. This will

enable us to make an iterative MapReduce to create an XML tree.

This model is designed for MOOCs learning
sive data generated by learning actors are those
of the actors in an e-learning system. Our analys
they are either: structured, semi-structured or

system based on big data. The mas-
results emanate from the interactions
is of these massive data revealed that
unstructured. Structured and semi-
structured data are defined by the same attributes; whereas, unstructured data replaced

the @knowledge attribute with @UrlKnowledge.

The current model proposes a solution fo

Figure 2.
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This model consists of several operations, in the form of processes related to each
other. These operations can be presented by the steps described as follows:

1) Pre-processing of unstructured massive data: In this phase, their initial pro-
cessing is considered, proposing a metadata of unstructured files such as videos, audi-
os, images, etc. These metadata are extracted on the basis of system logs in MOOCs
online learning system.

These data are introduced by the set B3 = {@Actrorld, @Sp, @Level,
@UrlKnowledge, @ Desc}. This set represents unstructured knowledge of learning
actors, which is produced by the interactions of the learning actors.

2) And 3 ) Pre-processing of structured and semi-structured data: In this phase, we
engage in the initial processing of the structured and semi-structured massive data.
The result falls into two sets B1, 2 which are composed of the following attributes:
B1, and B2 {@Actorld, @Sp, @Level, @Knowledge}.These two sets can be extracted
from MOOC:s learning system.

4) Preparation of the massive data of learning actors. In this phase we, make the
grouping of the three sets cited above in terms of pre-processing of the data input. The
aim of this operation is to integrate the three sets in the same engine of massive data
grouping for creating a source of the massive knowledge produced via the interactions
of learning actors.

5) Assessment of the actors in accordance with Evaluation criteria: In this opera-
tion we integrate the evaluation criteria of learning actors in order to give more rele-
vance to their knowledge. These criteria were proposed by the work in [26]. We inte-
grate the map() function to split our structured file already extracted from our
MOOCs. The knowledge generated by the actors is the result of interactions in the
national network.

6) Merging the two sets of massive knowledge and evaluation criteria, namely: the
knowledge and all the evaluation criteria of the actors involved in learning system. In
this model, we merge the sets received as input. Subsequently, this model proposes a
massive knowledge associated with actors evaluation criteria. Moreover, the model
performs several classifications and sorting in accordance with the classification rules
proposed by data mining models.

7) Division of Input files: it has to do with the massive knowledge in which we
have made the massive data grouping into the inputs of the mapreduce functions in
order to be implemented for the proper functioning of this model. In this operation we
will make an iterative map for the input sets so that this model makes the creation of a
tree of the actors knowledge. The number of iterations is defined at the beginning
thanks to the good functioning in our generic model.

8) Application of reduce function: The model in this stage integrates the second re-
duce function of the mapreduce Framework. The inputs of this function are the mas-
sive knowledge associated with the evaluation criteria of learning actors.

9) Creation of our machine learning system: In this phase, the model integrates a
machine learning approach, which consists of several rules, in order to classify the
massive knowledge of learning actors. Having integrated the proposed rules at the
beginning of this work, we have three categories of actors knowledge: 1) the non-
usable knowledge, that is, the empty knowledge; 2) unclear knowledge; 3) irrelevant
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knowledge, that is to say, the knowledge of which the sum of the evaluation criteria of
the actors is bigger than 9: 4). On the other hand, the relevant knowledge is the
knowledge of which the sum of the evaluation criteria of the actors is less than equal
9.

Through the integration of the set of steps created in the beginning, we have an ad-
equate system proposing knowledge relevant for learning actors.

10) Storage of the massive knowledge of learning actors: In this phase, the system
generates an XML tree that yields the structuration of massive knowledge. These are
produced by means of the interactions of learning actors while browsing through all
the mentioned stages. The structure of our tree is proposed in our research [25], sug-
gesting a Framework for the extraction of learning actors knowledge while following
the layer of the operational data as well as the layer of the semantic data, using do-
main ontology for representing the massive knowledge based on the integrations of
the actors.

5 Discussion

5.1 Results

By analyzing the results obtained via this model, we have, as a result, achieve
XML tree that proposes the massive knowledge extracted from the system. The ma-
chine learning model proposed in this paper puts forward knowledge tree of learning
systems by applying the knowledge insertions detected by our system with the aim of
structuring the unstructured knowledge. In this sense, Figure 3 presents the relevant
knowledge tree as follows:

B attributes

XML Tree For Knowledge B~}

Fig. 3. Knowledge tree of learning actors created via the model proposed in this article
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Figure 3: presents the prototype tree of learning actors, knowledge, which is creat-
ed by the model proposed in this article. This figure shows a prototype of the tree to
be created by machine learning system put forward by this research. In this prototype,
the system creates an XML tree of the learning actor knowledge of all structures and
proposes a knowledge tree in a semi-structured format.

In the article at hand, learning model proposes three categories of learning actors
knowledge, based on the proposed rules. The prototype of the XML tree is created
and enriched by the algorithm of the machine learning model proposed in this work.

The knowledge produced in such XML tree is the result of learning actors interac-
tions in the MOOC:s. These interactive experiences have been produced in the form of
forums, wiki, audio, videos, etc. Subsequently, several operations have been proposed
in the algorithm cited earlier. This model has been generalized via the processing of
educational massive data in which data are distributed on several nodes. The approach
adopted in this article generates efficient results due to the level of complexity pro-
posed by aforementioned algorithm.

5.2 Results contribution

Through analyzing the results this model came up with, this article proposes an ac-
tor knowledge in the format semi-structured. This model deals with operational, mas-
sive data on open education. These data are in most cases represented in unstructured
format; they are distributed over several nodes in accordance with big data architec-
ture. This proposition, as well as the results obtained makes clear that we have an
adequate model. This is due to the speed of these transactions which are the results of
the initial processing carried out on massive data originally produced through actor
interactions. This model proposes knowledge in the form of three categories:

Category 1 and 2: these are for fuzzy or irrelevant knowledge. This is an analytical
factor for tutors in order to analyze the motivation of learners in online training.

Category 3: for relevant knowledge which represents the knowledge to be extract-
ed to enrich the recommendation phase in order to give more autonomy to learning
actors in phases of development of their profiles.

In so doing, this model pre-processes the result of the relevant knowledge available
for the ontology layer.

Framework in [25] is automated due to the mapping techniques between opera-
tional data layer and semantic layer existing in the market [27]. Through this, we can
subsequently measure the proper functioning of such framework which will be a good
environment of relevant actor knowledge. In the future we can conduct a number of
works on the knowledge extracted via learning systems, in which will be a possible
recommendation of the relevant knowledge.

6 Conclusion And Future Work

The research subject matter of this work is the proposal of a novel model of actors
knowledge extraction from the massive data generated in MOOC:s. It lends heavy
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focus to the actors experiences produced as a result of their interactions in e-learning
system. Then, it puts forward a scenario of pre-processing of educational data in such
a system. Besides, it gives an overview of the integration of learning analytics models
into the phases of pre-processing of massive data in MOOCs, and it highlights the
advantages of integrating massive data into the process of developing learner profiles.

This model results in knowledge sorts of learning actors, which are created in the
form of three categories: unused knowledge; Irrelevant knowledge; relevant
Knowledge.

The suggested model could be subject to subsequent experiments in order to meas-
ure its adequacy, and its results could constitute a starting point for the development
of the ontology layer.
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