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Abstract—Introductory programming is an essential part of the curriculum 
in any engineering discipline in universities. However, for many beginning stu-
dents, it is very difficult to learn. In particular, these students often get stuck 
and frustrated when attempting to solve programming exercises. One way to as-
sist beginning programmers to overcome difficulties in learning to program is to 
use intelligent tutoring systems (ITSs) for programming, which can provide 
students with personalized hints of students’ solving process in programming 
exercises. 

Currently, mostly these systems manually construct the domain models. 
They take much time to construct, especially for exercises with very large solu-
tion spaces. One of the major challenges associated with handling ITSs for pro-
gramming comes from the diversity of possible code solutions that a student 
can write. The use of data-driven approaches to develop these ITSs is just start-
ing to be explored in the field. Given that this is still a relatively new research 
field, many challenges are still remained unsolved. Our goal in this paper is to 
review and classify analysis techniques that are requested to generate data-
driven hints in ITSs for programming. This work also aims equally to identify 
the possible future directions in this research field. 

Keywords—intelligent tutoring systems, data-driven hint generation, pro-
gramming exercises 

1 Introduction 

Programming skills are becoming a core competency for almost every profession 
and thus, computer science education is being integrated in the curriculum for almost 
every study subject [1]. However, many students find great difficulty with the learn-
ing of programming and it becomes a barrier to their further studies of computer sci-
ence and other disciplines. This difficulty is in large part due to students’ inabilities to 
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solve their programming exercises, and this may discourage them to progress further 
when help can be obtained immediately. In order to address this problem, various 
approaches have been proposed to help students learn solving programming exercises. 
Traditionally, face-to-face and one-to-one human tutoring had been the best option for 
tutor. However, human tutors are not always available and that’s why computer based 
tutoring is developed to provide as an alternative support. Intelligent Tutoring System 
(ITS) is an example of computer-based tutoring which is developed emulating the 
human tutor [2]. As shown by VanLehn [3], an ITS that is designed with the ability to 
understand the coding to a low level of granularity in its advice can be just as effec-
tive as human tutor. ITSs for programming are useful particularly for first year com-
puter science students and non-major students [4]. A current trend in the ITSs for 
programming world is to use data-driven techniques to give hints to users of ITSs for 
programming [5, 6, 7, 8, 9, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. Ac-
cording to [22], ITSs can provide personalized feedback to students automatically, but 
they can take large amounts of time and expert knowledge to build, especially when 
determining how to give students hints. Data-driven approaches can be used to pro-
vide personalized next-step hints automatically and at scale, by mining previous stu-
dents’ solutions. Instead of taking much time for modeling domain knowledge, the 
data-driven approach uses a mass of correct student programs. The data-driven ap-
proach uses correct student solutions in order to construct a solution space that con-
tains all solution states students have created in the past (e.g., in the former semesters 
of a programming course). The solution states build many possible paths to correct 
solutions [1]. The primary contributions of this paper are 1) a classification of ITSs 
for programming, 2) a review of current data-driven hint generation approaches for 
ITSs for code-writing and 3) a discussion of the challenges that need to be addressed 
before we can expect to generate hints for data-driven ITSs for code-writing.  

2 Background 

2.1 Intelligent tutoring systems 

As we stated above, face-to-face and one-to-one human tutoring is the best tutoring 
field. However, it is extremely expensive in terms of both physical and human re-
sources. ITSs are a natural solution that can be used to address this problem, as they 
are developed to give personalized feedback and help to students who are working on 
problems. The fact the ITSs are formed by three fields: Computer Science, Psycholo-
gy, and Education, as illustrated in Figure 1, in which, (i) Artificial Intelligence (AI) 
addresses how to reason about intelligence and thus learning, (ii) Psychology (Cogni-
tive Science) addresses how people think and learn, and (iii) Education focuses on 
how to best support teaching/learning [23]. 

According to [24], an Intelligent Tutoring System (ITS) is a computer system that 
provides immediate and customized instruction or feedback to learners. The classical 
architecture of an ITS includes the following four components (Figure 2) [25, 26, 27, 
28, 65].  
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• A knowledge domain model that stores the learning content that is taught to stu-
dents. 

• A student model that stores information about the student’s knowledge level, abili-
ties, preferences and needs. 

• A tutoring (pedagogical) model, which makes student diagnosis and controls the 
tutoring process and make appropriate instructional decisions based on the infor-
mation provided by the other components of the ITS. 

• A User Interface that allows the system to interact with the user-learner. 

 
Fig. 1. The development of an ITS using methods and instruments from three different do-

mains 

 
Fig. 2. The typical architecture of an ITS 
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This traditional view of ITSs is still very accepted by the ITS community. Howev-
er, recent studies stress functionality over structure [29, 30, 25, 7, 31], describing ITSs 
as having two main loops [29]: 1) the inner loop and 2) the outer loop (Figure 3) [25]. 
The inner loop is responsible for providing personalized feedback, hints, and direct 
problem solving assistance to students. The inner loop also assesses students’ compe-
tence and registers it on the student model. Using the information that is obtained 
about the student, the outer loop performs task selection.  

 
Fig. 3. ITS Loops 

The main task of the outer loop is to select an appropriate programming exercise 
for the student. The inner loop is responsible for giving hints on student steps. Here, 
we focus on the inner loop. We do not support an outer loop which can create an 
overall student model and intelligently choose which programming exercises to show 
to the student.  

According to [32], research on ITSs has accelerated over the last decade, and 
scholarly interest in such systems has never been greater. ITS have been developed 
for a wide range of subject domains (e.g., mathematics, physics, biology, medicine, 
reading, languages, philosophy, information technology and computer science) and 
for students in primary, secondary and postsecondary levels of education. 

Founded on several decades of research on human cognition and intelligence, ITS 
is now a fast growing area in academia and industry. We now turn our attention to 
some cutting-edge research on ITS in a specific learning domain: programming [33]. 

2.2 Intelligent tutoring systems in the programming domain 

In the past four decades, a variety of ITSs for programming have been built to pro-
vide tutoring services for programming exercises. When it comes to functionalities, in 
general, ITSs for programming can be classified into five types: 1) curriculum se-
quencing, which constructs for each student an individual learning path, including 
individual selection of topics to learn, examples, and exercises; 2) intelligent analysis 
of student’s solutions, which focuses more on debugging and error diagnosis for com-
plete student’s program; 3) program debugging support, which helps students learn to 
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analyze programs; 4) interactive code-writing problem solving support, which pro-
vides students with personalized assistance in each code-writing problem solving step 
and 5) example based code-writing problem solving support which suggests the most 
relevant cases or examples to students. In the context of ITSs for programming, for 
brevity, we will use the term “ITSs for code-writing” to describe to the ITSs for pro-
gramming for interactive code-writing problem solving support.  

2.3 Automated hint generation in ITSs for code-writing 

As demonstrated by [1], these non-data-driven techniques are including plan librar-
ies, program transformation, constraint-based models, strategy- based models. 
Several recent studies deal with the problem of helping students to learn program-
ming, in particular by giving them useful hints in real time while they are coding.  

According to [34], ITSs for code-writing that focus on the process of solving an 
exercise are still rare or have limitations: some targeted for declarative programming 
[35, 6], which is less flexible because they do not support exercises that can be solved 
by multiple algorithms [36, 37], or only support a static, pre-defined process [38]. 
Furthermore, it often requires substantial work to add new exercises [39] and tutors 
can be difficult to adapt by a teacher.  

ASK-ELLE [11] is an ITS for code-writing for learning the higher-order, strongly-
typed functional programming language Haskell. They model alternative solution 
strategies in the system ASK-ELLE through several model programs (e.g. model 
solutions). This system supports the stepwise development of Haskell programs by 
verifying the correctness of incomplete programs, and by providing hints. Program-
ming exercises are added to ASK-ELLE by providing a task description for the exer-
cise, one or more model solutions, and properties that a solution should satisfy. The 
properties and model solutions can be annotated with feedback messages, and the 
amount of flexibility that is allowed in student solutions can be adjusted. The disad-
vantage of this strategy-based approach is that their tutor based on model solutions 
provided by instructors/teachers, because they are experts in their field and their solu-
tions serve as examples for students. However, variations to these model solutions are 
boundless. Programming exercises are characterized by huge and expanding solution 
spaces, which cannot be covered by manually designed hints.  

According to [33], this is a vastly challenging problem, mainly because even for 
very simple programming tasks there are a multitude of different solution approaches, 
both syntactically and semantically. Even if we restrict the semantic aspect (i.e., the 
underlying algorithm) to a single one, the syntactic variations of implementing the 
algorithm present a daunting task for hint generation. For such programming exercis-
es, ITSs for code-writing are still possible to collect implicit data in terms of solutions 
given by students or teachers/experts. 

The data-driven approach is particularly useful when it is hard to come up with a 
more or less complete set of model solutions. It is worth noting that a range of non-
data-driven techniques can be used to generate feedback and hints for programming 
exercises automatically [22].  
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As mentioned by [7], data-driven ITS is a subfield of ITS where decision-making 
is based on the previous student’s work instead of a knowledge base built by experts 
or an author-mapped graph of all possible paths. Successful solutions from the past 
can be used to provide feedback and hints for students in the present, which circum-
vents the need to create an expert model. A data-driven tutoring system can be boot-
strapped by experts providing missing data. The data-driven approach has proven to 
work well in combination with artificial intelligence and machine-learning techniques 
for learning an expert model by demonstration [40].  

3 Automated data-driven hint generation approaches in ITSs 
for code-writing 

New research efforts to tackle broader programming exercises are at a nascent 
stage and use previous students’ solutions to a programming exercise to generate hints 
for a new student who is working on the same exercise. In recent years, there are two 
types of data-driven hint generation in ITSs for code-writing: hint generation has 
focused on code correctness and hint generation for code style [41, 42]. In this re-
search work, we focus on the hint generation for code correctness.  

3.1 Program synthesis approach 

In [39], the author used error models and program sketches to find a mapping from 
student current programs to a model solution. Rather than relying on a predefined set 
of solutions, he used program synthesis to generate a new solution from the student’s 
current program.  

However, according to [43], this system requires experts/teachers to define an error 
model specific to each programming exercise, and only supports a subset of Python. 
In [6], the authors has relied on analyzing the single-line edits made by students be-
tween submissions, and then using those edits to attempt to find a correct solution for 
the Prolog program. Those edits could then be used as a source for hints to be sup-
plied to the new student. However, their technique requires a set of test cases to eval-
uate generated programs [12].  

Perelman et al. [44] published their study to use all common expressions that oc-
curred in students’ code to create a database of source code that was then used for hint 
generation. As mentioned by [7], these techniques have great potential for supporting 
new and obscure solutions, but also have the drawback of only working on solutions 
which are already close to correct; they all tend to fail when the code has many differ-
ent errors.  

Rolim et al. [20] take an example-based approach to learn code fixes as abstract 
syntax tree transformations from pairs of incorrect and correct student submissions. 
However, while this approach requires far less engineering effort, it may fail to gener-
ate hints, especially when a student’s program is not close to a correct solution [17].  

Head et al. [19] introduce a mixed-initiative approach which combines teacher ex-
pertise with data-driven program synthesis techniques. Their work has demonstrated 
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how program analysis and synthesis can be used as an aid for a teacher to scale feed-
back grounded in their deep domain knowledge. While scaling up teacher effort, these 
systems still require teachers to manually review and write hints for incorrect student 
work [45].  

Suzuki et al. [45] explore a design space of hints that can be automatically generat-
ed from code transformations learned by program synthesis. Authors’ ultimate goal is 
to adapt the strategies that a human teacher employs to automated hints driven by 
program synthesis. They identified five types of teacher hints that can also be gener-
ated by program synthesis. These hints describe transformations, locations, data, be-
havior, and examples. Their hints rely on the capabilities of program synthesis tech-
niques to discover code transformations that fix incorrect code. As noted by the au-
thors, while such techniques have been demonstrated on short assignments in intro-
ductory programming classrooms, in the future it may be possible to learn generaliza-
ble fixes for larger, more complex programs.  

In [17], the authors present a robust hint generation system that extends the cover-
age of the program synthesis based approach using two complementary techniques. A 
syntax checker detects common syntax misconception errors in individual sub-
expressions to guide students to partial solutions that can be evaluated for the seman-
tic correctness. A program synthesis based approach is then used to generate hints for 
almost-correct programs. If the program synthesis-based approach fails, a case ana-
lyzer detects missing program branches to guide students to partial solutions with 
reasonable structures. According to the authors, their experience suggests several 
ways that the system could be improved further. 

3.2 Cluster based techniques 

Gross et al. [46, 47] used clustering to infer clusters of computer programs and se-
lect the most similar sample solution for hint generation. When the student requires a 
hint on how to change her/his code to get closer to a correct solution, it can be com-
pared to a similar example from the cluster, and the dissimilarities between her/his 
code and the example code can be contrasted or highlighted in order to help the stu-
dent to improve her/his own solution. As noted by the authors, the challenge with this 
approach is the derivation of solution steps from sample complete solutions in order 
to reduce the effort for modeling examples.  

In [13], the authors introduced an alternative representation of computer programs 
for classification and error detection in ITSs, namely execution traces. The trace rep-
resentation can be applied to identify erroneous programs, enabling an ITS to detect 
whether a student has finished a task or still needs to continue. However, they con-
cluded that a syntactic representation is necessary when a program does not yet com-
pile or crashes and wherever the high level of abstraction applied by a program trace 
is not helpful (e.g. when teaching certain syntactic constructs).  

Kaleeswaran et al. [48] propose a semi-supervised technique for feedback genera-
tion. This technique clusters the solutions based on the strategies to solve it. Then 
instructors manually label in each cluster one correct submission. They formally vali-
date the incorrect solutions against the correct one. However, as noted by the authors, 
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there are many possible directions to improve clustering and verification by designing 
sophisticated algorithms.  

Gulwani et al. [49] present a novel technique for clustering and repairing introduc-
tory programming assignments. They cluster correct submissions using variable traces 
computed for different inputs. Then, a representative submission from each cluster is 
selected as a reference solution. An incorrect submission is compared to each refer-
ence solution using variables traces, and some repairs are computed. The technique 
provides personalized feedback using the reference solution with the least number of 
repairs. However, a problem of this technique is that it requires inputs that are not 
easy to provide to trigger all possible errors. Variable traces are compared as a whole, 
so it needs a reference solution per any possible variation of a given assignment. Fur-
thermore, the technique is not able to deal with infinite loops and submissions with 
multiple methods [50].  

3.3 Recommendation approach 

In [51], the authors represent a framework that can help students in their coding 
process by recommending specific code edits relevant to their codes. They use a pq-
Gram tree edit distance algorithm to match a student’s program to its closest counter-
part in a database of correct solutions, as well as to identify the set of insertions, dele-
tions and relabeling that will directly transform the student’s abstract syntax tree 
(AST) into this solution. According to the authors, the disadvantages of this method 
involve the following three aspects: AST based program analysis, semantic similarity 
of programs and usability testing. With the example-based learning (EBL) strategy, 
Chaturvedi [52] presents a framework called Example Recommendation System 
(ERS) that is built upon EBL and that uses state-of-the-art mining algorithms in order 
to recommend a focused, organized and customized list of worked-out examples with 
the overall objective of increasing the likelihood of student success in the ITS’s do-
main. However, as noted by the author, the limitation of algorithms used in this sys-
tem is manual construction of regular expressions (RE) by experts. 

3.4 Case-based reasoning approach 

Freeman, et al. [53] use a case-based reasoning (CBR) approach, which they call 
Abstract Syntax Tree Retrieval (ASTR) to data mine prior solutions contained in a 
large dataset. This system requires no prior knowledge of the problem being solved. It 
uses CBR and the grammar of the programming language to retrieve a prior solution 
with high similarity to a struggling student’s failing submission. The results achieved 
by their system are encouraging. However, as noted by the authors, the system con-
tains no information about the programming problem prior to observing successful 
submissions. Additionally, their system has no understanding of Python syntax.  
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3.5 Hint Factory based approaches 

In general, the basic technique in this new line of work is to first represent the pre-
vious student–tutor interactions in the form of a graph. When a new student asks for a 
hint, that student’s interaction pattern is matched with some part of the graph and the 
student is directed to an appropriate next step that ultimately leads to a solution. It is 
not hard to imagine the potential impact of such work on any ITS that teaches pro-
gramming [33].  

In [54], the authors designed the Hint Factory to use student problem-solving data 
for automatic hint generation in a propositional logic tutor. This approach uses student 
data to build a Markov decision process of student problem-solving strategies to serve 
as a domain model to automatic hint generation. The Hint Factory operates on a rep-
resentation of a problem called a directed graph where each node represents a stu-
dent’s state at some point in the problem solving process, and each edge represents a 
student’s action that alters that state. A solution is represented as a path from the ini-
tial state to a goal state. A student requesting a hint is matched to a previously ob-
served state and directed on a path to a goal state. The Hint Factory approach has been 
extended to work in other domains more closely related to programming.  

Fossati et al. [55, 56] implemented Hint Factory in the iList tutor that helps stu-
dents learn linked list, a demanding topic in information technology and computer 
science education. In [56], the authors also concluded that their tutor produced equiv-
alent learning gains to a human tutor.  

Using the Hint Factory approach, Jin et al. [57] use linkage graphs to represent program 
states. A linkage graph is an acyclic graph consisting of nodes representing code 
statements and directed edges representing the order of the statements determined by 
which variables are read and assigned to in each statement. However, in [58], the 
author points out that multiple existing student solutions should be available with the 
risk that a specific alternative to solve the exercise might not be recognized. On the 
other hand, as noted by the authors, the challenge with this method is the determina-
tion of strategies for hint presentation.  

In [7], the authors propose a data-driven approach to create a solution space con-
sisting of all possible paths from the problem statement to a correct solution. This 
approach borrows heavily from the Hint Factory, but also extends it by enhancing the 
solution space, creating new edges for states that are disconnected instead of relying 
on student-generated paths. 

As demonstrated in [7], ITAP (Intelligent Teaching Assistant for Programming) 
makes it possible to generate hints for never-seen-before states, which the original 
Hint Factory could not do. ITAP combines algorithms for state abstraction (the pro-
cess of reducing syntactic variability in code states), path construction (determining 
which steps a student should take to improve their solution), and state reification (re-
individualizing the resulting edits into personalized hint messages) to fully automate 
the process of hint generation. However, as noted by the authors, the path construc-
tion algorithm could be modified to further improve the performance. However, ac-
cording to [51], one major pitfall of AST representations of source code is the loss of 
behavioral information.  
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Price et al. [12] present a new data-driven algorithm (CTD: Contextual Tree De-
composition), based on the Hint Factory, to generate hints for these broader pro-
gramming exercises. As noted by the authors, a major limitation of this work is the 
reliance on a single programming exercise for evaluation.  

More recently, Price et al. [59] present iSnap, an extension to the Snap program-
ming environment which adds some key features of ITSs, including detailed logging 
and automatically generated hints. They share results from a pilot study of iSnap, 
indicating that students are generally willing to use hints and that hints can create 
positive outcomes. Hints in iSnap are generated using the CTD algorithm. As noted 
by the authors, the study revealed several remaining challenges for the CTD algorithm 
and the presentation of iSnap hints.  

3.6 Summary 

In summary, there has been two board lines of research proposed for data-driven 
generating hints in ITSs for code-writing: program synthesis based and Hint Factory 
based. However, according to [60], there are two major drawbacks of program syn-
thesis based approaches. First, an instructor must manually provide error models for 
each problem. Second, scalability is a big issue, especially with larger programs. In 
terms of expert knowledge, the Hint Factory based approaches are suitable for gener-
ating hints in ITSs for code-writing. These approaches only require a two pieces of 
expert knowledge to run independently, though this knowledge is kept to a minimum. 
The needed data is: (1) at least one reference solution to the problem (e.g. a model 
solution) and (2) a test method that can automatically score code (e.g. pairs of ex-
pected input and output). Both model solutions and test methods are already common-
ly created by experts/teachers in the process of preparing programming exercises, so 
the burden of knowledge generation is not too large. 

4 Conclusion and future research 

This study surveys the existing ITSs for code-writing that are solely based on data-
driven hint generation to conclude that they differ from each other in at least the fol-
lowing ways: 1) representation of student’s current code (snapshot of source code, a 
set of features, the actual code of program); 2) immediate representation of computer 
programs (AST, source code); 3) extracting distinct solutions of a programming exer-
cise (preprocessing); 4) granularity of the code state used; 5) automatically modeling 
solution steps and 6) programming language. In the context of data-driven ITSs for 
code-writing, despite the research efforts in recent years, however, generating data-
driven hints is still having some problems. In summary, in this work, the gaps we 
identified that provide the motivation for future researches are listed below. 

1. Representation of the student’s current code. In the context of Hint Factory 
based approaches to generate data-driven hint for ITSs for code-writing, a student’s 
state corresponds to a snapshot of the student’s current code. However, according 
to [61], the snapshots are captured every time students compiled or saved their 
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code, but this is not an accurate representation of a unit of work (e.g., a line of 
code, a statement of source code) 

2. Modeling automatically solution steps from correct solutions. Clearly, in this 
literature review, none of the works model automatically solution steps from cor-
rect solutions of a programming exercise. How to model automatically solution 
steps from a large number of correct solutions of a programming exercise is an un-
resolved problem. 

3. Semantic similarity. At the heart of data-driven ITSs for code-writing is the no-
tion of program similarity. Measuring the similarities and dissimilarities between 
programs plays a crucial role in data-driven ITSs. Edit distances have been used as 
a measurement for the similarity of programs. Most existing systems represent 
programs as abstract syntax trees (ASTs), however, it is known that the tree edit 
distance problem is NP-hard. How to extract distinct solutions from a large dataset 
consisting of learners’ solution attempts and a sample solution created by teach-
ers/experts efficiently and precisely is an unresolved problem [62]. 

4. Programming exercises supported by data-driven ITSs code-writing. It is im-
portant that a data-driven ITS for code-writing provides a collection of program-
ming exercises covering an introductory programming course syllabus. Neverthe-
less, these programming exercises are generally stored in proprietary systems for 
their own use. According to [63], in general, two issues were detected that can hin-
der the proliferation of ITSs for code-writing: the lack of content standards for de-
scribing programming exercises and to communicate with other ITSs for code-
writing. 

5. Programming language. In the context of data-driven ITSs for code-writing, it 
can be seen that although ITSs covering many domains have been developed pre-
viously, none of them teach C/C++ programming.  

6. Integrate data-driven ITSs for code-writing into curriculum. As noted by Riv-
ers [64], data-driven ITSs for programming has been expanding as a subfield of 
ITSs over the past few years, with many different researchers creating new tech-
niques to automatically generate hints. However, most of the systems (including 
theirs) have only been evaluated on collected student problem-solving traces, and 
the ones that are being tested on real students are implemented in online learning 
environments such as MOOCs (massive open online courses), not in individual 
classrooms. In the context of curriculum and real classroom in an ITS, this indi-
cates that there is significant room for improvement in the field of data-driven ITS 
for code-writing. 
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