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Abstract—The flexible scheduling paradigm (FSP) improves student learn-
ing by dynamically redeploying teachers and other pedagogical resources to pro-
vide students with customized learning conditions over shorter time periods 
called ‘mini-terms’ instead of semesters or years. By conceptualizing the school 
curriculum as a physical map, we customize the routing of students through cur-
riculum using a core curriculum-targeted mastery-based approach. FSP increases 
deployed teacher effectiveness by making customized mentoring part of teacher’s 
regular schedules and by deploying teachers to their strengths. We establish a 
prima facie case for FSP by building comparative simulations of various schools 
as they are currently run (the Present Schools) and the same schools as they would 
be run with FSP (the Schools of the Future). Statistical results of the simulations 
confirmed that using FSP can increase key educational metrics including gradu-
ation rates, final course grades, mean grades in core curriculum, average teacher 
effectiveness, and the quality of teacher deployed expertise. 

Keywords—Education reform, educational technology, mastery learning, flexi-
ble scheduling paradigm, operations research, simulation 

1 Introduction 

The Flexible Scheduling Paradigm (FSP) is a modern approach for organizing 
schools, which dynamically redeploys teachers and other pedagogical resources to pro-
vide students with customized learning conditions over shorter time periods called 
‘mini-terms’ instead of semesters or years. FSP conceptualizes school curriculum as a 
physical map, routes students through curriculum using a core curriculum-targeted 
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mastery-based approach, and increases teacher effectiveness through customized men-
toring and teacher deployment [22], [23], [24], [25]. To compare FSP with current 
school organizational practices, we built comparative simulations of various schools as 
they are currently run (the Present Schools) and the same schools as they would be run 
with FSP (the Schools of the Future). We also validated our models through extensive 
interviews and written feedback from Baltimore City, Maryland (USA) public school 
teachers, administrators and executives. 

Under FSP, each round of unit-based teaching will be implemented in mini-terms, 
whose length can be any reasonable period of time. FSP exploits natural dependencies 
that exist in curriculum by constructing curricular maps and tracking student assessment 
at the level of granularity of a curricular unit. Students still complete courses, but typi-
cally over compressed or extended periods of time rather than semesters or years. FSP 
can be integrated with alternative/modern types of learning such as professional tutor-
ing, peer-to-peer tutoring, small group learning, video-based or assisted learning, inde-
pendent learning, e-learning, and blended or virtual learning environments [22]. FSP 
can also potentially end the pernicious phenomenon of social promotion [28] by regu-
larly customizing school schedules directly to student needs in place of the current typ-
ical school system of organization, which encourages social promotion by forcing stu-
dents to remain in rigid course and grade level structures. 

FSP uses modern operations research techniques [8], [18] to enhance teacher effec-
tiveness [1], [4], [6], [19] through targeted training and the prioritized deployment of 
teachers. See Snyder, Herer & Moore [24] for details on how FSP integrates elements 
of educational paradigms: mastery learning [11], flexible modular scheduling [27], 
block scheduling [3] and curriculum mapping [10]. Our research also benefits theoret-
ically from Hutchins [9]. Hutchins, using navigation as an example, made a brilliant 
general case for using an entire system as the unit of analysis rather than any one of its 
component parts. In education, for too long, the ‘classroom’ has been the dominant unit 
of analysis of educational research but it is just one component of the larger school or 
even units of analysis broader than a school. 

2 Research Goals and Methodology 

Our primary research goal was to make a prima facie case that the FSP model pro-
vides superior educational results to today’s typical model of school organization. To 
achieve this goal, we built a simulation model for schools as are typically run today 
using a yearlong system of organization, called the ‘Present School’. We then built a 
model for the same schools reorganized using FSP’s unit-based, mini-term scheduling 
called the ‘School of the Future’ (SF). We identified parameters to compare the perfor-
mance of PS and SF, such as graduation rates. We checked the validity of both PS and 
SF simulations by interviewing public school teachers, administrators, and executives. 
We note our case is only ‘prima-facie’ because we have not yet tested the FSP model 
in a real school. Indeed we feel that simulation testing is a necessary precursor for real-
world testing, the next natural step. As a result we only tested the simulated quality of 
learning and instruction. 
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The primary tool that we use is simulation. Herer [7] describes the modeling process 
in five steps: 

• See the real world (see what is important) 
• Model the real world (include what you want) 
• Solve the model (the model, not the real world – optimally or heuristically) 
• Take the model solution to the real world (Does it make sense? Even if the solution 

is optimal for the model, is it a heuristic for the real world?) 
• Implement the solution in the real world 

In this initial work, we implement steps 1 – 4. Simulation methodology has the major 
advantage of being able to vary key parameters at will. Sometimes one may wish to 
simulate a variety of entities in the real world such as school size or curricula. Other 
times one may wish to simulate a range of values for a parameter that is not yet known 
with accuracy in the real world. An example of such a parameter would be the amount 
of variation within individual teachers in their capabilities to teach particular units. Such 
‘sensitivity analysis’ is an extremely valuable tool in simulation. In addition, though we 
did our best in creating our model, simulation work is extremely flexible and we could 
vary or add any major factor to our models in future work. 

We chose Microsoft Visual Studio, SQL Server database, and Excel to build our 
simulations and store our data. We conducted statistical analyses of results using Mi-
crosoft Excel and SPSS. We found these platforms more advantageous for our needs 
than simulation platforms such as ARENA [5] due to their speed and flexibility. 

2.1 Definition of sigma 

Bloom [2] used the term ‘sigma’ to refer to the impact of a particular factor (in units 
of standard deviation) upon the performance of students as measured by standardized 
tests. So for a teaching approach to achieve a one sigma improvement, it must produce 
performance results in students that are one standard deviation higher than the mean. 
Henry et al. [6] used a similar sigma-based approach to measure the changing effec-
tiveness of teachers over their first five years, and Walberg [29] also measured statisti-
cally a variety of inputs into educational success into this sigma-based approach. We 
incorporated this general approach in our model, adapting it to build formulae to fore-
cast individual students’ grades. 

2.2 Definitions of key parameters 

The following are key parameters used in the simulations: 

• SSC–Student subject competency represents a combination of how talented and mo-
tivated a student is in a given subject or more formally: the impact of students’ own 
capacity in sigma on their learning results in a given subject. 

• TUE–Teacher unit effectiveness measures how well a teacher can teach a particular 
unit of material in terms of the sigma impact on students’ learning results. This con-
cept is closely related to the teacher effectiveness of a particular teacher but 
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measured at the unit level rather than overall. See Goldhaber & Anthony [4] for one 
example of the vast literature on teacher effectiveness (TE), which we are specifying 
with even greater detail at the unit level. 

• PTUE–Perceived teacher unit effectiveness. A modified value where “noise” 
(PTUEM, see below) is added to TUE to model a school’s limitation to accurately 
measure a teacher’s capability to teach a unit. PTUE reflects how the school per-
ceives a teacher’s effectiveness, rather than the real TUE value. 

• PTUEM–Perceived teacher unit effectiveness modifier. The “noise” that is added to 
TUE values to produce PTUE values. PTUEM reflects the inevitable inaccuracy of 
an attempt to measure TUE.  

• RTUE–Realized teacher unit effectiveness measures how well teachers are deployed 
to teach units in terms of the sigma impact on students’ learning results. A teacher 
has to actually teach a unit for their TUE value in that unit to count as RTUE. We 
measure RTUE at the student level, so a teacher with a high TUE in a unit with 30 
students has more overall impact than one with 20. 

• LG–Last grade. A student’s most recent grade in a unit on a percentage scale. This 
value is relevant to forecasting a student’s grade when a unit is repeated. 

• MP–Mastery of prerequisites. A student’s grade average across all prerequisite units, 
on a percentage scale; relevant to forecasting a student’s grade in a unit.  See Shapiro 
[20] for a seminal paper on this domain. 

2.3 Model description 

When building a model one must choose parts of the ‘real world’ to model [12] and 
ignore certain aspects of the system being modeled. Since the goal of our study is to 
compare the PS and SF models, we simplify, wherever possible, in such a way as to 
minimally impact the comparative analysis. 

Simulated schools: We simulated high schools with a six-period day, all academic 
periods. Course grades are determined by averaging the final grades in units. Midterm 
and final exams are not simulated. Students have up to six years to complete graduation 
requirements. A ‘drop-out’ is a student who has had a full six years to graduate and 
failed to do so. We did not simulate students who drop-out in the middle of their high 
school careers. SF prioritizes scheduling students in unit classes with teachers with 
higher TUE values, which PS does not. SF implements in classroom teacher training as 
part of the scheduling, which PS lacks. 

Simulated curriculum: Both PS and SF simulations had the same 21 course grad-
uation requirement, based upon a reasonable midpoint of American high schools [15]. 
Courses were designated as mandatory or elective to match graduation requirements. 
Courses in all subjects are split into eight equal units. Admittedly, this may be a difficult 
task to achieve in some subject areas, and more complex scheduling approaches may 
be adopted to deal with less uniform curricular structures. 

We represent real curriculum in math, history, and chemistry. These curricular units 
were designed by professional teachers [23]. For other subjects, ‘simulated curricula’ 
without specific content were created by designing prerequisite structures which ‘look 
reasonable’ for those subjects. For example, English curricular structures were set up 
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to be less linear than history but more than math. We do not include curriculum for 
special education or gifted students. 

We use the same curricular units for both PS and SF models, though PS uses course-
based dependencies and SF uses unit dependencies and unit designations as core, man-
datory, or elective. Core units are also mandatory and are prioritized higher in SF. The 
PS approach has no way of scheduling based upon unit importance, since it is schedul-
ing a course at a time. Elective units may be pruned from a course in SF; students can 
pass a course if they pass all core and mandatory units and have a course average above 
the needed passing grade. Students in PS courses will always be exposed to all units in 
a course, including elective units. 

Simulated teachers: Teachers are mirrored across PS and SF so every new teacher 
in PS starts with a mirror teacher in SF teaching the same subject with the same starting 
TUE values. These parallel teachers retire at the same time across PS and SF. In this 
way we improve the accuracy of our comparison of PS and SF. We simulate teachers 
gaining competence at teaching each year by implementing functions that change their 
set of TUE values, depending on the number of times they teach a unit, if they are 
mentored in a unit, a gain from acquiring general teaching experience, and a noise 
value. As teachers are scheduled differently, TUE values of parallel teachers across PS 
and SF will naturally tend to diverge over time. 

Teachers teach only one subject but can teach all of its units. Teachers teach a ran-
dom number of years within a total maximum duration. We represent teacher effective-
ness at the unit, rather than the subject or general level. At the start of a simulation and 
each time a new teacher enters a simulation, the teacher receives a random distribution 
of TUE values in the units within their subject. We first calculate a randomly generated 
Teacher Effectiveness (TE) value to represent the overall effectiveness of the teacher. 
We then calculate individual TUE values out of this TE value using a second randomly 
generated Teacher Unit Effectiveness Modifier (TUEM) value. The purpose of this two-
step process is to enable us to control variation in TUE values across and within teachers 
separately by having independent control of the means and standard deviations of the 
TE and TUEM curves to test a wide variety of possibilities that may exist in the real 
world (this type of data is not definitive from the literature). 

Since no school can ever have a perfect system for assessing TUE values, we imple-
ment the middle layer of PTUE between TUE values and the scheduler. Every year 
teachers have a PTUE value calculated for every one of their TUE values using a ran-
domly generated noise factor (PTUEM).  We use the PTUE values for SF scheduling 
decisions (since those are the values schools would have) and TUE values for PS and 
SF grading forecasts (since TUE represents the real effectiveness of a teacher in a unit). 
We vary the degree of noise in different simulation experiments to represent better or 
worse teacher assessment systems. 

Simulated students: We represent student academic competence at the subject level 
using one SSC value per subject for each student. We generate these values for the 
student population using a set mean and standard deviation plus a noise factor, each of 
which may be varied across simulation experiments to represent different types of stu-
dent populations. 
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Every student in PS has a mirror student in SF with the same SSC values. These 
remain fixed throughout a simulation run, though in the real world it is possible for 
students to improve their underlying competence in a given subject. We permit student 
ages in classes to vary freely in both PS and SF simulations, so students from different 
grades may be combined. 

2.4 Flow of a simulation 

For both PS and SF, we begin by initializing simulation parameters and simulate the 
system from year to year with the end of one year feeding into the next, until the total 
number of desired years is completed. See Figure 1 for one year of a PS or SF simula-
tion. At the beginning of each simulated year we first gather information on teacher and 
students from the previous year, add the students who are entering grade 9, and simi-
larly we add new teachers. With this information, the school schedules the classes and 
students learn and are evaluated. At the end of the year, teacher and student information 
is updated. Teachers gain general experience and retiring teachers are removed from 
the simulation. Each student graduates, drops out, or is passed on to the next year. Fig-
ures 2 and 3 expand on the scheduling and grading sub processes in Figure 1. See Figure 
2 for PS scheduling and grading for one year and Figure 3 for SF scheduling and grad-
ing for one year. In general these processes take student and teacher data and schedule 
the school as it would be scheduled in real-life, i.e. the focus is on what a student can 
learn and what a student needs to learn to continue with their education and graduate. 
At the end of instruction grades are determined based on the students’ and teachers’ 
abilities and are updated based on what they taught. Primary differences between the 
processes represented in Figure 2 and Figure 3 include that SF scheduling is carried out 
eight times a year versus once per year for PS; students are scheduled based on units 
for SF and courses for PS; and SF implements the FSP training model. These flowcharts 
are meant to give the reader a general sense of the overall flow rather than specifics of 
the process. 

2.5 Scheduling description 

We now describe the major factors involved in creating a PS and SF schedule. PS 
and SF both use a student ‘need list’. For PS this consists of all courses a student is 
ready to take; for SF this consists of all units a student is ready to take. We used a 
similar algorithm for PS and SF to prioritize students reaching graduation to assure that 
the scheduling algorithm does not cause a difference in dropout rates between PS and 
SF. Each course (PS) or unit (SF) a student is eligible to take is given a value measuring 
its ‘slack’, or how many years (PS) or mini-terms (SF) the course or unit could be de-
layed and still allow a student graduate on time. This slack calculation is based on 
course or unit prerequisites defined in the curricular model. Using this information, the 
algorithm generates a prioritized course list for PS and a prioritized unit list for SF. SF 
prioritizes the assignment of teachers to units by highest PTUE and schedules teachers 
with gaps in their schedules to be mentored by higher PTUE teachers in scheduled units. 
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PS randomly assigns qualified teachers to courses. Both PS and SF algorithms use the 
above data to do their best to ensure students graduate on time. 

 
Fig. 1. One Year of a Simulation (PS or SF) 
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Fig. 2. PS Scheduling and Grading for One Year 
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Fig. 3. SF Scheduling and Grading for One Year 

2.6 Predictive models 

Central to our PS and SF simulations are predictive models for how students perform 
in units and how TUE changes over time. For both PS and SF models, grades are as-
signed at the unit level and course grades are determined by averaging all unit grades 
in a course. 

Predicting student grades: Since a primary goal is a valid PS and SF comparison 
we predict grades using the same method in both schools. The grading scale of 0-100 
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is used throughout. Our grade prediction model begins with a value for a nominal grade 
(NG) and the value of one standard deviation (SD). The nominal grade is a ‘starting 
grade’ for grade calculations and not an average grade, since many other factors affect 
a student’s grade. 

In our simulation a student’s grade in a unit is forecast using the following four fac-
tors: 

• Teacher Unit Effectiveness (TUE): the quality of the teacher to teach a particular 
unit 

• Student Subject Competency (SSC): how skilled the student is in a particular subject 
• Mastery of Prerequisites (MP): how well the student knows the prerequisites if ap-

plicable 
• Last Grade (LG): how well the student did the last time he took the unit if applicable 

It is critical to note that simulations such as those we have built may readily be ex-
panded to include many other factors to student learning. 

The number of standard deviations a forecasted unit grade is above or below the 
nominal grade is determined by first combining these four factors into a single sigma 
value. TUE and SSC are already measured in terms of sigma. In contrast, MP and LG 
are measured in grade percentage and so must be converted to a measure in terms of 
sigma. 

MP is converted into a sigma value by subtracting NG and dividing the result by SD. 
If a student’s mastery of prerequisites (MP) is less than the nominal grade (NG), the 
impact upon the grade is negative and vice versa. 

LG is converted into a sigma value by dividing it by the nominal grade (NG). This 
value will only be positive. The idea here is to calculate a sigma proportional to the 
nominal grade, but which is only positive, because prior experience learning a unit 
should only produce an advantage. We acknowledge that it is theoretically possible for 
a very poor learning experience to produce a net negative effect on a student’s future 
learning in a unit. Such a rare instance could be a result of a teacher poorly teaching a 
student with such an inaccurate conceptual model that a future teacher would have to 
ascertain the deficit and remediate the student. We consider this to be a relatively rare 
anomaly and therefore do not account for it in our model. 

Before the four factors are combined, TUE and SSC are weighted more heavily than 
MP and LG due to their relatively greater impact. We then combine the TUE, SSC, MP 
and LG sigma factors into a single combined sigma value σC. This combined effect 
determines how many standard deviations above or below the nominal grade a student 
is expected to achieve. To combine these values, we use a formula of our own design 
which keeps the combined effect of the factors within a certain maximum range (typi-
cally between ±2.5 sigma). The formula first combines positive factors and negative 
factors separately in a sub additive manner. Making the combination additive (without 
interaction) would produce unreasonably high or low resultant σC values. For example, 
it seems unlikely that a teacher of TUE = one sigma combined with a student of SSC = 
one sigma would raise a student’s grade two sigma above the nominal grade. 
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The two resultant positive and negative sigmas are considered independent of each 
other, and so we sum them, creating a cancellation effect. Finally, we calculate the pre-
dicted grade using the following formula: 

Unit Grade = NG + (σc * SD) + noise  (1) 

This calculation uses the nominal grade as a starting point, adds in the effects of the 
various factors (i.e., the combined effects (σC) multiplied by the standard deviation), 
and then adds in a Gaussian noise term. The noise term is meant to simulate the fact 
that in the real world two students taking a unit with the exact same factors would likely 
achieve different grades in a unit due to un-simulated factors and unpredictable local 
conditions. 

We set the parameters NG, SD, and the maximum combined effect of the factors 
appropriately in a simulation and verify that the results across students generate a rea-
sonable bell curve. For example, setting NG = 75, SD = 10, and the maximum combined 
effect of the factors to ±2.5 sigma would yield a likely potential range of values for NG 
+ (σC * SD) of 50-100. The noise term may raise this range a bit further. 

The real interactions between our four chosen grading factors (and many others, such 
as class size) are likely to be highly complex, so we encourage continued development 
of grade forecast modeling and studies gathering the underlying relevant data in the 
field. The particular factors affecting grades and the mathematical model for combining 
these factors may be readily adjusted in future work as better data emerges, as is the 
power of simulation. 

Modeling change in teacher unit effectiveness: We model the following critical 
factors for TUE change for both PS and SF: general teaching experience and how often 
a teacher has taught the unit in question. Additionally for SF, when a teacher is men-
tored in a unit, we use the difference in TUE values between mentor and mentee in 
order to determine the improvement of the mentored teacher. 

Our general goal is a curve which approximates the TE findings from Science [6]. 
This research shows that larger increases in TE occur in the earlier years of teaching. 
To do this, we set a maximum career improvement in TE for a teacher, and use the 
factors described above to calculate a TUE improvement as a percentage of the remain-
ing improvement possible. In this way we model the idea that a new teacher just starting 
a career has the most to gain in teacher effectiveness. Although the Science article only 
covers the first five years of teaching, our simulations cover entire careers. We do not 
model the subject-specific TE increases as described in Science, but rather treat all sub-
jects equally. 

3 Design of Experiment 

In this section we describe our experimental design. We begin by describing some 
aspects of our experimental design that is related to the fact that our experiments are 
based on simulations. 
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3.1 Replications 

Due to the fact that no two student or teacher bodies are the same (even if they are 
drawn from the same distribution) and simulations involve the pervasive influence of 
preceding events upon subsequent events, it is necessary for statistical purposes to run 
multiple replications of each simulation and combine the results to get a statistically 
robust sample. We therefore run multiple pairs of PS / SF simulations. 

The number of replications needed [21] is determined with an appropriate statistical 
calculator. We found that five replications of each PS / SF pair were always sufficient 
from a statistical viewpoint. To be conservative, we used ten replications each for all of 
our simulation runs. When we report results below, we report the average across all 
replications in PS or SF. For example, when we refer to the mean unit grade in a PS 
simulation, we are describing the overall mean from all the replications, each using a 
different pseudorandom number stream for input. 

3.2 Parallelism 

In order to maximize the statistical accuracy of comparing PS and SF simulations, 
we employed parallelism in our simulations. This parallelism has the technical name 
‘common random number’ and is an accepted variance reduction technique [12]. We 
use the Mersenne Twister approach to generate the pseudorandom numbers [13], [26]. 

Within each pair of PS / SF simulations, the  same stream of pseudorandom numbers 
are duplicated for PS and SF for each of a variety of factors that vary in the real world, 
such as initial SSC, TE and TUE values, and noise in the grading or TUE change func-
tions. This parallelism allows our comparisons to focus on the effect of the PS versus 
SF models. For example, a paired set of identical randomly generated students is run 
through PS and SF with the exact same SSC values. We can think of these paired sim-
ulations as the same group of students learning in a PS versus an SF organized school. 
Similarly, we use a paired set of randomly generated teachers having identical initial 
TE and TUE values and the same teacher retirement year, though these values will di-
verge over time due to differences in the PS and SF models. We can think of these 
paired sets of teachers as being the same person teaching in a PS versus an SF organized 
school. 

Across each of the ten pairs of PS / SF simulation runs. a different stream of pseu-
dorandom numbers is employed for all of the above described factors to simulate 10 
different pairs of schools, each with a parallel PS and SF version. We average the results 
across the 10 pairs for our various educational metrics. 

3.3 Ramp up and ramp down years 

We run each simulation for 55 school years. Since our simulations start with an 
empty school with all new teachers, we need to simulate our schools for several years 
before starting to examine the behavior of the school. Since teachers in our simulations 
work between 1 and 20 years before they retire and students graduate after a maximum 
of six years we decided to start collecting data for analysis after an initial ramp up time 
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of 20 years. Similarly, we strip the last five student classes out of the data, since these 
cohorts do not have a full six years to graduate or drop out per our simulation model. 
Given these procedures, we end up with 30 entering classes of students (from grade 9 
to graduation or dropout) of usable data per simulation. 

3.4 Educational metrics 

The most common method to compare two systems is to choose meaningful metrics 
and our PS / SF comparison is no exception. We used the following educational metrics: 

• Mean Final Course Grade 
• Mean Unit Grade and Percentage of Units Passed for: 

─ All Units 
─ Core Units 
─ Mandatory Units 
─ Elective Units 

• Graduation Rate 
• Mean TUE and Mean RTUE 
• Mean Number of Units per Course, Mean Number of Units Passed, Mean Number 

of Units per Student. 

All of the above were measured by student class except for Mean TUE and Mean 
RTUE, which were measured year to year. A ‘student class’ is the entire set of students 
that begin together in grade nine. Both PS and SF simulations give students up to six 
years to graduate. However they can, and normally will, graduate earlier. Moreover, SF 
students may graduate after any mini-term whereas PS students can only graduate at 
the end of a year.  

For Mean Final Course Grade, we used the final completed course grades for PS and 
SF. In PS, if a course is failed the entire course is taken again and a new course grade 
is assigned. We use the last course grade assigned for each student. For SF, courses are 
typically not ‘failed’. Instead, students simply retake failed units within courses. We 
therefore use the set of all the last unit grades a student received to determine the stu-
dent’s course grade. 

All Mean Unit Grade measures include failed or repeated units. Measures of Man-
datory Units do not include core units, which are also technically mandatory (but meas-
ured separately).  

To compute Mean TUE, each year all TUE values of individual teachers are first 
averaged into a single mean TUE value for each teacher and all the teachers’ means are 
averaged into an overall mean TUE. To compute Mean RTUE, the RTUE values stu-
dents encounter with teachers (one value per student) are averaged into a mean each 
year. Recall that TUE values measure the competency of the teaching staff while Mean 
RTUE values measure how effectively teachers are deployed. 

Mean Number of Units per Course measures how many units students take of the 
eight possible in each course. Whereas in PS, students always take eight units per 
course, SF will produce a lower mean number as SF can prune elective units. Mean 
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Number of Units Passed measures how many unique units students pass over their 
school career, whether they graduate or dropout. Mean Number of Units per Student 
measures how many units students take over their school career, whether they graduate 
or dropout. Units that are taken multiple times are counted every time they are taken. 
For example, if a PS student has to repeat a course, each of the eight units he repeats 
for the course would be counted. 

3.5 Prototype school 

Because there are a very large number of possible schools we can simulate, we chose 
a prototypical school to evaluate for our present analysis. We call this the ‘Prototype 
School.’ Our Prototype School is designed to be fairly close in its features to an average 
U.S. public school. For the Prototype School comparison, we measure the educational 
metrics described in Section 3.4. Since we use parallelism across PS and SF in order to 
simulate the same teachers and students across each pair, the proper test to use for a 
comparison of the Prototype School for PS and SF is the one-tailed, paired t-test. We 
also measure the relative frequency of student teacher interaction in response to a sug-
gestion from a validation interviewee. 

Prototype school settings: The prototype school size is set to 220 students per 
grade, or about 880 students in grades 9-12 plus some residual students in the two extra 
years allowed before dropout occurs. The average American public high school in 
2010-11 had about 846 students [14]. 

We use a total of 60 teachers distributed across subjects in rough proportion to the 
number of courses in each subject. The average ratio of students to teachers in U.S. 
public schools in 2007-8 was 16.4 [15]. Since there are 880 students in grades 9-12, 
when a simulated school has 104 (of the 440 maximum possible) students continuing 
in their 5th or 6th year, the school would match the US national average student teacher 
ratio. The number of physical classrooms is set to 50. Teachers are permitted to teach 
up to 5 of 6 periods. They may receive mentoring in the 6th period, but in practice this 
is extremely rare. 

We set the permitted class size range for both PS and SF to 15-35 students, with the 
target set at 25, or about the average in American public schools today. For grade pre-
diction purposes NG = 75%; SD = 10%, and the relative weight of MP and LG are set 
to half of TUE and SSC. This means, e.g., that a student’s mastery of prerequisites is 
half as important as their teacher’s effectiveness in terms of forecasting their grade. The 
passing grade for courses in PS and for all units in SF is set to 65%. Teacher to teacher 
mentoring is set up to occur in SF where pairings can be found between teachers of at 
least a 0.2 sigma difference in PTUE. Weights for the relative importance of the three 
factors used to update TUE (teaching a specific unit, being mentored in a specific unit, 
and general teaching experience) are set equally. The maximal possible increase in 
teaching effectiveness in a teacher’s career is set at 2.5 sigma. 

The settings for key parameters for the Prototype School are determined randomly 
(using a truncated normal distribution) as shown in Table 1. 
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Table 1.  Setting Parameters for Prototype School 

 Mean (Mu) Standard Deviation (Sigma) Upper Limit Lower Limit 
SSC 0 0.5 2.5 -2.5 
TE -0.2 0.4 0.8 -1.2 
TUE Modifier (TUEM) 0 0.3 0.8 -0.8 
PTUE Modifier (PTUEM) 0 0.3 none none 

 
The SSC settings produce a curve that reflects a reasonable spread of student abili-

ties. The maximal student SSC value of 2.5 takes a student from the nominal grade of 
75% to a 100%, though that grade can be made lower by a poor teacher, other negative 
factors, and random noise. 

The combination of TE (Teacher Effectiveness) and TUEM (Teacher Unit Effective-
ness Modifier) ranges produces starting TUE values for teachers between -2 and 1.6 
sigma.  

3.6  Beyond the prototype school 

For the purposes of this paper, we only report results from the Prototype School 
comparing PS and SF. However, we have also run a wide variety of other simulations 
which vary key parameters from the Prototype School and use ANOVA statistical anal-
yses in place of t-tests. We varied School Size, PTUEM Sigma, SSC Mu, TE Mu, TE 
Sigma, and TUEM Sigma in these studies, keeping the Prototype School as the middle 
value to provide a useful comparison point [25]. For example, by varying School Size 
up and down from the Prototype School, we were able to simulate how effective FSP 
is relative to the number of students in a school. By varying PTUE Sigma, we simulated 
schools with superior and inferior teacher assessment systems. By varying SSC Mu, we 
simulated schools with stronger or weaker student populations. By varying TE Mu, we 
simulated schools with superior and inferior starting teaching staff capabilities. Since 
TUEM Sigma, the variation of TUE values within individual teachers, is currently un-
known, we ran simulations varying TUEM Sigma higher and lower as well. These re-
sults will be reported in future publications. 

4 Results 

4.1 Prototype school, PS / SF comparison, t-tests 

See Table 2 for our t-test results. In the table we present for each of the educational 
metrics the sample mean and standard deviation for PS and SF along with the p-value 
for a one tailed t-test. 
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Table 2.  Significance of Comparing Prototype School: PS Versus SF 

Educational Metric PS Mean PS σ SF Mean SF σ p-value 
Mean Final Course Grade 78.5 0.357 81.2 0.234 <0.001 
Mean Unit Grade 76.0 0.406 79.9 0.308 <0.001 
Mean Core Unit Grade 75.8 0.539 80.0 0.355 <0.001 
Mean Mandatory Unit Grade 76.1 0.414 80.2 0.295 <0.001 
Mean Elective Unit Grade 75.9 0.443 75.8 0.793 0.312 
Percentage of Units Passed 83.3 0.012 93.9 0.009 <0.001 
Percentage of Core Units Passed 85.2 0.015 94.3 0.012 <0.001 
Percentage of Mandatory Units Passed 83.2 0.012 94.4 0.007 <0.001 
Percentage of Elective Units Passed 81.8 0.014 86.9 0.020 <0.001 
Graduation Rate 88.3 0.029 98.0 0.004 <0.001 
Mean TUE (by Year) -0.026 0.029 0.069 0.026 <0.001 
Mean RTUE (by Year) 0.126 0.039 0.468 0.029 <0.001 
Mean Number of Units per Course 8.00 0.00 7.27 0.008 <0.001 
Mean Number of Units Passed 173 0.910 172 0.185 0.183 
Mean Number of Units per Student 215 2.76 184 1.78 <0.001 

4.2 Frequency of Teacher-Student assignments in classes together 

We measured the frequency of teacher-student assignments in classes together in PS 
versus SF. PS had a much higher frequency of assignments. No teacher in the PS model 
ever has a student for fewer than eight units simply because every course in PS has 
eight units and teachers are always scheduled for an entire course at a time in the PS 
model. For PS simulations, the relative frequency of teacher-student assignments was 
8 units (one course) for 85.7% of the time, 16 units (2 courses) for 12.7% of the time, 
and 24 or more units (3 or more courses) for the remaining 1.6% of the time. For SF 
simulations, the relative frequency of teacher-student assignments was 1 unit for 20.7% 
of the time, 2 units for 20.5% of the time, 3 units for 19.1% of the time, 4 units for 
15.7% of the time and 5 or more units for the remaining 24% of the time, a substantial 
difference. 

4.3 RTUE distribution graph 

Because sometimes a picture is worth a thousand words, we include in Figure 4 a 
visual on the distribution of RTUE across PS and SF simulations. One can see that 
higher RTUE values are realized in SF on a percentage of units taught basis. For exam-
ple, teachers with TUE values of -1 sigma teach PS students 1.8% and SF students 0.7% 
of the time. In contrast, teachers with TUE values of 1 sigma teach PS students 3.4% 
and SF students 4.8% of the time. One can see visually from this graph how SF students 
are exposed to superior teaching more often than PS students. 
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Fig. 4. RTUE Distribution across PS and SF 

5 Discussion 

We believe we have demonstrated that FSP can improve the simulated quality of 
instruction by enabling higher RTUE values and by customizing schedules for students 
on a unit by unit basis. We provided evidence that FSP can improve the simulated qual-
ity of learning by comparing PS and SF across a variety of metrics such as final course 
grade and graduation rates. In the sections below we highlight some key issues. 

5.1 Unit and course grades 

SF does substantially better than PS in core and mandatory curriculum and about the 
same in elective curriculum. The mean core unit grade in the SF Prototype School was 
80.0% versus 75.8% for PS. Mandatory (but non-core) mean grades were superior for 
SF at 80.2% versus 76.1% for PS. In contrast, the mean unit elective grades were sta-
tistically indistinguishable at 75.9% for PS and 75.8% for SF. Indeed, this is a deliberate 
part of the design of FSP and makes sense since FSP under prioritizes elective units 
versus mandatory and core units. This superior performance in core curricula for stu-
dents is a key result for FSP, as core curricula are widely recognized to underpin student 
mastery of subject areas. Mean final course grades were also demonstrably superior for 
FSP at 81.2% versus 78.5%. 

Black: Present School 
Grey: School of the Future 
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5.2 Percentage of units passed 

SF far outperforms PS in percentage of units passed for all categories of units, 
whether they be core, mandatory, and even in elective units, though as designed FSP is 
most striking in its improvement in core and mandatory unit areas. The dramatic gains 
for SF in all ‘percentage of units passed’ categories is due to its superior deployment of 
teaching talent as well as FSP’s insistence that students be ‘ready to learn’ a unit before 
they take it. It makes sense that the percentage of units passed for core and mandatory 
units is relatively superior to that of elective units in SF, since SF prioritizes core and 
mandatory over elective units. The overall mean percentage of units passed of 93.9% 
for SF versus 83.3% for PS is a key gain for FSP, and means that the time of both 
students and teachers is much more efficiently used both economically and pedagogi-
cally with FSP. 

5.3 Graduation rates 

The statistically significant outperformance of SF of 98.0% versus PS of 88.3% in 
graduation rate is striking. We feel this result is due to FSP’s innate flexibility. For 
example, a student can never fail a ‘grade level’ in FSP as occurs in so many of today’s 
schools. Similarly, the higher percentage of units passed results for SF eventually com-
pound into a higher graduation rate as students are repeating material less often. 

5.4 TUE and RTUE Improvements 

SF statistically outperforms PS in both mean TUE and mean RTUE as expected due 
the combination of its training model and targeted teacher deployment. Central to FSP 
is the idea of realized teacher unit effectiveness. By deploying teachers to their stronger 
units, we found significant gains for FSP along a variety of key measures, such as unit 
grades, percentage of units passed, final course grades and graduation rates. These ef-
fects were strong and consistent across the variety of statistical tests we performed and 
also held up when PTUE was varied to simulate greater or lesser noise in the teacher 
assessment system although, as expected, SF does better when the teacher assessment 
system is more accurate. In addition, the FSP teacher training model was highly cor-
roborated by our study. SF gained substantially in base TUE values and then also in 
RTUE values from teacher training. There are subtleties that could be added to the 
modeling of this process. For example, interviewees provided feedback that some de-
gree of co-teaching is superior to simple observation as a training method. If the trainee 
is teaching at times, this may bring down the RTUE value of the unit somewhat. Yet, 
as we argued above regarding deploying teachers to moderately strong units, a super-
vised trainee would have much to gain for the general good, and the supervision would 
additionally likely produce a better result for students than if the trainee taught on their 
own. 
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5.5 Number of units learned 

We see from the Mean Number of Units per Course (8 out of 8 units for PS vs. 7.27 
out of 8 units for SF) that FSP is regularly pruning elective units from courses in order 
to prioritize other objectives for students. The Mean Number of Units Passed (173 for 
PS vs. 172 for SF) was not statistically different across PS and SF. The Mean Number 
of Units per Student (215 for PS vs. 184 for SF) indicates that SF does a far more 
efficient job than PS at teaching students content as this statistic includes repetitions of 
units. The PS model must repeat all units in failed courses whereas the SF model only 
needs to repeat failed mandatory or core units. This may make FSP more cost-effective. 

5.6 Frequency of Teacher-Student assignments in classes together 

We and our educator validators were both concerned [25] about SF’s relatively poor 
frequency of teacher-student assignments in classes together. Note that this difference 
between PS and SF could be reduced or even potentially raised for SF above PS by 
specifically programming into the SF algorithm either: 

• A ‘stickiness’ factor that keeps particular students and teachers together more often, 
possibly based upon past success of the student with the teacher, or the preference 
of a student for a particular teacher [22]. 

• A general ‘matching’ factor that tends to place teachers and students with similar 
teaching and learning styles, or general compatibility, together over time. This ap-
proach would require a categorization system of such styles and compatibilities to 
be implemented, but such categorizations are available, and could make the teaching 
yet more effective in FSP. The nuanced reality is that rather than simply having an 
average TUE value, each teacher has a unique TUE value relative to each individual 
student, depending on their relative compatibility as teacher and student. Were stu-
dents assigned to teachers based on that compatibility as a real priority, students 
would not just learn better but would also find themselves with a more consistent set 
of teachers over time. The same types of customizations are also readily done in FSP 
for specific learning formats, including those without teachers, that are conducive to 
student learning [22]. 

6 Conclusion 

We have demonstrated that such gains we have predicted for FSP are potentially 
quite feasible. Our goal was to make a convincing case for the prototyping, testing, and 
widespread distribution of FSP technology to schools around the world. By both freeing 
up curricula (curricular maps) and time (flexibly created schedules), we intend to cus-
tomize education to students more greatly than ever, in a manner affordable for schools 
throughout the world. Victor Hugo is noted for having said ‘There is nothing so pow-
erful as an idea whose time has come.’ We argue in the spirit of Hugo that the flexible 
scheduling paradigm is an idea whose time has come, and may be irresistible.  
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The paradigm shift we are describing is an idea whose time has come. By integrating 
the best of many of the advances described in our literature review and some creative 
innovation, we offer the potential of building schools that can truly customize to student 
learning needs as well as teacher training needs. While we may not reach Bloom's 2-
sigma goal [2], the gains in student performance and teacher capabilities could be very 
great. We recognize that our simulations (and validation process [25]) provided only a 
prima facie argument for FSP, and that the real test comes in implementation. We be-
lieve the FSP approach may move things very far forward. 
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