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Abstract—The paper addresses the questions of data science education of 
current importance.  It aims to introduce and justify the framework that allows 
flexibly evaluate the processes of a data expedition and a digital media created 
during it. For these purposes, the authors explore features of digital media arte-
facts which are specific to data expeditions and are essential to accurate evalua-
tion. The rubrics as a power but hardly formalizable evaluation method in ap-
plication to digital media artefacts are also discussed. Moreover, the paper doc-
uments the experience of rubrics creation according to the suggested frame-
work. The rubrics were successfully adopted to two data-driven journalism 
courses. The authors also formulate recommendations on data expedition evalu-
ation which should take into consideration structural features of a data expedi-
tion, distinctive features of digital media, etc. 
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1 Introduction 

It is well known that Data Science (DS) is relatively young and rapidly growing 
area. The discussions about DS and its understanding as a field are still heat topic of 
current interest [1]. To be clear in this paper we will follow the definition of DS from 
IBM Analytics [2]: 

“Data Science is an interdisciplinary field that combines machine learning, statis-
tics, advanced analysis, and programming. It is a new form of art that draws out 
hidden insights and puts data to work in the cognitive era”. 

Naturally, the youthfulness of DS is one the main reasons why data science educa-
tion (DSE) is shaping today. However, several teaching and learning techniques and 
methods have been already introduced to the courses in this area [3, 4]. It is interest-
ing that the actuality of DSE increases not only to data scientists but to the specialists 
of the other fields as well (e.g., education, medicine, journalism). This explains by 
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that millions of different information systems produce petabytes of data every hour all 
over the world and specialists and experts need skills in DS. Thus, many communities 
postulate that DS is a new foundation of Data Literacy (good example is [5]). The 
context of this paper lays in the field of DSE and it focuses on a data expedition DE 
as a collaborative formative assessment technique as it is follows from the definition 
by School of Data [6]: 

“Data expedition (DE) is a learning by doing computer-supported collaborative 
learning technique, which is applied to DSE”. 

The purpose of any DE is to create a data-driven digital media artefact in 2-3 
weeks by collaborating in small (2-3 persons) groups. A typical DE consists of sever-
al stages: data gathering/data collecting, data processing/data analyzing, data visuali-
zation and making a product based on data [7]. Naturally, this structure makes a DE 
an attractive and appropriate tool for complex skills in DS shaping. Moreover, the 
authors of this paper have great confident that a DE may successfully acts as a power-
ful collaborative assessment technique. 

Surely, the idea of active learning and formative assessment implementation in DS 
courses is not new. Thus, these last few years practitioners of DSE began to document 
and reflex their experience in blended learning [8], flipped classroom [9], and project-
based learning assessment [10] in implementation in DS courses. Moreover, several 
valuable examples of education DEs were introduced [7, 11]. However, the question 
of how to evaluate a digital media artefact obtained during a DE is still acute. 

The paper explores a DE as a collaborative assessment technique in DS, focuses on 
its evaluation and introduces a framework for rubrics design. 

2 Background 

2.1 Data science education 

As the authors share the position that an assessment should be agreed with Mer-
rill’s principles of instruction [12] and be designed according to learning objectives 
(outcomes) [13]. They also strongly believe that the clear understanding of data scien-
tists’ competencies is mandatory to design evaluation tool suitable to DSE. This sec-
tion aims to distinguish crucial features of assessment in DSE. By reviewing the liter-
ature on DS curriculum design, teaching and learning approaches we collect the learn-
ing outcomes to be evaluated and generalize current teaching practices of DS-oriented 
programs. 

Convenient to our goals data scientist’s job descriptions are given in [8, 14, 15]. 
We will use a short-list of requirements to an ideal data scientist [8]. He/she must: 

• Be of an analytical and exploratory mindset,  
• Have a good understanding of how to do data-based (quantitative) research, 
• Possess statistical skills and be comfortable handling diverse data,  
• Be clear, effective communicators with the ability to interact across multiple busi-

ness levels,  

108 http://www.i-jet.org



Paper—Using Data Expedition as a Formative Assessment Tool in Data Science Education: Reasoning … 

• Have a thorough understanding of their business context. 

Anderson and colleagues in 2014 [16] claimed that difficulties with the curriculum 
design relate to multidisciplinary learning objectives of DS programs/courses. The 
valuable result of this work is the DS curriculum topic list. In 2016 Mills and col-
leagues [17] reported that the most of information systems programs begin offering 
DS-related courses. So, it is not surprising that in 2017 De Veaux and colleagues [18] 
specified the list by Anderson and colleagues, and highlighted that DS is not the direct 
sum of skills in statistics, computer science and mathematics, and introduced key 
competencies for bachelor in DS: computational and statistical thinking, mathematical 
foundations, model building and software foundation, data curation, and knowledge 
transference – communication and responsibility. These outcomes give us several 
clear directions in evaluation tool construction, but all these initiatives did not suggest 
any recipes of assessments. 

In 2016 Hicks and Irizarry [19] formulated several principles of teaching DS: 

• organize the course around a set of diverse case studies 
• integrate computing into every aspect of the course 
• teach abstraction, but minimize reliance on mathematic notation 
• structure course activities to realistically mimic a data scientist’s experience  
• demonstrate the importance of critical thinking/skepticism through examples 

This requirements, frameworks and principles shaped the basis of practical DSE. 
Thus, Brunner and Kim in [20] described the design of an introductory DS course. 
Because the course was delivered through MOOC platform, the assessments’ types 
were partly predefined by the platform: quizzes, programming assignment and peer 
assessment. Asamoah and colleagues [21] also reported on introductory DS course 
which is based on interdisciplinary approach. Both papers are quite circumstanced, 
and their results may be directly reused by the educators, but they mostly focused at 
courses structure and their agreement with curriculum and recommendations that 
were mentioned above [16, 18]. So, there were no special approaches to DSE or learn-
ing outcomes evaluation introduced in these papers. 

These last few years several publications that let us feel enthusiastic about the fu-
ture of active learning and formative assessment techniques in DSE have been ap-
peared. This year Ryan in [8] called blended model of education a powerful approach 
to DSE. The model engages as industry as academia to educational processes. Ryan 
also reviled the impetuous grow of number of DS programs in different universities. 
Moreover, innovative educational technologies spreading among DS educators all 
other the world. Thus, Eybers and Hattingh in [9] reported on flipped class room 
approach implementation to post-graduate DS students. Despite the paper contains the 
impressive results it does not mention any assessment type which was utilized during 
the instructions. More relevant to our topic research by Giabbanelli and Mago [10] 
explored the role of teaching computational modeling during DSE and suggested a 
relevant course. Unlike Brunner and Kim [20] Giabbanelli and Mago used a project-
based learning assessment to evaluate complex DS skills. The results of each projects 
had to be a research proposal and using real data was obligatory. Unfortunately, the 
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authors do not in detail developed the topic about features of projects, grading rules 
and students’ reaction. 

We can resume that a full-fledged assessment in DS courses should reflect com-
plex nature of DS. So, taking into consideration growing interest to active learning 
techniques from DS educational society formative assessment seems to be suitable to 
DSE.  We may also note that the complexity of assessment procedures in DSE grows 
from the interdisciplinary of DS and consequently from composite structure of DS 
courses and their learning outcomes. 

2.2 What a data expedition is? 

A data expedition is one of the most popular collaborative crowdsourcing tech-
niques for making a digital media based on data. As usual, a data expedition begins 
from the clear purpose but without specific understanding of final digital media con-
tent and bounds [22]. Generally, this digital media contains such objects as structured 
links on data sets, text, scripts, data visualization. A data expedition may be success-
fully implemented as for educational as for research needs [23]. Moreover, in the 
second case, a data expedition serves as the powerful and the fast approach to clean, 
pre-process, briefly analyze data to support some preliminary hypothesis or to formu-
late them [24]. Thus, data expeditions are quite popular among data-activists all over 
the World. They ran on variety of purposes by different international organizations 
[22, 7] universities [8], and they are still sought-after by the data activists in Open 
Data Day [24]. The description of some data expeditions in Russian universities is 
given by Radchenko and Sakoyan in [7]. The first one data expedition in Russia was 
held in 2013. Since that time data expeditions headed by Irina Radchenko have been 
launching in various formats. 

As far as this paper concerns on educational aspects, it is necessary to notice that 
data expeditions are quite popular as project-based educational events and mainly are 
held in two formats: distance (online) and blended (both online and offline). Online 
format is open for participation by everyone and it is provided via Internet. Blended 
format is a format for students of one educational institution (university or any other). 
This type of data expeditions was crystallized due to pedagogical reasons, after the 
authors had to break the ice between participants of the data expedition and to reduce 
their fears and anxiety. 

An online data expedition has several remarkable advantages. First, each interested 
individual can participate in it. Second, a contribution from all participants is recorded 
in summary report. Third, the best projects are published in a collective blog. It allows 
to create a participant's portfolio. Moreover, the data expedition materials are publicly 
accessible, and they can be reused by all people without restrictions. 

Along with advantages, we may affirm there is some disadvantages. Firstly, the ab-
sence of face-to-face lessons is the cause of psychological discomfort of participants. 
They are afraid of asking questions through messengers, email, and the other means 
of communication, not everyone has strong motivation to complete all tasks, etc. 
Secondly, an online data expedition has lower performance and poorer outcomes in 
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comparison to a blended data expedition. Lastly, as far as there no blended learning 
classes there no materials created from them. 

The advantages of a blended data expedition may be listed as follows:  high effi-
ciency, lots of questions from participants, and consequently quality feedback from 
experts and the other participants, additional materials which are created during the 
data expedition as responses on a request from participants, better motivation and 
involvement in the data expedition, more interesting topics for data-driven projects. 

The blended format itself brings several disadvantages. First is the limited number 
of participants. Second one is a lack of scalability i.e. we do not have a unified frame 
so far. At last a blended data expedition is always bonded to certain time and physical 
location. 

 
Fig. 1. Stages of the common framework for a data expedition 

All the stages have different durations. Preparation is a very important and the 
longest stage. It includes a large amount of work on organization of the data expedi-
tion workplace, the collection of scaffolding materials, the creation of an outline, a 
plan for the classes, and assessment tools. Next stage is an introduction for students. It 
should meet students with the aim of a data expedition, its tools, methods and outline. 
Explanation is the stage which helps to adopt students with data expedition tools. This 
is an important stage, because many of students do not have any skills in working 
with supportive software used in a data expedition. Missing this stage leads to further 
discontentment and incomprehension among students. Next three stages are the stag-
es, that can be repeated several times. They may contain face-to-face classes and 
online-working. This is the main part of a data expedition and it lays in the context of 
blended learning concept. Assessment allows to keep a feedback from students and to 
correct the direction of the data expedition. Final assessment shows a picture of the 

ExplanationIntroduction Rubric discussion

Classes Online collaborative 
working

Stage assessment and 
discussion

Artifacts demonstration Final assessment and 
feedback Summarizing

| Stages iterations |
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data expedition in general. It allows to see outcomes from all projects of participants 
created during the data expedition. It also gives a feedback to students that motivates 
them to continue working with open data.  Summarizing stage is a stage for collecting 
all materials from the data expedition. This stage includes publishing the best students 
work in collective blog as well. 

The methodological recommendations for data expeditions was described in [1] 
context of blended learning concept with an emphasis on open educational resources, 
open data and open educational practices. We transposed these principles to education 
in university and applied these methodological recommendations to formal education. 
It shows more efficient results as an implementation in educational process at univer-
sity. In this case data expedition contained mandatory assessment which could be 
used as a credit for a course in general. 

3 Educational Data Expedition from the Evaluation Point of 
View 

3.1 Applying the styles to an existing paper 

A data-driven digital media artefact acts as a main objective result of a DE. From 
the significant properties of DEs we can deduce requirements on digital media arte-
facts. But for educational DE we should consider additional aspects. The short-list of 
what should be obligatory taken into consideration during evaluation is follows. 

• The processes of digital media artefact creation. They should be fixed in DE diary 
by participants of a collaboration. Automatic software logs gathering is not 
enough! 

• The quality of data citation. All the data should be cited according to data citation 
principles [11]. 

• Correctness and reproducibility. We need the measures that is taken to ensure cor-
rectness and reproducibility of data transformations – it is very hard task. 

• The complexity, interactivity, and design of final artefacts. We give an advantage 
to good storytelling [25] with interactive data dashboards [26] and infographics. 

3.2 Data expedition evaluation criteria 

As it is follows from [6] the evaluation of data expedition reflects interdisciplinary 
nature of DS and consequently is rather complicated. Wherefore, as far as educational 
data expedition is a prolongated in time procedure we formulated several criteria 
which responds as to process as to result. Because each criterion may be expressed on 
various levels, we developed rubrics. Most of the criteria have five levels with com-
prehensive description. The list of criteria is follows. 

• Data expedition dairy (experiment log) for research data expeditions. The criterion 
reflects the reproducibility of the results of completed data expedition. 
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• Using scripts written in one of the programming languages. The criterion allows to 
evaluate the laboriousness of data preparation/visualization/analysis processes. 

• Using special software for data preprocessing or analysis. The criterion stands for 
ability of implementation data analysis by means of professional tools. 

• Programming code. The criterion allows to validate the independency of scripts’ 
development. 

• Data tiding. The criterion allows to estimate the accuracy of quantitative statistical 
results. 

• Data analysis. The criterion reflects the level of data analytics skills of a team such 
as settling a hypothesis, testing hypothesis, etc. 

• Data visualization. The criterion allows to estimate the accuracy of quantitative 
statistical results and skill of a team in preparing interpretable results of data analy-
sis. 

Given criteria are quite general and give us a frame to evaluate educational DE. 
Surely, every DE requires either extra criteria or detailing of specified above. 

3.3 Supportive software 

Software using during each DE play a significant role in evaluation. At first, it 
supports collaboration and helps to identify and measure an author’s contribution to 
processes and results. At second, special tools allow teams to collect, version, and 
share artifacts of their work as inside as outside of a team. So, a DE uses a lot of soft-
ware for collaborative work, data sources access, data processing, and publishing 
data-driven products. Supportive software may be grouped as followed (with some 
examples in brackets). 

1. Integration, communication, and management tools 
(a) Rich collaborative environments (Microsoft Office 365, Google G Suite) 
(b) Project management tools (Trello, Microsoft Teams, MeisterTask) 
(c) Online communication tools (Microsoft Skype, Telegram) 

2. Search and external discussions tools 
(a) Universal search engines (Google Search, Microsoft Bing) 
(b) Specialized search engines (Wolfram Alpha) 
(c) Social Media Services (Facebook, Twitter, Instagram) 
(d) QA services (Data Science Stack Exchange, Public Lab, Quora) 

3. Data processing tools 
(a) Universal cloud data storages (DropBox, Microsoft OneDrive, Google Drive, 

Yandex Disk) 
(b) Code repositories (GitHub, BitBucket, GitLab) 
(c) Data analysis and visualization tools (R Studio, Jupyter Notebook, Orange, Mi-

crosoft Excel, Microsoft Machine Learning Studio, Tableau, OpenRefine, In-
fogram, Plotly) 

(d) Open data platforms (CKAN, Zenodo) 
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(e) Specialized data extraction tools (Import.io, Kimono, Scrapy, ABBYY FineR-
eader) 

(f) Data validation tools (CSVLint, Data Package Validator, Data Hub LOD Vali-
dator) 

4. Media publishing platforms (Medium, Microsoft Sway, Tilda, GitBook, Word-
press, Blogger) 

We should note that collaborative technologies utilization is one of the main trends 
in software development. It is amazingly corresponded with the ability to evaluate a 
collaborative work of a team 

4 Data Expedition Implementation in Universities 

The DE was adopted to two educational activities in parallel. Both were imple-
mented to data-driven journalism master-students of different universities. So, the 
digital media artefact was a data-driven article. The type of article was defined within 
a DE and the rubrics were expanded by extra requirements. 

Note that the prerequisites for these groups, the rules of their shaping, and instruc-
tional design were different. So, the paper does not provide any comparison between 
these groups and their results. 

4.1 Instructional design 

Data expeditions were implemented twice in the spring term of 2016/2017 academ-
ic year. Two groups of students from different universities took part in educational 
data expeditions. First group was first-year students of “Data Journalism” master 
program at National Research University Higher School of Economics, Moscow 
(HSE). Second group consisted mostly of students of European University, Saint-
Petersburg (EU) and selected researchers who could join the event. After we will 
address these groups as HSE-students and EU-participants. 

Both data expeditions were given as a summative assessment at the end of educa-
tional modules. HSE-students were engaged into data expedition after a part of Scien-
tific Research Seminar which followed several blocks of trainings in DS. So, the stu-
dents were familiar with the basics of Python-programming, mathematical statistics, 
data analysis and open data retrieving. EU-participants did not work with open data 
previously, and they had basic skills in statistics and data processing only. 

4.2 The data expedition in HSE: Features and schedule 

The data expedition in HSE was conducting at the same time as in EU but was 
slightly different. At first, only HSE-students of the first-year “Data Journalism” mas-
ter program was involved into this activity. At second, the participation was obligato-
ry because the DE acted as an assessment after several modules of the Scientific Re-
search Seminar, “Open data” and “Introductory programming” courses. This explains 
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by that the DE was targeted to evaluate complex skills in data-driven journalism 
which should have been shaped by the end of the first year of education.  At third, DE 
was preceded by short in-class session where students divided into working teams and 
took part in discussion on evaluation rubrics. At fourth, collaboration between partici-
pants and administrators was supported by Microsoft Office 365 Education (using 
OneNote Class Notebook [27]). 

The module of the Scientific Research Seminar was delivered by the authors and 
had took 8 academic hours. First 4 hours were spent on practice in cleaning data. The 
last 4 hours were reserved for rubrics introduction and discussion, group shaping and 
data-expedition introduction. 

The purposes of the data expedition were  

• To engage students in collaborative work with real open data 
• To push students to generalize their knowledge and experience in programming, 

data analysis and data science tools 
• To show students directions for future activities by giving formative feedback 
• To give a feedback on learning outcomes achievements and troubles with the in-

structional design of the master program to academic and administrative supervi-
sors 

For these purposes and according to these purposes evaluation criteria from Sec-
tion 3.1 were specified by adding:  

• A journal of an experiment to evaluate processes of DE 
• A structure and a specification for the content of a paper to evaluate the quality of 

result digital media 
• The requirements to journalistic, popular-science or science text 
• This year total number of students who was engaged to the data expedition was 28. 

They were divided into 9 groups without any randomization and with the only 
limitation on a group size. The group size is recommended [7] to be not more than 
3 persons 

4.3 The data expedition in EU: Features and schedule 

Participants was invited to the DE through the announcement which was posted in 
Internet1 and everyone who was interested in work with open data was asked to send 
his/her CV with an indication of his/her scientific interests and experience in scien-
tific research. So, the participants had different levels of knowledge and skills. 

The data expedition was running for two weeks. All the participants (14) were di-
vided into small groups of two people. They were immediately provided with educa-
tional materials, posted on GitHub2. Participants were also invited to contribute their 

                                                        
1 https://eu.spb.ru/forthcoming-events/17625-opencitydataworkshop 
2 https://github.com/iradche/Data-Expedition-in-EU 
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materials on GitHub. A digital media which was expected at the end of DE was a 
draft of a scientific paper based on data. 

During the DE all the participants attended lessons which were targeted except 
others to fill the gaps in their knowledge and skills. Each lesson included the follow-
ing sections:  

• lesson plan 
• Tasks 
• Assessments 
• Supportive information and additional material 
• Instructions 
• Useful links 
• The list of tools and software 
• Summary 
• The assignment(s) for the next lesson  

Assignments to work online were given after every class. A link to rubrics allowed 
to improve students’ comprehension on assessment criteria. It also contains variants 
of assessment for each criterion3. 

The criteria introduced in Section 3.1 were modified and we presented 8 criteria in 
total: the data expedition participation’s diary, data processing software, data analysis 
tools, data cleaning, data analysis, data visualization, paper's structure and paper's 
content. Every criterion had 4 discrete levels: 0, 0.25, 0.75, and 1 (where 0 – nothing 
has been done, 1 – a criterion is completely fulfillment). 

The progress of the participants’ team work was collected in a Google Spreadsheet. 

5 Results and Discussion 

5.1 Data collections 

As it is easy to see from Section 3.1, in our study we have two general populations 
because data expeditions were started independently in two higher schools and had 
some differences. The first general population consists of the first year “Data journal-
ism” master students of NRU HSE, Moscow. All the participants were asked to fill in 
an electronic post-survey. The volume of a research sample (HSE-students) is 9 ob-
servations. The sample differs from the population, because each group delegates a 
member to provide feedback via the post-survey. 

The second general population included EU-students and several researchers who 
joined the data expedition. In this case, post-survey was taken place too and the vol-
ume of the sample (EU-participants) is 14 observations. 

                                                        
3 https://docs.google.com/spreadsheets/d/1fDgEbYeI1P87ob_MaS-oWcbro_BV0oj-Ofr9PeUXgn4/pubhtml  
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5.2 Tools and methods 

EU-participants were asked to pass a pre-questionnaire that was presented as a 
Google Form with eight closed-ended questions about students experience in working 
with open data. After the DE students were asked to participate in a post-survey. It 
contained four closed-ended questions and three open-ended questions about their 
impressions, behavior and intentions on further work with open data. 

Before final grades publication all the HSE-students were invited to take part in a 
post-survey. The post-survey was implemented as a Windows Form hosted at the 
Microsoft Office 365 Education platform. The questionnaire contained 3 multiple 
choice questions and 2 open-ended questions. The questions were targeted to get the 
information about learners’ behavior during the data expedition and satisfaction of 
assessment. 

As far as it was a pilot implementation and both research samples are rather small 
we use simple learning analytics for data analysis and interpretation. 

5.3 The data expedition in HSE 

The results of the post-survey demonstrate students that found their participation in 
data expedition very useful. From the first row of Table 1 it is easy to see that none of 
them reported on useless of data expedition. This also evidently proved by open an-
swers, for example, see Responses #1 and #3 in Table 2. The data from the second 
row in Table 1 allow us to conclude that prolongated nature of a data expedition is a 
problem to master students. Probably, we may reduce this problem if students are 
prepared to this type of assessment during the instructions. The last row demonstrates 
that the third part of students feel themselves inconvenient working in group. 

Naturally, that a pilot reviled several problems in integration of data expeditions to 
daily educational practice. For example, Response #4 shows that a student was ex-
pected new data and did not understand that he/she had to demonstrate some skills in 
working with data. Similar picture is observed in Responses #5 and #6. Respondents 
did not recognize their experience in programming, data analysis and mathematical 
statistics as the preliminary to the data expedition. This clearly shows the power of the 
data expedition as a formative assessment tool. It punishes students to clue their pre-
vious learning experience altogether. 

Table 1.  HSE post-survey. Multiple choice answers distribution 

Question 33% 67% 
Was your participation to the data expedition 
useful for you? 

Yes Probably Yes 

How was your time allocated during the data 
expedition? 

Little by little, but regu-
larly  

I worked not regularly. Some-
times for a long, sometimes 
there were no time at all 

Give a characteristic of your interaction with 
the other participants? 

I prefer working alone  I had enough interaction, I am 
satisfied 
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Table 2.  HSE post-survey. Selected answers to open questions 

Question Answer 
What were useful for 
you in data expedi-
tion? 

Response #1: “I have created universal code which I am going to use in the other 
projects” 
Response #2: “Data expedition is a completely new for me type of a project. So, to 
accomplish the task the time had to be distributed in a separate way. But, each 
project goes to “Experience” storage and this is good” 
Response #3: “Practical experience in writing data-driven article” 

What were not satis-
factory for you in 
data expedition? 
 

Response #4: “On the one hand, we were free in the selection of topic but on the 
other the result would have been limited stricter. I mean clear requirements to our 
work. Moreover, it would be better to work with new not previously publicized data 
(not only links to open data portals which are we familiar with and have no interest). 
But the freedom in topic selection should be kept” 
Response #5: “I did not like that we immediately got down to independent work. At 
the lessons before the data expeditions we only clean data. It would be better to pass 
through all the stages with teachers’ control” 
Response #6: “I wish more practice before a data expedition” 

5.4 The data expedition in EU 

In this section, we present the main results of questionnaires and DEs for EU-
participants. Table 3 shows the partial results of pre-questionnaire in EU. 

Table 3.  Results of pre-questionnaire in EU, percent 

Question Yes, % No, % 
Have you previously worked with open data? 28,6 71,7 
Have you previously worked with online services for open data visualization? 7,1 92,9 
Have you previously written scientific papers in your native language? 92,9 7,1 
Have you previously written scientific papers in English? 35,7 64,3 
Is it interesting for you to learn about Open Science and its implementation for research? 92,9 7,1 

 
The results of this questionnaire allow to make a conclusion that participants had 

not experience with open data and open data visualization. Most of them (92,9 per-
cent) already have written scientific papers in Russian, but only 64,3 percent of them 
have written scientific papers in English. The question about Open Science was con-
tained in both questionnaires. Participants answered positively both times (92,9 per-
cent in first questionnaire and 100 percent in second). All participants noticed that this 
data expedition was quite useful for them in second questionnaire. They noted a broad 
outlook and awareness on all the questions of data expedition organizer. Participants 
emphasized the importance of practice in following programs: HackPad, OpenRefine, 
Tableau Public, and GitHub. All participants wanted to take part in further data expe-
ditions. 

According to participants’ opinion, there was not enough time for work in the data 
expedition for all of them. Simultaneously all participants pointed out the sufficiency 
of interaction with each other. 

Figure 2 shows the results of questionnaire in European University, question "Have 
you previously used collaborative tools?" Some of the respondents answered only 
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"Yes" without details. In total, 85.7 percent of participants already had an experience 
with different collaborative tools. Table 4 shows the results of pre-questionnaire in 
European University. 

 
Fig. 2. The results of first questionnaire in European University,  

question “Have you previously used collaborative tools?” 

We used Google Sheets with marks of students' progress as milestones assessment 
in data expeditions. It allowed to keep whole educational process in transparent view. 
Moreover, the students could see not only their own progress but all picture in general 
and the other students' outcomes and progress in details. 

The project revealed that participants of data expedition have a low level of skills 
in operating with open data and statistics. But simultaneously a data expedition initi-
ates huge interest in working with open data. 

The pilot demonstrated that the developed framework for rubrics reduces labori-
ousness of grading rules design. Grading rules for the first DE were similar to the 
second one and contained all the criteria from Section 3.1. The main differences were 
in data analysis methods, application field knowledge for data analysis interpretation, 
experience in software tools. 

6 Recommendations and Conclusion 

The context of the paper lays in the field of data science education. The paper con-
tributed to data science education, overviewed the implementation of educational DEs 
and focused on their assessment role. As a primary result the paper introduced the 
framework for rubrics design. 

Based on results of the pilot the authors have formulated the recommendations to 
educational DEs evaluation: 
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1. Evaluation should take into consideration two aspects of a DE: orientation to the 
predefined goal and multi-stage nature of main DE processes. 
(a) Predefined goal allows one to check correspondence between task description 

and final digital media artefacts 
(b) Multi-stage nature of DE processes allows one to assess involvement and im-

pact of participants based on DE diary and logs 
2. The significant features of digital media artefact which is created during a DE 

should be reflected in grading rules 
3. Proposed rubrics should be discussed with DE’s participants for common under-

standing of goals and better involvement in the methodology of DE 
4. Grading of data citation, reproducibility and provenance should follow available 

guidelines (see [28] as an example) 

Some responses on the pilot’s post-survey allow us to carry out the directions of 
the future work on educational DEs’ methodology: 

1. Assessment in form of DE should be implemented after a short supportive block 
which aims to refresh relevant knowledge and skills 

2. Working groups should be completed according to rubrics. For example, if pro-
gramming skills mentioned in grading rules, the groups should contain at least one 
programmer 

Using DE is highly beneficial for interdisciplinary educational programs where da-
ta science meets domain knowledge. In this work the authors shared the experience of 
using DE in data journalism master-programs. Evaluation criteria for DEs were de-
veloped according to the professional requirements to data scientists’ competencies 
which are documented in recommendations to DS curriculum design and jobs’ de-
scriptions. Our practice proved that a DE is a good example of an interactive collabo-
rative learning technique and it effectively works as a formative assessment tool. The 
nearest future we plan to improve the assessment quality, to expand it into related 
domains, and to gather additional statistics and opinions of students with different 
background. 
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