
Paper—Using Variation Theory as a Guiding Principle in an OOP Assisted Syntax Correction Learning...

Using Variation Theory as a Guiding Principle in an

OOP Assisted Syntax Correction Learning System

https://doi.org/10.3991/ijet.v15i14.14191

Ming Che Lee
Ming Chuan University, Tauyuan, Taiwan

Jia Wei Chang()
National Taichung University of Science and Technology, Taichung, Taiwan

jiaweichang.gary@gmail.com

Tzone I Wang, Zi Feng Huang
National Cheng Kung University, Tainan, Taiwan

Abstract—Object-oriented programming skill is important for the software

professionals. It has become a mandatory course in information science and

computer engineering departments of universities. However, it is hard for nov-

ice learners to understand the syntax and semantics of the language while learn-

ing object-oriented programming, and that makes them feel frustrated. The pur-

pose of this study is to build an object-oriented programming assistant system

that gives syntax error feedback based the variation theory. We established the

syntax correction module on the basis of the Virtual Teaching Assistant (VTA).

While compiling codes, the system will display syntax errors, if any, with feed-

backs that are designed according to the variation theory in different levels (the

generation, contrast, separation, and fusion levels) to help them correcting the

errors. The experiment design of this study splits the participants, who are uni-

versity freshmen, into two groups by the S-type method based on the result of a

mid-term test. The learning performances and questionnaires were used for sur-

veying, followed by in-depth interviews, to evaluate the feasibility of the pro-

posed assistant system. The findings indicate that the learners in the experi-

mental group achieved better learning outcomes than their counterparts in the

control group. This can also prove that the strategy of using the variation theory

in implementing feedback for object-oriented programming is effective.

Keywords—Variation Theory; Object-Oriented Programming; Virtual Teach-

ing Assistant

1 Introduction

Object-Oriented Programming (OOP) is a programming paradigm. An object is a

collection of classes. It uses objects as the basic unit of a program and encapsulates

programs and data in it to improve software reusability, flexibility, and scalability.

Object-oriented programming can be thought of as the idea of including a variety of

iJET ‒ Vol. 15, No. 14, 2020 35

https://doi.org/10.3991/ijet.v15i14.14191%0d
mailto:jiaweichang.gary@gmail.com

Paper—Using Variation Theory as a Guiding Principle in an OOP Assisted Syntax Correction Learning...

independent and mutually invoking objects in a program. This is the opposite of tradi-

tional thinking: traditional programming advocates treating programs as a collection

of functions, or a series of instructions given to the computer. The design of OOP is

based on the objects to be processed by a program and emphasizes that the coopera-

tion between various independent components is required to solve problems [1]. For

novice learners, understanding the concepts of OOP can be challenging. Previous

studies on OOP learning have revealed that when beginning to learn programming,

students often do not fully understand the concepts of programming, are unfamiliar

with programming languages (particularly programming syntax and statements), ex-

perience misconceptions about different concepts, and thus feel discouraged [2-6].

Some researchers have indicated that students often do not understand some concepts

such as recursive [7], function [8] or other basic OOP conceptions such as class, ob-

ject, interaction, inheritance, and polymorphism [9-13].

Originated from phenomenography [14], variation theory states that people often

experience changes before engaging in learning; in other words, people learn new

concepts by distinguishing between phenomena or concepts and by comparing their

current and past experiences. Based on this theory, four methods can be applied: gen-

eration, contrast, separation, and fusion. Many researchers have claimed that variation

theory helps students clarify their misconceptions or fuzzy concepts. Variation theory

has been shown to be an effective and feasible teaching strategy [14-17].

To help the OOP beginners who do not fully understand programming syntax, se-

mantics, and statements and consequently become frustrated, this study used variation

theory to establish an OOP-based syntax correction system. Accordingly, students can

use this system to practice writing C++ object-oriented programs and compiling

source codes. In addition, when students must debug their programs, this syntax cor-

rection system can help them correct syntax errors in accordance with variation theo-

ry.

2 Literature Review

Variation theory is an instructional theory that primarily intends to identify particu-

lar ways of understanding things [18]. According to variation theory, experiencing

changes facilitates initiating the process of beginning [14][19]. In other words, people

learn new concepts by distinguishing between different phenomena or concepts. Vari-

ation theory has been applied to several different topics, such as economic supply and

demand for primary and high school students [20], chemical engineering [21-22],

classical physics for freshman physics students [21][23], and fluid mechanics for

engineering students [24].

Variation theory was derived from phenomenography [14]. The purpose of phe-

nomenography is to examine how people perceive an identical phenomenon different-

ly. To perceive or experience a phenomenon, a person must undergo three processes:

discernment, variation, and simultaneity [25-27]. Discernment is the ability of a per-

son to distinguish some characteristics of an object from other characteristics of the

object. Variation means that after experiencing changes in an entity, a person can

36 http://www.i-jet.org

Paper—Using Variation Theory as a Guiding Principle in an OOP Assisted Syntax Correction Learning...

detect critical features of the entity. Simultaneity means that a person simultaneously

experiences changes in several critical characteristics of an event or entity.

Such perception processes can contribute towards understanding how students

learn. According to variation theory, differences and changes initiate cognition. For

students to learn new knowledge, they must pay attention to differences between dis-

similar events or objects. Stepans [28] proposed a conceptual change model, which

states that students should be aware of the differences between their own concepts and

other concepts. In other words, when certain dimensions of an entity remain constant

while its other dimensions change, these changes in the dimensions will be detected.

A complete variation theory must comprise four variation models: generation, con-

trast, separation, and fusion [29-30], as listed in ascending order of difficulty.

2.1 Generation

To understand the universality of an entity, people must experience the entity in

various situations. To learn a new concept, students are required to detect the common

features of several examples related to the concept.

2.2 Contrast

To understand an entity clearly, people must contrast the entity with other entities.

Concretely speaking, if a person wishes to understand X, the person must also under-

stand non-X events.

2.3 Separation

To discern some characteristics of an entity, people must experience the changes of

the entity in some respects while other aspects of the entity remain unchanged. Ac-

cordingly, students should consider various solutions to a problem or various explana-

tion for a phenomenon.

2.4 Fusion

When several factors that influence an entity are considered, changes in several

critical characteristics of the entity must often be performed and detected. For exam-

ple, to teach elementary school students a new word, a teacher must associate the

shape of the word with the sound and meaning of the word and simultaneously ma-

nipulate the shape, sound, and meaning of the word.

Variation theory can help students clarify their misconceptions or uncertain con-

cepts and can be used to develop an effective and feasible teaching strategy. Previous-

ly, variation theory has been applied in conventional programming teaching. Suhonen,

et al. [31] applied variation theory to teach heterogeneous students and to highlight

the varying characteristics and conceptual implications of programming; the results

indicated that variation theory was an effective method for presenting the critical

iJET ‒ Vol. 15, No. 14, 2020 37

Paper—Using Variation Theory as a Guiding Principle in an OOP Assisted Syntax Correction Learning...

characteristics of programming and for helping students learn core programming

concepts. Thuné, and Eckerdal [32] applied variation theory to identify the program-

ming learning pattern of university students and to help them solve their problems

with learning programming. Thota and Whitfield [33] applied variation theory and

constructivism to help students learn OOP effectively and resulted in desirable learn-

ing outcomes.

Eckerdal and Thuné [34] used variation theory to assist first-year university stu-

dents in distinguishing the concepts of object and class in OOP. The said scholars

indicated that an “object” in OOP can be considered as an active component of a pro-

gram or a phenomenon module, whereas a “class” can be considered as a template for

a set of source codes, an object attribute, or a phenomenon. Moreover, they used vari-

ation theory based on phenomenography to teach students how object differed from

class. In this manner, students effectively learned how to distinguish between the two

entities. According to aforementioned studies, variation theory is an effective and

feasible method for teaching traditional programming design and OOP.

3 Methods

Programming beginners often do not fully understand programming concepts, par-

ticularly the uses of syntax or statements, during OOP learning and thus become frus-

trated [35-36]. In this study, we used variation theory to establish an Internet OOP-

learning environment to help students correctly understand programming syntax and

concepts during OOP design.

In accordance with our strategy, students were requested to write an object-

oriented program. Figure 1 shows the procedure of preliminary syntax correction that

was employed in this study. If compilation errors occurred, the OOP syntax correction

system would guide students to correct their errors. When the students modified and

compiled their source codes, the syntax correction system would provide adequate

feedback to the students in accordance with variation theory.

We established the syntax correction module on the basis of the Virtual Teaching

Assistant (VTA) proposed by Chou et al. [37] to help students debug programs. The

empirical results verified the feasibility of the VTA. In the present study, we simpli-

fied the VTA, integrated it with variation theory, and used the syntax errors database

and the syntax correction database to teach programming, as shown in Figure 2.

38 http://www.i-jet.org

Paper—Using Variation Theory as a Guiding Principle in an OOP Assisted Syntax Correction Learning...

Fig. 1. The Variation Theory based Object-Oriented Programming Syntax Correction System

As illustrated, hint 1 points out the error locations and types according to the base

compiler. Hint 2 starts the variation theory correction process. When students repeat-

edly encounter the same program error, the system will provide the easy-to-

challenging feedbacks step by step. Figure 3 illustrates a programming example of

access errors in a private area. The errors occurred because an object mistakenly

called a member function in the private area. In C++, if data members or member

functions of a particular class are confined to a private area, then these members can

only be accessed through member functions of the same class.

On the basis of this example, teaching materials related to syntax correction for the

four variation models in variation theory are described as follows:

Start

Input

Source

Code

Compile

Success?

Execute Syntax Parser

Compare Syntax Error

Patterns

Syntax Correction

Show the

Execution

Results

Complete ?

Yes

Finished

Yes

No

OOP Syntax Correction

System

No

iJET ‒ Vol. 15, No. 14, 2020 39

Paper—Using Variation Theory as a Guiding Principle in an OOP Assisted Syntax Correction Learning...

Fig. 2. Correction Process of the proposed framework

Level 1—The generation model

In the syntax correction system, the generation model enumerates two to three ex-

amples that are similar to the aforementioned example related to access errors in a

private area. Accordingly, students can understand their programming errors by ob-

serving these examples.

Level 2—The contrast model

Under the contrast model, if access errors in a private area are being shown as an

example, then the correct answer being taught should be that data members should be

Program Error Occurred

Syntax Correction Hints

(Error location and type)

Compile

Success?

Generation Contrast Separation Fusion

Debug Mode

Compile

Success?

Show the

Execution

Results

Complete ?

Finished

Hint 1

Yes

No; Level Up

Yes

No

Correction Process of Variation Theory

Hint 2

40 http://www.i-jet.org

Paper—Using Variation Theory as a Guiding Principle in an OOP Assisted Syntax Correction Learning...

confined to a public area. According to variation theory, to teach students what a

public area is, a teacher should demonstrate to them what a nonpublic (private) area

is. Students should learn similarities and differences between members in a private

area and those in a public area to understand why related programming errors occur.

Level 3—The separation model

To use access errors in a private area as an example, the syntax correction system

provides two to three relevant correct programs to students. Accordingly, the students

can experience the changes in the erroneous programs (changes from incorrect to

correct programs), compare them with the correct programs, and learn how to write

correct programs.

Level 4—The fusion model

To use access errors in a private area as an example, the syntax correction system

provides a program that contains both the correct and incorrect source codes. After

students examine the aforementioned three types of teaching material and can identify

the characteristics of an entity, they further integrate all the characteristics of the enti-

ty under the same scenario. Accordingly, the students can fully and correctly under-

stand programming syntax.

Fig. 3. A programming example of access errors in a private area

#include <iostream>

using namespace std;

class Circle

{

private:

double radius;

double Area();

};

double Circle::Area()

{

reure radius * radius * 3.14;

}

int main()

{

Circle C1;

cout << "Area of Circle C1 is " << C1.Area();

return 0;

}

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

Member

Function Area()

is Private

iJET ‒ Vol. 15, No. 14, 2020 41

Paper—Using Variation Theory as a Guiding Principle in an OOP Assisted Syntax Correction Learning...

Fig. 4. The experimental framework

4 Experimental Design

4.1 Participants

A total of 90 students that attended the compulsory programming course provided

by the department of engineering science at National Cheng Kung University were

recruited in this study (45 students in the experimental group and 45 students in the

control group). The students who withdrew from the course or were absent from ex-

perimental activities were exclude from this study. Therefore, for the first experiment

(Experiment 1: Object and Class), the control group comprised 42 students and the

experimental group comprised 40 students. For the second experiment (Experiment 2:

Inheritance), the control group comprised 41 students and the experimental group

comprised 40 students.

4.2 Experimental design

To examine whether the “variation-theory and OOP syntax-correction integration

system” developed in the present study effectively helped students learn OOP, exper-

imental activities, interviews, and a questionnaire survey were conducted after the

various modules for this system were constructed.

In this study, we applied an S-grouping method and assigned students to the exper-

imental or control group in accordance with their midterm examination results. Ac-

cordingly, the two groups of students had the same level of prior knowledge about

programming. Figure 4 illustrates the experimental framework of this study. When

programming errors occurred, the syntax correction module for the control group

presented Hint 1 to the students and informed them of error locations and types. If the

students still could not debug the incorrect syntax, then the syntax correction module

presented Hint 2 to the students and provided the students with the base compiler

information (Microsoft Visual C++) to help them modify the incorrect syntax.

Independent Variable

Experimental Group:

With variation-theory correction strategy

Control Group:

Without variation-theory correction strategy

Dependent Variable

Learning Performance

Control Variables

Teachers; Assistants; Students; Hours of

experimental activities; Location of

experimental activities; On-line systems;

Hardware devices.

One-way ANOVA

42 http://www.i-jet.org

Paper—Using Variation Theory as a Guiding Principle in an OOP Assisted Syntax Correction Learning...

4.3 Experimental procedures

Before conducting formal experiments, we performed preparation tasks such as

contacting the participating students, collecting the student information, and grouping

the students. In this study, we conducted two experiments. After explaining the exper-

imental procedures to the students, we asked them to complete a test on a computer.

During Experiment 2, the students completed a questionnaire after receiving a test.

After the two experiments were completed, some students from the experimental and

control groups were interviewed according to the phenomena observed in the experi-

ments.

4.4 Research instruments

The research instruments in this study comprised a prior knowledge test, an OOP

syntax correction system, a syntax correction test, and a questionnaire regarding the

use of the syntax correction system that incorporated variation theory:

The prior knowledge test: In this study, the first midterm test of the programming

course provided by the department of engineering science at National Cheng Kung

University was used as the prior knowledge test. The scope of this test involved con-

trol procedures, functions, arrays, indexes, and strings. The test results were used to

assess the prior knowledge of the participants in this study.

The OOP syntax correction system: The OOP syntax correction system provided

an Internet learning environment, enabling students to use this system to write a C++

OOP program. Additionally, when programming errors occurred, the system present-

ed hints and the syntax correction modules helped the students debug their programs.

The syntax correction test: The syntax correction test was used to examine

whether the OOP syntax correction system effectively enhanced students’ learning

performance. Two experiments were conducted in this study. The scope of the test in

Experiment 1 was object and class; the scope of the test in Experiment 2 was inher-

itance. In accordance with the scopes of the tests, several questions about program-

ming were presented in the tests. The computer tests used in the experiments served

as the syntax correction tests. The test questions and scoring methods were fabricated

by teachers and experts who were experienced in OOP teaching; hence, the test ques-

tions and scoring methods possessed adequate expert validity. The test results were

used to assess the students’ learning performance.

5 Experimental Results

5.1 Learning performance

A total of 90 students were recruited in the experimental activities. Some students

withdrew or were absent from the experimental activities; thus, the valid sample size

was 82 for Experiment 1 and 81 for Experiment 2. In this study, a one-way ANOVA

iJET ‒ Vol. 15, No. 14, 2020 43

Paper—Using Variation Theory as a Guiding Principle in an OOP Assisted Syntax Correction Learning...

was performed to test whether a significant difference in variance existed between the

experimental and control groups. The significance level was set as .05.

Prior to the formal experiments, a Levene’s homogeneity test of variances was per-

formed to examine the homogeneity of variances between the experimental and con-

trol groups. The results showed that no significant difference in variances existed

between the two groups (p=.891 and p=.976). Therefore, the homogeneity assumption

was confirmed.

Table 1. One-way ANOVA; Learning Performance

Sum of

Squares
df

Mean

Squares
F Sig.

E_1 Between Groups 4842.4 1 4842.4 4.255 0.042*

Within Groups 91054.0 80 1138.2

Total 95896.5 81

E_2 Between Groups 4240.4 1 4240.4 4.165 0.045*

Within Groups 80420.9 79 80420.9

Total 84661.3 80

*P< 0. 05

Table 2. Mean and standard deviation of the Questionnaire

 No. Effective Samples Mean Standard Deviation

Generation model

#1 40 3.58 .675

#2 40 3.40 .709

#3 40 3.45 .749

Contrast model
#4 40 4.03 .480

#5 40 3.75 .588

Separation model
#6 40 3.85 .662

#7 40 3.65 .802

Fusion model
#8 40 3.70 .648

#9 40 3.63 .740

Overall experience

#10 40 3.65 .622

#11 40 3.50 .716

#12 40 3.78 .660

As shown in Table 1, a one-way ANOVA analysis was performed to assess wheth-

er a significant difference in learning performance existed between the experimental

and control groups. For Experiments 1 and 2, the results attained statistical signifi-

cance (F (1,80) = 4.255, p < 0.042 for Experiment 1; F (1,79) = 4.165, p < 0.045 for

Experiment 2). Therefore, the learning performance of the students who used the OOP

syntax correction system that incorporated variation theory was superior to that of the

students who used the OOP syntax correction system that did not incorporate varia-

tion theory.

44 http://www.i-jet.org

Paper—Using Variation Theory as a Guiding Principle in an OOP Assisted Syntax Correction Learning...

Table 3. Subjects’ Assessment for the Generation Model

Item SA. A. N. D. SD. Avg.

The feedback of the system provides 2-3

"programming examples with the same

errors" as a reference can help me to
identify the errors and locations.

2,

5%

21,

52.5%

15,

37.5%

2,

5%

0,

0%
3.575

The feedback of the system provides 2-3

"programming examples with the same
errors" as a reference can help me to

clarify the programming syntax.

1,
2.5%

18,
45%

17,
42.5%

4,
10%

0,
0%

3.4

I can identify the same error type while

encountering the same syntax error in the
next time.

2,

5%

18,

45%

16,

40%

4,

10%

0,

0%
3.45

5.2 Questionnaire survey

The questionnaire survey was administered to the experimental group to examine

their opinions and suggestions about the use of the variation-theory and syntax-

correction system and how the four models of variation theory helped them debug

their programs. Table 2 displays the survey results. Most of the students in the exper-

imental group agreed for the three items regarding overall experience (the mean

scores were 3.65, 3.50, and 3.78). In addition, most students agreed for the corrective

feedback provided by the four models of variation theory. Particularly, the largest

number of students considered that the contrast model was most helpful (the mean

scores were 4.03 and 3.75), followed by the separation model (the mean values were

3.85 and 3.65), the fusion model (the mean scores were 3.70 and 3.63), and the gener-

ation model (the mean scores were 3.58, 3.40, and 3.45). Further details about the

survey results related to the four models and overall experience are provided as fol-

lows.

The generation model: As shown in Table 3, for Item 1, 57.5% of the students in

the experimental group considered the generation model helpful for identifying pro-

gramming errors; 42.5% of the students had no comments or showed disagreement.

For Item 2, 47.5% of the students considered the generation model helpful for clarify-

ing programming syntax concepts; 52.5% of the students had no comments or showed

disagreement. For Item 3, 50% of the students considered the generation model help-

ful for identifying identical programming syntax errors in other programs; 50% of the

students had no comments or showed disagreement.

The contrast model: As shown in Table 4, for Item 4, 90% of the students in the

experimental group considered the contrast model helpful for understanding why

programming errors occurred; 10% of the students had no comments. For Item 5,

72.5% of the students agreed that the contrast model was helpful for clarifying pro-

gramming syntax concepts; 27.5% of the students had no comments or disagreed.

The separation model: As shown in Table 5, for Item 6, 70% of the students in

the experimental group agreed that the comparison between correct and incorrect

programs helped them understand correct programming syntax; 30% of the students

had no comments or disagreed. For Item 7, 65% of the students considered the com-

iJET ‒ Vol. 15, No. 14, 2020 45

Paper—Using Variation Theory as a Guiding Principle in an OOP Assisted Syntax Correction Learning...

parison between correct and incorrect programs helpful for analysing programming

errors; 35% of the students had no comments or showed disagreement.

The fusion model: As shown in Table 6, for Item 8, 65% of the students in the ex-

perimental group agreed that the fusion model helped them fully understand incorrect

programming syntax and conduct correction; 35% of the students had no comments or

disagreed. For Item 9, 57% of the students agreed that the fusion model helped them

fully understand correct programming syntax; 43% of the students had no comments

or disagreed.

Overall experience: Table 7 shows how the experimental group perceived the var-

iation-theory and syntax-correction system. Regarding Item 10, 27 students (67.5%)

agreed that the feedback information provided by the system helped them clarify

fuzzy syntax concepts and correctly understand programming syntax. For Item 11, 23

students (57.5%) agreed that how the system gradually provides feedback helped

them profoundly understand programming syntax. For Item 12, 30 students (75%)

agreed that the feedback information provided by the system helped them to correct

programming syntax errors.

Fig. 5. The mean score of the two tests completed by students in the experimental and control

group

6 Discussion

During the experimental processes, we observed numerous phenomena. Interviews

were administered to some students who participated in the experiments regarding

these phenomena. This section also addresses how the OOP syntax correction system

influenced the students and how the variation-theory corrective feedback influenced

the students.

6.1 The influence of the OOP syntax correction system on the students

First, in accordance with the prior knowledge test results (the first midterm test re-

sults), the students were divided into three groups: the high, medium, and low

achievement groups. The high achievement group comprised the students in the first

score quartile; the medium achievement group comprised the students in the second

and third score quartiles; the low achievement group comprised the students in the

70.95
55.52

28.68

65.47

32.67
15.79

0

50

100

High Medium Low

Experimental Group Control Group

46 http://www.i-jet.org

Paper—Using Variation Theory as a Guiding Principle in an OOP Assisted Syntax Correction Learning...

fourth score quartile. Figure 5 displays the mean score of the two tests completed by

each student in the experimental and control group during Experiments 1 and 2. As

shown in Fig. 5, for the high, medium, and low achievement groups, the average

scores of the experimental group were higher than those of the control group by 5.48,

22.85, and 12.89 points, respectively.

The results indicated that the OOP syntax correction system that incorporated vari-

ation theory was most useful to the medium achievement group, followed by the low

achievement group, and was slightly helpful to the high achievement group. Subse-

quently, interviews were administered to the students to examine their opinions about

the Internet learning system. The students indicated that the provided feedback infor-

mation about error positions and programming error types helped them effectively

correct their programming errors when they already possessed a basic understanding

of the errors. For example, a student from the control group said “I feel that feedback

information about error positions and error types are useful for debugging programs

because if most errors are of the same type, we can rapidly use the same method to

correct these errors.”

6.2 The influence of the variation-theory corrective feedback on the students

In this section, we explored how the generation, contrast, separation, and fusion

models influenced the students. Most students reported that the variation-theory cor-

rective feedback was useful for programming. The survey response results and inter-

view content are further discussed as follows:

The influence of the generation model: The generation model enumerated nu-

merous examples related to programming errors to help the students identify the er-

rors in their programs. Table 3 displays the related survey results. Approximately half

of the students (57.5%, 47.5%, and 50%) agreed that the feedback information pro-

vided by the generation model was useful; the remaining students (42.5%, 52.5%, and

50%) had no comments or disagreed. The reason may be that the feedback infor-

mation provided by the generation model assisted the students in correcting simple

programming errors but was not useful for solving complex problems. For example, a

student from the experimental group said “I think that feedback information can help

solve simple problems such as identifying a missing semicolon.”

The influence of the contrast model: The contrast model informed the students of

programming errors and how to correct the errors; therefore, they could compare

incorrect programs and correct programs to clarify their programming syntax con-

cepts. Table 4 shows the related survey results. Most students agreed that the feed-

back information provided by the contrast model was useful. Particularly, 90% of the

students agreed the item that “the feedback information provided by the contrast mod-

el helped them understand why programming errors had occurred;” of all the items,

the highest proportion of the students agreed with this item. In addition, 72.5% of the

students reported that the feedback information provided by the contrast model helped

them clarify programming syntax concepts. A student from the experimental group

said “I think that the online system was useful; it provided feedback to help me cor-

iJET ‒ Vol. 15, No. 14, 2020 47

Paper—Using Variation Theory as a Guiding Principle in an OOP Assisted Syntax Correction Learning...

rect errors; accordingly, I could clearly know where programming errors had oc-

curred.”

The influence of the separation model: The separation model provided examples

of correct programs to help the students resolve their programming errors. In other

words, the students compared the correct programs provided by the separation model

and their own incorrect programs to understand how to write correct programming

syntax. According to the results of this study, most students (70% and 65%) agreed

that the feedback information provided by the separation model was useful and that it

helped them understand correct programming syntax and analyse programming errors.

Some students indicated that the feedback information provided by the separation

model was extremely useful for helping them solve complex programming problems.

For example, a student from the experimental group said “by comparing the correct

examples with my own programs, I solved complex problems; I encountered a prob-

lem where a void function returned a value; I could not solve this problem only by

viewing incorrect examples.”

The influence of the fusion model: The fusion model provided feedback infor-

mation containing both correct and incorrect examples. By highlighting the character-

istics of the correct examples and the incorrect examples in the same situation, the

fusion model helped students fully understand programming syntax. According to the

survey results, 65% of the students reported that the feedback information provided

by the fusion model helped them fully understand programming syntax errors and

conduct correction to the errors; 57.5% of the students reported that the fusion model

helped them analyse programming errors. The students indicated that the feedback

information provided by the fusion model was useful. A student from the experi-

mental group said “using an example to show correct and incorrect source codes was

useful to me.” Another student from the experimental group said “simultaneously

presenting incorrect and correct examples helped me understand my mistakes.”

7 Conclusion

This study explored the effectiveness of the proposed variation-theory and OOP-

syntax-correction integration system. The results confirmed that regarding students’

learning performance, the syntax correction system that incorporated variation theory

was superior to the syntax correction system that did not incorporate variation theory.

Therefore, the application of variation theory to OOP-syntax-correction learning

helped the student participants write OOP programs and solve programming problems

related to programming syntax, semantics, and statements.

According to the survey results and interview content, how the feedback infor-

mation provided at various levels helped the students is described as follows:

1. If students understand how certain errors occur and how the errors can be correct-

ed, then error positions and types are useful feedback information for helping the

students correct their programming errors rapidly.

2. The feedback information about syntax correction provided by the generation

model can help students solve simple programming problems.

48 http://www.i-jet.org

Paper—Using Variation Theory as a Guiding Principle in an OOP Assisted Syntax Correction Learning...

3. The feedback information about syntax correction provided by the separation mod-

el can help students solve complex programming problems and correct complex

programming errors.

4. The contrast model provides the most useful feedback information about how to

correct programming errors.

5. The fusion model provides an example containing both incorrect and correct source

codes, which can help students correct their programming errors.

Because of limited resources, this study only explored how variation theory could

be applied in OOP syntax correction learning. Subsequent studies are suggested to

explore how the application of variation theory to syntax correction learning influ-

ences and helps students at low, medium, or high achievement levels, and how the

relevant applications assist students of heterogeneous competency levels.

8 References

[1] Martin, J., & Odell, J. J. (1994). Object-oriented methods. Prentice hall PTR.

[2] Anderson, J. R., Pirolli, P., & Farrell, R. (1988). Learning to program recursive functions.

The nature of expertise, 153-184.

[3] Qian, Y., & Lehman, J. (2017). Students’ misconceptions and other difficulties in introduc-

tory programming: A literature review. ACM Transactions on Computing Education

(TOCE), 18(1), 1-24. https://doi.org/10.1145/3077618

[4] Fatourou, E., Zygouris, N. C., Loukopoulos, T., & Stamoulis, G. I. (2018). Teaching Con-

current Programming Concepts Using Scratch in Primary School: Methodology and Eval-

uation. International Journal of Engineering Pedagogy (iJEP), 8(4), 89-105.

https://doi.org/10.3991/ijep.v8i4.8216

[5] Sunday, K., Ocheja, P., Hussain, S., Oyelere, S. S., Samson, B. O., & Agbo, F. J. (2020).

Analyzing Student Performance in Programming Education Using Classification Tech-

niques. International Journal of Emerging Technologies in Learning (iJET), 15(02), 127-

144. https://doi.org/10.3991/ijet.v15i02.11527

[6] Zhao, Y., Guo, L., Liu, H., & Zheng, W. (2019). Design of Programming Experiment

Course Platform Based on MOOCs. International Journal of Emerging Technologies in

Learning (iJET), 14(10), 208-216. https://doi.org/10.3991/ijet.v14i10.10330

[7] Anderson, J. R., Pirolli, P., & Farrell, R. (1988). Learning to program recursive functions.

The nature of expertise, 153-184.

[8] Xinogalos, S., Satratzemi, M., & Dagdilelis, V. (2006). An introduction to object-oriented

programming with a didactic microworld: objectKarel. Computers and Education, 47(2),

148-171. https://doi.org/10.1016/j.compedu.2004.09.005

[9] Abuaiadah, D., Burrell, C., Bosu, M., Joyce, S., & Hajmoosaei, A. (2019). Assessing

Learning Outcomes of Course Descriptors Containing Object Oriented Programming Con-

cepts. New Zealand Journal of Educational Studies, 54(2), 345-356. https://doi.org/10.10

07/s40841-019-00139-y

[10] Eckerdal, A., & Thuné, M. (2005, June). Novice Java programmers' conceptions of object

and class, and variation theory. In ACM SIGCSE Bulletin (Vol. 37, No. 3, pp. 89-93).

ACM. https://doi.org/10.1145/1151954.1067473

[11] Kelter, R., Kramer, M., & Brinda, T. (2018, November). Statistical Frequency-Analysis of

Misconceptions in Object-Oriented-Programming: Regularized PCR Models for Frequen-

iJET ‒ Vol. 15, No. 14, 2020 49

https://doi.org/10.1145/3077618
https://doi.org/10.3991/ijep.v8i4.8216
https://doi.org/10.3991/ijet.v15i02.11527
https://doi.org/10.3991/ijet.v14i10.10330
https://doi.org/10.1016/j.compedu.2004.09.005
https://doi.org/10.1007/s40841-019-00139-y
https://doi.org/10.1007/s40841-019-00139-y
https://doi.org/10.1145/1151954.1067473

Paper—Using Variation Theory as a Guiding Principle in an OOP Assisted Syntax Correction Learning...

cy Analysis across OOP Concepts and related Factors. In Proceedings of the 18th Koli

Calling International Conference on Computing Education Research (pp. 1-10). https://doi.

org/10.1145/3279720.3279727

[12] Schulte, C., & Bennedsen, J. (2006, September). What do teachers teach in introductory

programming? InProceedings of the second international workshop on Computing educa-

tion research (pp. 17-28). ACM. https://doi.org/10.1145/1151588.1151593

[13] Teif, M., & Hazzan, O. (2006, June). Partonomy and taxonomy in object-oriented think-

ing: junior high school students' perceptions of object-oriented basic concepts. ACM

SIGCSE Bulletin (Vol. 38, No. 4, pp. 55-60). ACM. https://doi.org/10.1145/1189136.1189

170

[14] Marton, F. (1981). Phenomenography—describing conceptions of the world around us. In-

structional science, 10(2), 177-200. https://doi.org/10.1007/bf00132516

[15] Chiu, T. K., & Churchill, D. (2015). Exploring the characteristics of an optimal design of

digital materials for concept learning in mathematics: Multimedia learning and variation

theory. Computers and Education, 82, 280-291. https://doi.org/10.1016/j.compedu.2014.1

2.001

[16] Kullberg, A., Runesson, U., Marton, F., Vikström, A., Nilsson, P., Mårtensson, P., &

Häggström, J. (2016). Teaching one thing at a time or several things together? –teachers

changing their way of handling the object of learning by being engaged in a theory-based

professional learning community in mathematics and science. Teachers and Teaching, 1-

15. https://doi.org/10.1080/13540602.2016.1158957

[17] Pang, M. F., Linder, C., & Fraser, D. (2006). Beyond lesson studies and design experi-

ments–using theoretical tools in practice and finding out how they work. International Re-

view of Economics Education, 5(1), 28-45. https://doi.org/10.1016/s1477-3880(15)30126-2

[18] Vikström, A. (2008). What is intended, what is realized, and what is learned? Teaching and

learning biology in the primary school classroom. Journal of Science Teacher Education,

19(3), 211-233. https://doi.org/10.1007/s10972-008-9090-y

[19] Marton, F., & Runesson, U. (2004). The space of learning. In F. Marton., and ABM Tsui

(Red.), Classroom discourse and the space of learning (pp. 3-40), Mahwah, NJ: Erlbaum.

[20] Pang, M. F., Linder, C., & Fraser, D. (2006). Beyond lesson studies and design experi-

ments–using theoretical tools in practice and finding out how they work. International Re-

view of Economics Education, 5(1), 28-45. https://doi.org/10.1016/s1477-3880(15)30126-2

[21] Fraser, D., Allison, S., Coombes, H., Case, J., & Linder, C. (2006). Using variation to en-

hance learning in engineering. International Journal of Engineering Education, 22(1), 102.

[22] Fraser, D., & Linder, C. (2009). Teaching in higher education through the use of variation:

Examples from distillation, physics and process dynamics. European Journal of Engineer-

ing Education, 34(4), 369-381. https://doi.org/10.1080/03043790902989507

[23] Linder, C., & Fraser, D. (2006). Using a variation approach to enhance physics learning in

a college classroom. The Physics Teacher, 44(9), 589-592. https://doi.org/10.1119/1.23967

77

[24] Fraser, D. M., Pillay, R., Tjatindi, L., & Case, J. M. (2007). Enhancing the learning of fluid

mechanics using computer simulations. Journal of Engineering Education, 96(4), 381.

https://doi.org/10.1002/j.2168-9830.2007.tb00946.x

[25] Marton, F., & Trigwell, K. (2000). Variatio est mater studiorum. Higher Education Re-

search and Development, 19(3), 381-395. https://doi.org/10.1080/07294360020021455

[26] Marton, F., & Runesson, U. (2004). The space of learning. In F. Marton., and ABM Tsui

(Red.), Classroom discourse and the space of learning (pp. 3-40), Mahwah, NJ: Erlbaum.

50 http://www.i-jet.org

https://doi.org/10.1145/3279720.3279727
https://doi.org/10.1145/3279720.3279727
https://doi.org/10.1145/1151588.1151593
https://doi.org/10.1145/1189136.1189170
https://doi.org/10.1145/1189136.1189170
https://doi.org/10.1007/bf00132516
https://doi.org/10.1016/j.compedu.2014.12.001
https://doi.org/10.1016/j.compedu.2014.12.001
https://doi.org/10.1080/13540602.2016.1158957
https://doi.org/10.1016/s1477-3880(15)30126-2
https://doi.org/10.1007/s10972-008-9090-y
https://doi.org/10.1016/s1477-3880(15)30126-2
https://doi.org/10.1080/03043790902989507
https://doi.org/10.1119/1.2396777
https://doi.org/10.1119/1.2396777
https://doi.org/10.1002/j.2168-9830.2007.tb00946.x
https://doi.org/10.1080/07294360020021455

Paper—Using Variation Theory as a Guiding Principle in an OOP Assisted Syntax Correction Learning...

[27] Pang, M. F. (2003). Two faces of variation: On continuity in the phenomenographic

movement. Scandinavian journal of educational research,47(2), 145-156. https://doi.org/

10.1080/00313830308612

[28] Stepans, J. (1996). Targeting students' science misconceptions: Physical science concepts

using the conceptual change model. Idea Factory.

[29] Cheng, M. Y., & Ho, C. M. (2009). A study on applying the variation theory to Chinese

communicative writing. Asian Social Science, 4(10), 14. https://doi.org/10.5539/ass.v4n10

p14

[30] Leung, A. (2008). Dragging in a dynamic geometry environment through the lens of varia-

tion. International Journal of Computers for Mathematical Learning,13(2), 135-157. https

://doi.org/10.1007/s10758-008-9130-x

[31] Suhonen, J., Davies, J., & Thompson, E. (2007, November). Applications of variation the-

ory in computing education. InProceedings of the Seventh Baltic Sea Conference on Com-

puting Education Research-Volume 88 (pp. 217-220). Australian Computer Society, Inc.

[32] Thuné, M., & Eckerdal, A. (2009). Variation theory applied to students’ conceptions of

computer programming.European Journal of Engineering Education, 34(4), 339-347.

https://doi.org/10.1080/03043790902989374

[33] Thota, N., & Whitfield, R. (2010). Holistic approach to learning and teaching introductory

object-oriented programming. Computer Science Education, 20(2), 103-127. https://doi.

org/10.1080/08993408.2010.486260

[34] Eckerdal, A., & Thuné, M. (2005, June). Novice Java programmers' conceptions of object

and class, and variation theory. InACM SIGCSE Bulletin (Vol. 37, No. 3, pp. 89-93).

ACM. https://doi.org/10.1145/1151954.1067473

[35] Georgantaki, S., & Retalis, S. (2007). Using educational tools for teaching object-oriented

design and programming. Journal of Information Technology Impact, 7(2), 111-130.

[36] Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of

programming environments and languages for novice programmers. ACM Computing Sur-

veys (CSUR), 37(2), 83-137. https://doi.org/10.1145/1089733.1089734

[37] Chou, C. Y., Huang, B. H., & Lin, C. J. (2011). Complementary machine intelligence and

human intelligence in virtual teaching assistant for tutoring program tracing. Computers

and Education, 57(4), 2303-2312. https://doi.org/10.1016/j.compedu.2011.06.005

9 Authors

Ming-Che Lee (leemc@mail.mcu.edu.tw) works at the Ming Chuan University,

Department of Computer and Communication Engineering, Taiwan (R.O.C).

Ming Che Lee is an Associate Professor at Computer and Communication Engi-

neering of Ming Chuan University (Taoyuan, Taiwan). His research interests are in

the fields of Semantic Web, Deep Learning, Digital Content, and e-Learning Tech-

nologies.

Jia-Wei Chang (Corresponding Author jiaweichang.gary@gmail.com) works for

The National Taichung University of Science and Technology, Department of Com-

puter Science and Information Engineering, Taiwan (R.O.C)

Jia-Wei Chang is an Assistant Professor in Department of Computer Science and

Information Engineering at National Taichung University of Science and Technology.

Since January 2019, he is a Young Professionals Chair of the Institution of Engineer-

ing and Technology (IET) - Taipei Network.

iJET ‒ Vol. 15, No. 14, 2020 51

https://doi.org/10.1080/00313830308612
https://doi.org/10.1080/00313830308612
https://doi.org/10.5539/ass.v4n10p14
https://doi.org/10.5539/ass.v4n10p14
https://doi.org/10.1007/s10758-008-9130-x
https://doi.org/10.1007/s10758-008-9130-x
https://doi.org/10.1080/03043790902989374
https://doi.org/10.1080/08993408.2010.486260
https://doi.org/10.1080/08993408.2010.486260
https://doi.org/10.1145/1151954.1067473
https://doi.org/10.1145/1089733.1089734
https://doi.org/10.1016/j.compedu.2011.06.005
mailto:leemc@mail.mcu.edu.tw
mailto:jiaweichang.gary@gmail.com

Paper—Using Variation Theory as a Guiding Principle in an OOP Assisted Syntax Correction Learning...

Tzone I Wang (wti535@mail.ncku.edu.tw) is with The National Cheng Kung

University, Department of Engineering Science, Taiwan (R.O.C)

Tzone I Wang is a Professor of Engineering Science at National Cheng Kung Uni-

versity, Taiwan.

His major research areas include Artificial Intelligence, Web and Network Ser-

vices.

Zi Feng Huang (huang160812@gmail.com) is with National Cheng Kung Univer-

sity, Department of Engineering Science.

Zi Feng Huang is a master student in the Engineering Science at National Cheng

Kung University, Taiwan.

Article submitted 2020-03-11. Resubmitted 2020-04-19. Final acceptance 2020-04-22. Final version
published as submitted by the authors.

52 http://www.i-jet.org

mailto:wti535@mail.ncku.edu.tw
mailto:huang160812@gmail.com

