
TOWARDS A GENERALIZED ARCHITECTURE FOR THE INTEGRATION OF TOOLS IN LMSS

Towards a Generalized Architecture for the
Integration of Tools in LMSs

doi:10.3991/ijet.v4s1.792

J. Fontenla, M. Caeiro and M. Llamas
University of Vigo, Vigo, Spain

Abstract—In this article we introduce the main components
of a generalized architecture to facilitate the integration of
tools in LMSs. This proposal tries to improve the reuse
possibilities of the tools in e-learning systems. Reusability
has been suggested as a key solution to reduce the high costs
of the development of educational experiences in e-learning
systems. Up to now, reutilization has focused mainly on the
educational contents around metadata standards, contents
formats, packaging systems, etc. However, educational
practices usually involve tools to facilitate the
communication, collaboration and work of students and
teachers as well. This proposal is part of a wider solution
based on the language PoEML, in which not only the
possibility of the inclusion of tools in LMSs is considered,
but also the management of its utilization.

Index Terms—Educational modeling languages, Perspective-
oriented EML, Learning Management Systems, Web
Services, Reusability.

I. INTRODUCTION
Since it was noticed that e-learning was not a cheap

alternative to traditional learning, the development of
specifications and standards to promote the reuse of
educational resources has been one of the priorities of the
research community. Up to now this initiative has focused
mainly on educational contents, leading to results such as
ADL SCORM [1] or IMS QTI [2]. Basically, these
proposals define how to structure and to arrange the media
contents to support and facilitate the development of
educational experiences in Learning Management Systems
(LMSs).

However, the reuse of e-learning systems should be
applied to the rest of the resources as well as to contents.
Specially, it’s important to mention that many educational
practices, mostly those that follow pedagogical
approaches based on collaboration and practice, require
more resources for their development rather than media
contents. In order to cover successfully the needs of this
kind of pedagogical approaches it’s required to provide a
set of tools, in our context supported by the Information
and Communications Technologies (ICTs), with which
students and teachers can interact, experiment,
communicate and even manipulate the contents
themselves. Current LMSs usually include a basic set of
tools that broadly cover the most common needs, but the
support to the inclusion of third-party tools or to the
development of new tools is very expensive or even non-
existent. So, for the sake of developing versatile e-learning
systems at low cost, the need of facilitating the reuse of
tools arises.

One of the solutions to facilitate the reuse of tools in e-
learning systems consists on the use of services external to
the LMSs themselves. The apparition of Web Services as
a broadly accepted programming paradigm allows the
provision of functionalities distributed along different
servers. This tendency, known as Cloud Computing [3],
allows the distribution of computational functionalities
along different physical resources (servers) in a
transparent way for final users. In the domain of e-
learning, the adoption of this paradigm allows to place the
tools not in the same systems of the LMSs’, but in an
external location. This way, a new business model in
which the development of LMSs and tools can be split is
posed. The problem of the reuse of tools is thus
transferred to the integration of external tools. In this
model, the LMS provides functionalities to achieve the
planning, coordination and management of educational
events. On the other hand, tools provide the necessary
functionalities for students and teachers to communicate,
collaborate and generally work in the development of their
educational tasks.

The proposal of using external tools requires the
consideration of several problems that must be solved.
Firstly it could be posed the possibility of linking the LMS
with a set of external tools in a static or a dynamic way. If
dynamic, search systems should be needed in order to
locate tools suitable for the desired characteristics.
Middleware systems are also needed in order to control
the access of users from the LMS to the external tools,
handling their authentication, the sessions’ control, the
management of the actuation of the users in the external
tools, and in general all the communications that might
take place between the LMS and the tools.

Nowadays there are several groups working in
specifications and recommendations that face some of
these problems, although they are in an early stage and
maybe with a narrower and less generalized sight than the
one described here. In this article we present an
architecture to deal with the different needs identified in
the integration of external tools in EML-based LMSs. This
proposal is part of a wider solution based on the
educational modeling language PoEML [4]. In this
language other aspects apart from functionalities provision
with external tools are taken to account, with the general
purpose of supporting the development of educational
experiences according to different pedagogical
approaches, mainly those based in collaboration and
practice.

This article is organized as follows. Section 2 briefly
introduces educational modeling languages, focusing in
PoEML. Section 3 reviews in a critical way some
specifications and recommendations on the use of Web

6 http://www.i-jet.org

http://dx.doi.org/doi:10.3991/ijet.v4s1.792�

TOWARDS A GENERALIZED ARCHITECTURE FOR THE INTEGRATION OF TOOLS IN LMSS

Services in e-learning environments. Section 4 depicts the
proposed architecture to solve those problems identified in
Section 3. Finally, Section 5 ends up with some
conclusions.

II. EDUCATIONAL MODELING LANGUAGES
Educational modelling languages (EMLs) have been

proposed to allow the creation of descriptions (or models)
of didactic units. The objective of such descriptions is to
allow their processing by suitable computational
applications, namely LMSs based on the EML of the
description, to support the development of didactic units.
In this sense, it could be said that EMLs are an executable
notation, involving those elements and processes that take
part in educational scenarios.

Nowadays there is a de-facto standard in these
languages named IMS Learning Design (IMS-LD) [5].
Some projects have dedicated resources for years to the
creation of a LMS based on IMS-LD, but they have not
been able to obtain a ready-to-use system. Perspective-
oriented EML (PoEML) is a new EML that tries to
improve the description and computational support of
didactic units. The main characteristic of this language is
the separation of the models of didactic units in several
parts, called perspectives that, to a great extent, can be
tackled separately. A first consequence of this separation
is that each part may include several alternative designs,
with independence of the descriptions made in other parts
or with a controlled dependency. This way, the reuse of
the models is facilitated.

PoEML divides the modelling of didactic units in 13
perspectives. These perspectives have been thoroughly
described in other publications [6], so here we we’ll just
describe briefly those relevant for this article: those
regarding the integration of external tools. The Tools
perspective models the characteristics (functional and
behavioural) of the tools required in the environments;
one of the most original characteristics is that, unlike IMS-
LD, it allows an indirect or decoupled characterization of
educational tools used in a didactic unit, as well as
allowing their explicit description. By this
characterization, a tool is defined according to some
functional (the expected functionalities) and behavioral
(the permissions that allows to grant, the events that
notifies, and the operations that allows to invoke
automatically) requirements. Later, the LMS will be
responsible of integrating an external tool satisfying such
characterization. With that, the dynamic inclusion of
external tools is achieved.

Apart from facilitating the inclusion of external tools,
PoEML proposes three specific perspectives to do the
management and control of the use that students and
teachers make of such tools. These perspectives are:
• The Authorization perspective, that allows the

assignment of permissions to the participants of the
didactic unit. In this perspective, for example, it
could be modeled that students can send messages to
a forum, but only teachers are allowed to create new
threads or to erase posts.

• The Awareness perspective, in which it can be
modeled the capture of relevant events triggered by
the interaction of the participants (students and
teachers) with tools. Apart from the capture of

events it can also be modeled their processing (e.g.
filtering) or the report to some participants of those
events of interest. The notification of events is very
useful in collaborative educational scenarios, in
which the rest of participants must be aware of those
changes performed over some shared resource, as a
text file or some code fragment.

• The Interaction perspective, in which it’s possible to
describe the automatic and controlled invocation of
operations during the realization of a didactic unit.
The automatic invocation of methods is useful in
practical scenarios in which guided demonstrations
are needed. Operations may also be invoked just
when some events take place. For example, in this
perspective it can be modeled that a chat tool must
send a welcome message every time a new
participant logs in.

III. EXISTING RECOMMENDATIONS ON
TOOLS INTEGRATION

Service Oriented Architectures (SOA) are being seen as
a highly flexible way to build up complex applications
from decoupled components. During last years, some
projects following this approximation have started in the
field of e-learning. In this section we will comment the
methodology of the three most remarkable ones according
to us, and we will discuss some of their limitations, that
will be taken to account when we propose an architecture
based on the perspectives of PoEML.

The E-Learning Framework (ELF) [7] is an initiative
due to the United Kingdom’s Joint Information Systems
Committee (JISC), in collaboration with the Australian
Department of Education, Science and Training (DEST)
and the United States’ Learning Services Architecture Lab
(LSAL). ELF does not specify any concrete architecture to
integrate external tools in a LMS; on the contrary, its main
purpose is to facilitate the development of architectures of
LMSs based on Web Services. It identifies more than 40
necessary modules in a LMS providing a comprehensible
set of functionalities. Thus, it allows the community to
have a shared “vocabulary” and a reference framework for
the development of e-learning systems. At the present
moment there exist several projects related to some of the
components identified in ELF [8], although there is not
enough cohesion among them to build a LMS with a
minimum of functionality.

The specification IMS Tools Interoperability (IMS-TI)
[9] proposes a more specific framework than that of ELF.
IMS-TI makes use of a combination of Web Services and
proxying to integrate external tools in a LMS. The
specification, currently at its version 1.0 and with the 2.0
under development, tries to eliminate the necessity of
proprietary interfaces between e-learning platforms and
tools which, ultimately, would allow that both classes of
systems could follow independent development processes,
thus promoting specialization, innovation and
competition. The configuration of the tools is done by
editing a XML file at the LMS side, although it’s expected
that in version 2.0 this can be done in a more automatic
way.

In our opinion, IMS-TI has two main drawbacks. The
first one is the lack of reference implementations that
could be used as a guide for new developments. There are

iJET – Volume 4, Special Issue 1: "SIIE'2008", March 2009 7

TOWARDS A GENERALIZED ARCHITECTURE FOR THE INTEGRATION OF TOOLS IN LMSS

only few implementations, such as the public
demonstration for the “alt-i-lab 2005 Conference” [10], or
those prepared for the “Google Summer of Code 2008”
[11], which is not in agreement with the expectative put
on IMS-TI. The second one is that, despite it allows the
seamless execution of remote tools, IMS-TI doesn’t
provide any ways to control and manage the use of the
tools by teachers and students.

Finally, CopperCore Service Integration (CCSI) [12] is
another architecture proposed for integrating tools in IMS-
LD-based LMSs. CCSI is an intermediate layer between
the IMS-LD engine CopperCore and the presentation layer
built upon CopperCore. Every time the presentation layer
wants to invoke a tool (for example, an assessment tool) it
will access the CCSI layer, which in turn will invoke the
tool. The latter will send the results to CCSI, which in turn
will forward them to the presentation layer and to
CopperCore. The communication between the
presentation layer and the different tools is possible
because CCSI shows an interface with a set of predefined
methods for each kind of service that may be accessed;
after that, CCSI will handle the adaptation of the call of
the presentation layer to invoke the concrete tool.

CCSI has some limitations that make that its
acceptation is not as big as it would be desired. Firstly, as
IMS-TI, neither it supplies any mechanisms to control and
manage the use of the tools, nor it allows to supervise the
activity of the students, nor it allows to configure the
automatic invocation of methods. Secondly, only one tool
of each kind can be integrated (e.g. it’s not possible to
integrate two different text editors), which may
dramatically reduce the possibilities of the system to
satisfy the needs, preferences and personal limitations of
the users. Thirdly, a complicated editing process of XML
files must be accomplished in order to integrate new tools,
which may be difficult for those users which are not
familiar with this language. Finally, the architectural
design itself of CCSI implies extra work for the
developers of applications, as they must supply the tools
as well as extra modules for their integration with CCSI.

IV. NEEDS OF THE INTEGRATION OF EDUCATIONAL TOOLS
The above-mentioned architectures have some

drawbacks making their implementation level quite
reduced. A common point to all of them is that, although
they offer a framework to integrate tools, they don’t allow
to control and manage the way that teachers and students
use them.

In this section, the architecture of a PoEML-based LMS
will be proposed, allowing to solve these problems. The
processes needed to integrate a tool in this LMS and to
configure its permissions, events and operations will be
shown, and some related problems will be discussed.

A. Architecture of a PoEML-based LMS
The decomposition into perspectives carried out in

PoEML allows us to tackle the design of the LMS in a
modular fashion, discarding the monolithic design of
current LMSs which would be difficult to develop and to
maintain, see Fig. 1. In this figure we can see three
different parts:

Figure 1. Structure of a PoEML-based LMS.

• The central layer is the Engine. This part supplies
the core functionalities of the system. For the
development of this engine, the development of
independent modules according to the perspectives
of PoEML is proposed. One of the modules, the one
related to the Tools perspective, would be the
responsible for managing the configuration of the
tools, the capture of the events triggered by the tools,
the automatic invocation of operations, the control
of sessions and instances, and the data transfer.

• On top of the engine we can see the Presentation
layer, in which they can be found those applications
that build up the user interface for teachers and
students. The use of a presentation layer allows us to
use the same engine and the same infrastructure, but
offering different functionalities and appearances.

• Beneath the engine is the Infrastructure layer. This
layer supplies a set of storing functionalities and
general purpose services, from databases with the
data and marks of the students, to common tools that
should not have availability problems such as
forums, email or calendars. It’s worth mentioning
that this layer is the one that will receive the
PoEML-formatted file that will be processed and
played by the Engine.

Given the loose coupling of the parts that build up the
Engine, inherited from the one among the perspectives of
PoEML, it’s possible to develop them independently.
Thus, none of the modules of the other perspectives will
influence on the way the modules of the Tools,
Authorization, Awareness and Interaction perspectives are
implemented, which are the focus of this article. So, in the
following we can ignore the architecture of the rest of the
LMS.

B. Classification and communications with tools
One of the most remarkable characteristics of PoEML

is the decoupled characterization of tools, given its
functionalities, permissions, events and operations.
However, PoEML does not specify how tools must be

8 http://www.i-jet.org

TOWARDS A GENERALIZED ARCHITECTURE FOR THE INTEGRATION OF TOOLS IN LMSS

classified according to these four parameters. Therefore,
it’s possible to classify them semantically using, for
example, an ontology. In this line, there are plenty
functional projects, such as Ontoolcole [13].

The availability of a vocabulary for the characterization
of tools is the basis of the development of systems to
classify, search and configure them. To allow the
configuration of tools, the use of a public interface is
proposed. This interface has both read methods and write
methods. Read methods allow us to know the permissions,
events, operations and functionalities of a tool. In
response, the tool will return a subset of the values defined
in the ontology. An example of a read method could be
getPermissions(), that returns a description of the
available permissions of the tool, in agreement with the
concepts of the ontology. On the other hand, write
methods allow us to activate or to disable some of the
characteristics of the tools, receiving as parameters the
characteristic to be modified and a boolean value with its
new state. An example of a write method could be
setEvents(“newMember”, true), which says that the tools
must notify events when a new member joins. Through
this set of methods, it’s possible to configure
systematically all tools using an only interface (and so, an
only application), and the LMS may automate the
integration of tools.

Other projects such as CCSI also define a generic API,
but they do not have methods to describe the tool that’s
being integrated, nor to perform the control and
management of its use according to its permissions, events
and operations.

C. Configuration, integration and use of tools
The use of a generic API facilitates the process ranging

from the configuration of a remote tool to its use by a
student or a teacher, shown in Fig. 2. The course manager
will ask the tool for the list of parameters that can be
configured (1), invoking the appropriate methods of the
API. As a result, the tool will send some data
(functionalities, permissions, events and operations) about
itself (2). The course manager will choose from these data
those permissions, events and automatic operations that
are suitable for the course, and will create a profile with
them (3), again using known methods of the API. This
profile will be applied to the sessions of all those users
(teachers and students) that access the tool. Should
another configuration be necessary (for example, if
teachers had to do some management over the course),
another profile with different parameters should be
created. Next, the course manager will store in the tools
database the data concerning the tool that has just been
configured (i.e. storing those permissions, events and
operations supported by the tool and configured in the
profiled, and the URL of the tool) for future use. The tool
is thus correctly configured to be used.

The process continues when a student, using a web
browser, wants to resume his/her activities. Firstly, he/she
will authenticate when logging in the LMS (5), after
which he/she will receive an affirmative or negative
confirmation (6). If affirmative, the browser of the student
will automatically request to the LMS a list of the courses
in which the student is participating (7). The LMS will
return such list (8), and the student will choose a concrete
course (9). When a course has been chosen, the LMS will
send another tree-shaped listing (10), whose nodes are the

different educational scenarios that build up the course
(e.g. “Theory” and “Practice”, which in turn could be built
up by the educational scenarios “Practice 1” and “Practice
2”). The student will choose a educational scenario (11),
and finally the LMS will display a web page with all the
necessary information for the development of the
educational scenario, including links to external tools (12).
These tools may already have running instances (e.g. a
collaborative text editor that is already being used by other
students) or they may not, in whose case it should be
launched; the Tools perspective module will be
responsible for managing the number of instances of each
tool. In any case, when a student accesses a tool (13)
he/she will authenticate himself/herself (for example,
using some hash code sent will the HTTP POST method),
and the tool will look for the profile to be applied. From
this moment, the tool will display a user interface in
accordance with the permissions assigned to the student,
will notify events to the LMS as configured in the profile
(14), and will execute all those operations required by the
LMS. Finally, with all the events notified the LMS will
generate logs, which will be stored for future use (15).

Figure 2. Configuration and use of external tools.

D. Management of permissions, events and operations
One subject that must be addressed is the management

of permissions, events and operations during the process
described above.

1) Management of permissions
The permissions that users are granted are given by the

active profile. This implies that users can’t modify their
permissions during a session, unless they change their
profiles. This change of profile is possible using different
authorization specifications. As pointed in Section 2, a
perspective may include different specifications that may
be activated or deactivated dynamically (e.g. according to
the marks of the student), so it’s possible to assign
different permissions to a participant. The interface
displayed will be in accordance with the permissions
granted, hiding those options of the tools that require more
privileges.

iJET – Volume 4, Special Issue 1: "SIIE'2008", March 2009 9

TOWARDS A GENERALIZED ARCHITECTURE FOR THE INTEGRATION OF TOOLS IN LMSS

2) Management of events
The profile also contains all the information regarding

the notification of events. Firstly, the URL where events
must be sent to (namely, LMS’s URL) is included; once
events have been received, the Awareness perspective
module will process (e.g. filter) and notify them to those
participants interested or to other tool (e.g. for their
persistent storage).

3) Management of operations
The events received at the LMS may be used to

determine when some operations must be invoked
automatically. For example, it could be interesting to
invoke an operation to silence a chat room when the “The
teacher has joined the room” event is received. Other
operations must be invoked according to a temporal
specification, independently from the events generated by
the use of the tool, for example “Create a chat room for
the subject Distributed Computing on June 29th at 12:30”.

In any case, in the same call of the invocation of an
operation, the concrete instance of the tool must be
specified (e.g. in the example of the chat tool, the
operation to silence the room must only be applied to the
instance of the students, not to the instance of the
teachers).

E. Data persistence among sessions
Another important subject is the persistence of data

between different sessions of the tools. A user should be
able to resume the work in the same state it was when the
last session concluded, in the same way it would be
possible if the tool were integrated in the LMS (e.g. in the
case of a collaborative text editor, it should be possible to
continue editing the text of the last session). Three
possibilities are proposed:
• Client-side storage: the user browser will use

techniques such as cookie sending. The cookie field
will contain the data of the last session. This
technique has the important drawback that it’s only
feasible when the amount of data is low, so it
wouldn’t be suitable to send, for example, a whole
file.

• LMS-side storage: whenever a remote tool is
invoked, session data will be transferred from the
LMS. This solution has the advantage that the LMS
has control over session data, thus avoiding
problems of data loss due to availability problems of
the tools. However, it implies that LMSs and
educational tools can’t be developed independently.
Indeed, tools developers must not assume that there
will be external systems (in this case, the LMSs) that
will store and manage session data.

• Tool-side storage: data are stored at the tool. This
option is the most interesting, as it could be desired
that a remote tool could be used in a standalone way,
with no need of other systems supplying it data.

So, the system storing and managing session data are
the remote tools themselves. However, an intermediate
solution could be applied; to deal with availability
problems of the tools, backup copies of the data could be
stored at the LMS.

V. CONCLUSIONS
The task of developing a new LMS can be extremely

complex, as all aspects of a didactic unit must be taken to
account. Following the separation of concerns approach
the problem can be faced in a more easy way. PoEML is
an EML following such approach, so it’s natural to build a
PoEML-based LMS.

One of the perspectives considered in PoEML is the
Tools perspective, which allows their decoupled
description, therefore trying to promote the reuse of the
models of didactic units. Despite nowadays there are some
recommendations to promote the reuse of didactic units,
they are only focused on educational contents and
ignoring the tools used to manipulate them.

The use of Web Services in e-learning environments is
a promising approach to complement such initiatives.
Firstly, software developers can specialize and focus their
efforts either in the LMS or in the external tools. This
implies lower developing costs and a shorter period
between the releases of new versions. Secondly, it’s
possible to develop ad-hoc tools for a concrete didactic
unit, and use them in different LMSs. Thirdly, teachers
could choose the most suitable tools for the didactic units
among a broad set of tools, as they wouldn’t be exclusive
of a concrete LMS. Finally, it would be possible to build
up LMSs supporting a bigger amount of users, as
computational load would be spread through the servers of
the LMS and the tools.

In our opinion, the existing specifications on this
subject (mainly IMS-TI and CCSI) are still in an early
stage, or they don’t fully support the control and
management of the tools.

REFERENCES
[1] Specification ADL SCORM. Last accessed in may, 2008 at:

http://www.adlnet.gov/downloads/DownloadPage.aspx?ID=237
[2] Specification IMS Question and Test Interoperability v2.1. Last

accessed on may, 2008 at:
http://www.imsglobal.org/question/qtiv2p1pd2/imsqti_oviewv2p1
pd2.html

[3] Gross, G., Google, IBM Promote Cloud Computing. PC World,
2007.

[4] Caeiro Rodríguez M., “PoEML: A separation-of-concerns
proposal to instructional design”, Handbook of visual languages
for instructional design: theories and practices, editado por
Botturi L. y Stubbs T., IGI Global www-igi-pub.com, 2007.

[5] Specification IMS Learning Design. Last accessed on may, 2008
at: http://www.imsglobal.org/learningdesign/

[6] Caeiro Rodríguez M., Llamas Nistal M., Anido Rifón L. “A
Separation of Concerns Approach to Educational Modeling
Languages”, Proceedings on the 36th Annual Frontiers in
Education Conference, FIE'06, San Diego, California.

[7] Wilson S., Olivier B., Jeyes S., Powell A., Franklin T. "A
Technical Framework to Support e-Learning." JISC, 2004.
Accedido en mayo de 2008 en: http://www.jisc.ac.uk/uploaded_
documents/Technical%20Framework%20feb04.doc

[8] Roberts T., Easterby-Smith S., “Can one technical framework
support all our eLearning needs?”. Accedido en mayo de 2008 en:
http://www.alt.ac.uk/altc2004/timetable/files/160/Technicalframe
work.pdf

[9] Specification IMS Tools Interoperability. Last accessed on may,
2008 at: http://www.imsglobal.org/ti/index.html

[10] Press note of the IMS-TI demonstration at the alt-i-lab 2005. Last
accessed on may, 2008 at: http://www.sakaiproject.org/index.php?
option=com_content&task=view&id=258&Itemid=312

[11] Google Summer of Code 2008,
http://www.sakaiproject.org/soc2008/

10 http://www.i-jet.org

http://www.adlnet.gov/downloads/DownloadPage.aspx?ID=237�
http://www.imsglobal.org/question/qtiv2p1pd2/imsqti_oviewv2p1pd2.html�
http://www.imsglobal.org/question/qtiv2p1pd2/imsqti_oviewv2p1pd2.html�
http://www-igi-pub.com/�
http://www.imsglobal.org/learningdesign/�
http://www.jisc.ac.uk/uploaded_�documents/Technical Framework feb04.doc�
http://www.jisc.ac.uk/uploaded_�documents/Technical Framework feb04.doc�
http://www.alt.ac.uk/altc2004/timetable/files/160/Technicalframework.pdf�
http://www.alt.ac.uk/altc2004/timetable/files/160/Technicalframework.pdf�
http://www.imsglobal.org/ti/index.html�
http://www.sakaiproject.org/index.php?�option=com_content&task=view&id=258&Itemid=312�
http://www.sakaiproject.org/index.php?�option=com_content&task=view&id=258&Itemid=312�
http://www.sakaiproject.org/soc2008/�

TOWARDS A GENERALIZED ARCHITECTURE FOR THE INTEGRATION OF TOOLS IN LMSS

[12] CopperCore Project oficial site. Last accessed on may, 2008 at:
http://coppercore.sourceforge.net/

[13] Vega Gorgojo G., Bote Lorenzo M. L., Gómez Sánchez E.,
Asensio Pérez J. I., Dimitriadis Y. A., “Ontoolcole: Supporting
Educators in the Semantic Search of CSCL Tools”, Journal of
Universal Computer Science, vol. 14, no. 1, 2008, pp. 27-58.

AUTHORS
J. Fontenla is a Telecommunications Engineer and a

PhD Student in the University of Vigo. He is currently
Assistant Teacher at the Department of Telematic
Engineering, University of Vigo.

M. Caeiro received his PhD in Telecommunications
Engineering from the University of Vigo in 2007. He is
currently Assistant Teacher at the Department of
Telematic Engineering, University of Vigo. He has
received several awards by the W3C, NAE CASEE new

faculty fellows and the IEEE Spanish Chapter of the
Education Society.

M. Llamas received his Eng. degree (1986) and his
Ph.D. degree (1994) from the Polytechnic University of
Madrid. From 1994 to 1997 he was Vicedean of the
Higher Technical School of Telecommunication
Engineers. From 1999 to 2003 he was the head of the ICT
Area of the University of Vigo. He is member of ACM,
IEEE and IFIP WG3.6 (Distance Education). He has
received several awards by the W3C and IEEE.

This work has been funded by the Spanish Ministerio de Educación y
Ciencia under grant TIN2007-68125-C02-02, and by the Galician
Consellería de Innovación e Industria under grant PGIDIT06PXIB32
2270PR.
This article was modified from a presentation at X International
Symposium on Computers in Education (SIIE2008) 1st-3rd October
2008, Salamanca, Spain. Manuscript received 08 January 2009.
Published as submitted by the authors.

iJET – Volume 4, Special Issue 1: "SIIE'2008", March 2009 11

http://coppercore.sourceforge.net/�

