
SPECIAL FOCUS PAPER
FREE AND OPEN SOURCE GAME-BASED LEARNING (GBL) PLATFORMS

Critical Factors and Resources in Developing a
Game-Based Learning (GBL) Environment Using

Free and Open Source Software (FOSS)
http://dx.doi.org/10.3991/ijet.v8i6.2918

J. M. Lothian1, J. Ryoo2

1The Pennsylvania State University, University Park, United States
2The Pennsylvania State University, Altoona, United States

Abstract—Engaging students in learning is often a challenge.
It is even more so when the subject matter is non-trivial and
requires a significant effort to master. Game-Based Learn-
ing (GBL) makes learning more interesting and appealing
by seamlessly incorporating educational lessons into com-
petitive games. Students naturally develop their interest in
the materials and are immersed into learning as they com-
pete with each other or against themselves in the game. To
be effective, the game itself should be fun and engaging as
well as accommodating the intended learning objectives.
Although many people are aware of how effective GBL can
be, it is overwhelming for a beginner to master the tools and
techniques quickly to have GBL implemented in a class-
room environment. We recognize this lack of guidance in
the existing GBL literature and discuss critical factors in
developing a GBL environment using the free and open
source software (FOSS) resources available as of this writ-
ing.

Index Terms—game-based learning, free and open source,
platform, critical factors

I. INTRODUCTION
Game-Based Learning (GBL) uses competitive exercis-

es to motivate student learning according to specific learn-
ing objectives [1]. Serious games also have a similar goal
but differ from GBL since the former tend to imply that
the only purposes of the game is educational in nature
while the latter can include the use of non-educational
games for educational purposes.

The students can compete either with other students or
against themselves. The games used in GBL usually em-
ploy an interesting narrative deliberately designed to en-
gage the students in learning. Although GBL does not
necessarily have to rely on computers, the type of GBL
discussed in this paper only refers to those implemented in
digital media.

In recent years, attempts to use video games for educa-
tional purposes have received much attention across the
globe, with studies being conducted in several countries
including Australia [2], China [3, 4], Greece [5], Norway
[6], and the United States [7-9]. These games have been
used at several levels of education: elementary (primary)
school [5], middle school [10, 11], high school [6, 9], uni-
versity (post-secondary) [2, 3, 7], and even education for
retired seniors [4]. Additionally, they include a wide vari-
ety of game genres: virtual worlds and environments [2, 7,
8, 10, 12], simulations [13], turn-based strategy [10, 14],

and card games [5]. These studies cover a diverse range
of educational topics including healthcare, physics, biolo-
gy, engineering, mathematics, physical education, social
studies, economics, geography, and history.

Results from these studies have been mixed from rea-
sonably effective [2, 5, 12] to limited or no gains over
more traditional methods [7, 9], but the literature does not
indicate that they are ineffective or less effective than tra-
ditional methods. Researchers have indicated that poor
communication between the game designers and the in-
structor can lead to a game that does not integrate well
into the existing lesson plan or teaching style of the in-
structor [9] and that a lack of performance might be miti-
gated by better understanding which game features can
teach what concepts more effectively [2].

De Freitas [15] and Wilson et al. [16] provide more in-
formation on the theory, design, and evaluation of GBL
activities and Serious Games, with explanation of why
certain features of games are more effective at teaching
certain types of material than other features.

Interestingly, games have also been demonstrated as an
effective way to close learning gaps among previously
underperforming students [12] or in situations where the
topic generally demonstrates a gender preference for
learning [11].

In addition to more effectively motivating students to
learn, GBL environments also encourage them to learn
from and adapt to each other’s tactics and play styles [17].

These attributes are of particular importance when
teaching the “net-generation” of students. As Van Eck
suggests, these students “require multiple streams of in-
formation, prefer inductive reasoning, want frequent and
quick interactions with content, and have exceptional vis-
ual literacy skills,” all of which, he notes, match features
provided by GBL [18].

Despite the many benefits of GBL, the adoption of
GBL presents a number of significant challenges. Two of
these are the steep learning curve and expense associated
with developing the game itself. Luckily, there are many
existing free and open source game development plat-
forms, and as a result, a GBL advocate does not have to
start from scratch to build a game. However, the sheer
number and variety of factors to consider in developing an
effective GBL environment are overwhelming to begin-
ners. Therefore, some guidance is critical for a user to be
able to successfully navigate a development process as
well as choose an appropriate GBL platform for his or her

iJET ‒ Volume 8, Issue 6, December 2013 11

SPECIAL FOCUS PAPER
FREE AND OPEN SOURCE GAME-BASED LEARNING (GBL) PLATFORMS

needs, but the current literature fails to provide appropri-
ate level of guidance.

To address this deficiency, this paper focuses on the
technical and logistic components of developing effective
GBL modules rather than delving deeply into the educa-
tional learning theories behind them, which also involve
learning objectives, assessment, pedagogy, etc. However,
this paper will still point to resources for the educational
side of GBL as well. We also provide practical advice to
those newly adopting GBL in their curriculum, which
makes this paper serve as a primer for the new adopters of
the GBL platforms. We assume some familiarity with
software development and video games, but more exten-
sive resources for understanding these concepts are pro-
vided in section IV.

II. ELEMENTS OF EDUCATIONAL GAME CREATION
For game-based learning, careful construction or selec-

tion of a game is essential. In either case, the game needs
to represent the instructional topic well, while still being
fun to the students. If a research team is implementing a
game, then it should work closely with the instructors us-
ing the game in the classroom, or field experts to incorpo-
rate the learning objectives directly into the game
design[9]. The more seamlessly integrated the learning
materials are to the game experience, the more potential
there is for learning [18, 19]. This integration needs to oc-
cur at multiple levels; game production, pedagogical com-
position, classroom facilitation, and the game itself are all
highly interconnected.

A. Game Production Team
Game design, much like educational instruction, is a

specialized discipline that requires unique knowledge,
skills, and abilities for good performance and productivi-
ty. While game designers who can play more than a single
role certainly exist, it is more likely that the game produc-
tion team will consist of at least a few individuals who
specialize in different areas. There might be a producer –
the individual in charge of the overall feel of the game, its
intention and direction, and potentially the project and
team management. In a research setting, the producer is
probably the principal investigator (PI).

The team will also need one or more programmers. As
with any programming project, programmers should be
able to dedicate significant time towards the project.
Games can be highly complex, and having to train new
programmers can be a significant overhead. Depending on
the complexity of the game or engine, and the time the
programmer can dedicate to the project, simply learning
an existing system could even take weeks, while halting
continued production.

Additionally, the game may require custom graphics or
sound. Often in a university setting, it may be possible to
outsource these tasks to students in art, media, or theater
departments. Sometimes this work can be free, or con-
ducted as part of a class project. Other times if the game
requires significant custom media, it may be necessary to
hire one or more dedicated team members for this area. A
dedicated team member in this area would also be useful
for providing insight into creating a consistent look or feel
to the game.

In the context of a research-oriented educational game
(i.e., a game whose main purpose is to test one or more
research hypothesis in education or other fields), the game

designer is a vital component. This individual should
have knowledge in a broad range of topics. Designers
should understand the concepts of game balance, enjoy-
ment, and player motivations. In addition, they should
have an understanding of the requirements for implement-
ing features. While they are not responsible for program-
ming on the project, designers must comprehend the
complexities of adding different kinds of features or me-
chanics to the game. As Bartle notes, one of the primary
traits a designer should have is the ability to look at the
game objectively, knowing when a feature concept is bad,
and avoiding suggesting features just because they sound
“cool”[20]. If the team is not very large, the game design-
er may also take some of the responsibilities normally
given to a producer, and act as a liaison between the cus-
tomers and the other developers.

B. Pedagogical Components and Classroom Facilitation
An educational video game should not simply be forced

into an existing instructional setting or plan. They are not
modular components that fit into every educational sce-
nario, or a magic tool that makes learning (and teaching)
fun and easy [7, 9, 15, 16, 21]. Game-based learning re-
quires that (1) a knowledgeable instructor facilitate the
game properly, (2) the game is carefully integrated with
the learning material, and (3) the students are receptive to
the game as an educational tool.

Annetta derived 6 “I’s” of educational game design in-
tegrated into a classroom setting from several years of ex-
perience and research [22]. He presents them as nested
elements in the order from inner to outer: Identity, Immer-
sion, Interactivity, Increasing Complexity, Informed
Teaching, and Instructional.

The first four of these components refer to the players’
perception of and their interactions within the game. The
last two encapsulating the others refer to the integration of
the game within the educational environment.

Informed Teaching is the idea that the integration of an
educational game is not a one-time event, but requires the
instructor to observe how the game is used by students.
They can then adjust the instrumentation of the game dur-
ing subsequent iterations. That is, if the usage of a game is
not a complete success in the first try, the instructor and
designer can be informed by the attempt and make altera-
tions to increase the game’s effectiveness in the future.

In the final outer layer, Instructional, Annetta mentions
the importance of the instructor when using an educational
game: “the teacher is responsible for creating scaffold-
structuring interactions and developing instruction in
small steps based on tasks the learner is already capable of
performing independently” [22]. Instructors should not
expect the game to teach the students independently.
Games should be integrated into the scaffolding of a larg-
er lesson, and facilitated with additional instructions that
guide the students in the learning activity [5, 22].

Additionally, Annetta mentions that one area where
video games work well is with implicit (or incidental)
learning, where the student is not actively aware of the
educational content embedded in the game.

This issue is addressed by a framework for evaluating
the effectiveness of educational games provided by de
Freitas and Oliver [21]. They present the concept of de-
briefing from studies on educational simulations to educa-
tional games. It is important to facilitate discussions after

12 http://www.i-jet.org

SPECIAL FOCUS PAPER
FREE AND OPEN SOURCE GAME-BASED LEARNING (GBL) PLATFORMS

playing an educational game not only to determine what
each individual student has learned, but also for students
to share what they have learned with each other. By facili-
tating proper debriefing, the instructor assists the students
in teaching each other, while ensuring that the class as a
whole has acquired complete mental representation of the
learning objectives.

1) Students
It is important to consider the target audience for the

educational game as well, the students. A 2008 survey by
Pew Internet supported by the MacArthur Foundation
found that 97% of students between the ages of 12 and 17
years old play video games [24]. This provides an imme-
diate advantage to instructors implementing games for ed-
ucation, since most (if not all) of their students will
already be familiar with the media.

However, it also presents two distinct disadvantages to
developers implementing educational games. Firstly, be-
cause students’ primary exposure is with commercially
available, high-budget video games, they have significant-
ly high expectations in terms of the quality of the final
product [9, 25]. Specifically, students expect high quality
graphics [9, 26, 27]. This can create a relatively high bar-
rier for creating a video game from scratch, which is ac-
ceptable to students. Nevertheless, by utilizing existing
software libraries, and even some commercial video
games, this obstruction can be successfully mitigated.

The second issue, as Virvou et al. mention, is that some
students may not like using games for the purposes of ed-
ucation, or may not be proficient with the specific type of
game being used [12]. Rather than encouraging these stu-
dents, video games may discourage them from the learn-
ing process. While unfortunate, the instructor should
prepare for this and may choose to handle it on a case-by-
case basis. Nevertheless, if resources and time allow, it
might be beneficial to include a non-videogame version of
the lesson to accommodate these students in the rare in-
stances that occur.

2) Learning theory within the design-motivations
Deci et al., using the Self Determination Theory (SDT),

argue that students who are more intrinsically motivated
are more likely to have a positive experience and succeed
in an educational activity [28]. For this reason, it is im-
portant for game designers to understand the motivations
of their player students in creating a productive education-
al gaming experience. Fortunately, there has been a recent
surge in research attempting to understand the reasons that
people enjoy playing video games.

Recently, the discussion of motivating factors for play-
ing video games has been an important topic among many
researchers [29-34]. The factors from these studies are not
new, however. Malone and Lepper described many of
them much earlier [19]. Rather than simply describing
motivations to play video games, they described a taxon-
omy of motivations within the context of an educational
situation, with each subcategory grounded in existing edu-
cational theory.

This taxonomy is divided into two major sections. The
first is Individual Motivations. This contains the catego-
ries of challenge (goals, uncertain outcomes, performance
feedback, and self-esteem), curiosity (audio/visual sensory
enhancement and cognitive curiosity), control (responsive
learning environment, ability of the student to make their
own choices, and whether those choices should generate

powerful effects), and fantasy (identification of students
with game characters, the game fiction closely matching
the intended educational topic). The second section is In-
terpersonal Motivations that contain the student-to-student
interactions of cooperation, competition, and recognition.
In addition to including many of the factors established by
Yee and Sherry, the taxonomy of Malone and Lepper in-
tegrates many of Annetta’s layers (Identity, Immersion,
Interactivity, and Increasing Complexity).

C. Game Application Components
The implementation of a game can go from relatively

simple, to systems that are more complex than some of the
most sophisticated commercial productivity software.
There are four primary components to consider as part of
the game itself: the game engine, the game mechanics,
narrative components, the visual and audio media assets
needed for the game, and game types.

1) Game Engine
The game engine is the primary set of programming

logic that facilitates game play. This can be as simple as a
single webpage, or as complex as a complete, distributed
client-server architecture. The engine may support a single
player at a time, or multiple players interacting with the
game and each other. It might be implemented entirely as
a text interface, as 2D graphics, or a sophisticated 3D rep-
resentation. There may be simple game rules, or detailed
physics.

The scope of the game engine should fit within the fa-
cilities of the available tools, and match the skills of the
team. This is one of the aspects where having a good de-
signer or project manager is essential. The designer or
manager should be able to limit the scope of the game en-
gine to help fit both the educational needs of the game and
development within the time constraints of the project,
and the skill sets and resources of the other developers.

2) Game Mechanics
A game mechanic is a rule or structure provided by the

game, which describes how features work within the
game. With game-based learning, the mechanics need to
provide both an education, and a fun experience. They
should also closely match the topic of intended learning.
The mechanics of a real-time strategy game may not be
the best one to teach digital privacy awareness (although
clever individuals may figure out a creative way to make
this work). Game mechanics also regulate game balance.

Game balance is a complex topic itself, but simply put,
it is the equilibrium among achievement in the game, the
difficulty of the task, and the enjoyment of each player.
One indication of a good balance is described in the media
effects flow theory, originally defined by Csikszent-
mihalyi, and applied to video games by several others [22,
35-37]. If players cannot achieve the goals of the game,
they will not enjoy playing it. Likewise, if the game is not
very difficult, their enjoyment will decrease. This theory
is supported by the motivational factors proposed by
Malone and Lepper (challenge and control), Sherry et al.
(challenge and arousal), and Annetta (increasing complex-
ity) [19, 22, 34].

Additionally, game balance also includes the balance
between different avatars and how the player progresses.
If the game allows selection of different avatar types, or
customization of skills as the player advances, then the
different possible avatar choices the player makes should

iJET ‒ Volume 8, Issue 6, December 2013 13

SPECIAL FOCUS PAPER
FREE AND OPEN SOURCE GAME-BASED LEARNING (GBL) PLATFORMS

provide equal, or similar, opportunities for the player to
progress.

3) Narrative
The depth of narrative for the game will vary by the

specific context. In some instances, it may even be possi-
ble for the narrative to be entirely external to the game,
delivered by the instructor. In others, it may be necessary
to include a deep narrative within the game itself.

In some cases, the narrative itself may be part of the
subject being researched. For instance, Aylett et al. exam-
ined an AI-driven emergent narrative in their game called
“FearNot!,” which is used to teach anti-bullying behaviors
[38].

Nevertheless, while there has been considerable re-
search in narratives as they apply to education, within the
specialized context of educational video games the field is
open for additional study.

4) Media Assets
Whether the game runs from a webpage, or from a

complex 3D engine, artistic assets are often necessary.
These include audio files, 2D graphics, 3D models, and
textures, and in the case of webpages, this might be CSS
layouts and Flash objects. The quality of the game assets
can be as important as (sometimes more important than)
the game engine and mechanics. This is not to say that a
great game requires the most detailed 3D models available
– recent hits such as World of Warcraft, Magicka, and
Minecraft have used simplified 3D models to incredible
success. Even Terraria, with its 2D graphics reminiscent
of a video game from the 1980’s, was an instant sensation.
However, the quality and theme of the game assets should
provide a consistent look and feel for the game [20].

D. Single versus Multi-Player Games
Multi-player support currently drives much of the video

game market from consoles to PCs. However, the decision
on whether to implement a single player or multi-player
game can have significant implications for both the class-
room facilitation and the game development process.

In a competitive, multi-player game where students in-
teract with each other, they may be far more sensitive to
the issues of game balance and fair play, which could sig-
nificantly increase the amount of testing required before
the game can be used in a classroom. Additionally, even
with a cooperative game, the designer must pay attention
to the design for the interactions between different players
and how those interactions affect the educational context
of the game.

From a technical standpoint, multiplayer games can re-
quire a significant amount of additional time and re-
sources to implement. Not all game engines or libraries
provide an easy-to-use system for implementing net-
worked game play. Additionally, many multi-player situa-
tions include an additional point of failure – the server.
The hardware aspect of the server can increase the diffi-
culty of maintaining a functional game environment, and
may require additional support and configuration from an
IT department. The software aspect requires developers to
program and maintain an additional (non-trivial) compo-
nent in the system.

Some uses of multi-player games can also be simulated
using single-player games with an adequate scoring sys-
tem. Scores in single player games can allow players to

both compete against each other, and in some cases, coop-
erate.

III. FREE AND OPEN SOURCE PLATFORMS FOR GAME-
BASED LEARNING (GBL)

A. Free Software versus Free Open-Source Software
One important consideration when selecting a platform

for game development is whether the development will
require access to the source code of the game engine it-
self. Often, game engines may restrict access to their
source code and provide alternative methods for customiz-
ing their source code. This is the primary separation be-
tween free game engines and free open-source software
(FOSS) engines. With a FOSS game engine, the developer
has complete access to all of the game engine’s program-
ming source code, and is free to modify the engine as
needed. For researchers, this generally means that either
the engine is used as-is, only adding onto it, or that they
must be willing to learn the internals of a system that can
be quite complex if they want to make any significant
changes.

For instance, the OpenSimulator (OpenSim) project is
an open-source version of the SecondLife server architec-
ture, programmed in C# for the Mono implementation of
Microsoft’s .Net framework. Development of environ-
ments within OpenSim follows the same basic procedure
as SecondLife – users connect through a client, and create
objects and scripts within the environment itself, never
having to alter the underlying server architecture. Scripts
are written in the standard Linden Scripting Language, or
other programming languages that Mono recognizes, such
as C#. In this way, it is similar to many closed-source pro-
jects. However, the scripts only have access to libraries
that were included when the server architecture was com-
piled. Including additional libraries, or altering the way
scripts behave requires the developer to make modifica-
tions to the architecture source code. Additionally, com-
plex modifications may also result in the changes in the
behavior of the client used to connect to OpenSim.

Closed-source alternatives, however, generally contain
more features, and are specifically designed to be flexible
and make game creation easier. For instance, the Unity3D
game engine, in addition to including most of the features
provided by OpenSim, also includes several tools specifi-
cally for developing games and managing game content.

While these additional features may be useful in some
situations, they are not always required. Picking the prop-
er game engine should not rely on the total number of fea-
tures it has, but rather on how they fit with the specific
project. For example, OpenSim provides avatar customi-
zation to the user, complete with animations, while a
closed-source free platform may not include those cus-
tomizable 3D models or animations, leaving them up to
the developer to create or otherwise acquire. Depending
on the game being developed, a pre-existing avatar system
may be easier to work with than developing a custom-
made system.

Additionally, working with FOSS game engines will
generally mean interacting with the community develop-
ing the engine and understanding how the engines are li-
censed.

14 http://www.i-jet.org

SPECIAL FOCUS PAPER
FREE AND OPEN SOURCE GAME-BASED LEARNING (GBL) PLATFORMS

B. Open Source Licenses
A developer considering FOSS game engines will un-

doubtedly encounter a few key acronyms and license
names during the selection process. Terms seen frequently
might include GPL, BSD, Apache, and LGPL. Explaining
all of the subtle intricacies of these licenses is beyond the
scope of this article. However, some of the key differ-
ences are discussed in this section.

Software licensed under the GNU Public License
(GPL) can be used internally by an organization without
releasing the source code to the public [39]. If a modified
version of the software or a project using the GPL-
licensed software is released to the public, then the entire
source code of the project must also be released. Alterna-
tively, software licensed under the BSD or Apache licens-
es allows the developer to publish modified versions of
the software, or programs using the software without re-
leasing any source code.

The GPL should not be confused with the LGPL (Less-
er GPL) license. This license is an alternative form of the
GPL license that allows developers to use libraries or en-
gines, and only requires developers to release changes
they make to the original source code. This means that
developers are free to use the engine or library in their
project without releasing the source code of the entire pro-
ject except for the changes they make to the library.

C. Acquiring an Open-Source Engine or Library
The first challenge of any researcher or developer who

has selected an open source game platform is getting it.
Depending on the project, the software developers may
have a variety of methods for acquiring the engine and
setting it up for use. Different methods each have their
own drawbacks and benefits.

1) Pre-Compiled Binaries
The easiest method of using an engine is when the de-

veloper provides a pre-compiled binary (PCB) download.
With a PCB, generally, the source-code is not immediate-
ly available, but the developers have provided all the files
needed to run the game engine, or to use the library in a
project. Developers may still need to configure certain set-
tings, or their development environment, but they do not
need to compile the engine source code themselves. This
can be a tremendous timesaver during the initial setup of a
project, or during the evaluation of multiple engines.

For continued development, however, it may eventually
become difficult to work with. For example, compiler set-
tings used to create the PCB may limit developers. These
settings can include options such as enabling debugging
information, threading options, or speed and memory op-
timizations. Additionally, PCB releases are usually “sta-
ble” releases of the source code. These releases compile
properly, with a minimal number of known bugs, and all
the intended features for the version. In general, this is a
benefit, as the developer knows that they are using some-
thing that should work most of the time. However, it also
means that they may not have access to the latest bug fix-
es, or feature improvements.

2) Source Access – Compressed Formats
To address some of these issues, the developer can con-

sider downloading a source package in a compressed for-
mat such as tar.gz, zip, or rar. Source packages will allow
the developer to compile their own version of the engine

or library with their own compiler settings and provide
complete access to the source code for debugging. These
packages may still only be available as stable releases, but
with access to the source code, developers can include
their own bug fixes if necessary.

There is also an additional complexity added, in that the
project source may require other projects, called depend-
encies, to compile properly. In particularly complex sce-
narios, the dependencies may have their own
dependencies, which can significantly add to setup time.
In a Linux environment, the dependency issue may be
mitigated by using a package management system (e.g.
YUM and APT), which handles the entire process of find-
ing and installing dependencies for the user.

That said, many open-source game engines attempt to
limit the number of dependencies, and minimize the effort
used to gather and compile them with very specific and
thorough instructions.

3) Source Access - Version Control Systems
If a developer needs up-to-the-moment source code for

the game engine or library, most projects provide access
to their source code versioning repository. Source code
versioning can include (but are not limited to) systems
such as CVS, SVN, GIT, and Mercurial. Each of these
systems requires a different client interface, which is
available as a command-line tool, as well as a graphical
program for most operating systems. The operations of
each of these tools is beyond the scope of this paper, but
suffice it to say that they provide a means to browse dif-
ferent versions of the source code, and download source to
be compiled. This gives the researcher access to the latest
code available, which can include critical bug fixes for
issues they may have encountered. The primary drawback
also stems from this ability – because the code is highly
recent and possibly not well tested, it is easy to encounter
new bugs introduced between stable versions, which oth-
ers have not yet discovered.

D. Interacting with Developers
Open-source software is often community-driven. This

requires some methods of maintaining communication
between different developers and tracking tasks. By utiliz-
ing an open-source platform, the researcher has become a
part of that development community to a certain degree.
Thus, they should be familiar with how the community is
organized. Many open-source projects utilize a variety of
methods for communication and task-tracking. E-mail
lists are very common, and they are often open to any in-
dividual to participate. E-mail lists are also often archived
online, which provides the research team with an addi-
tional source of information regarding the project. These
lists might require a user to register before participation.
This is usually done either by filling out a form on a
webpage, or emailing a registration service requesting to
be added. Once registered, researchers can participate in
the community discussion and ask questions to the devel-
opers.

We found that the lead developers were highly accessi-
ble via their developer email list while working on a pro-
ject using OpenSim. The developers responded quite
quickly, with very informative replies that greatly reduced
the amount of time required to implement some of the fea-
tures we needed.

iJET ‒ Volume 8, Issue 6, December 2013 15

SPECIAL FOCUS PAPER
FREE AND OPEN SOURCE GAME-BASED LEARNING (GBL) PLATFORMS

In addition to E-mail lists, the development community
often uses some form of project management or bug-
tracking system. This can be useful to developers in a
number of ways. Firstly, they can track the development
of specific features of the platform – features that the re-
search project might require. Secondly, if the researcher
discovers what he or she thinks is a bug, or strange behav-
ior, the person can check the tracking system to see if oth-
ers have discovered the same thing, and see if anyone has
provided a solution or fix for the issue. Lastly, as part of
the development community, the researchers can use these
system to provide their own bug reports and feature re-
quests, as well as provide any improvements they have
developed for their own use to improve the project as a
whole.

E. Examples in Research
Many free and open-source software libraries and game

development platforms have already been used for educa-
tional purposes in research. The following is a non-
exhaustive summary of examples.

1) Virtual Worlds – Second Life Alternatives
With the proprietary and difficult nature of working

within the virtual world environment called Second Life,
several alternatives have been developed recently. Two
examples of these alternatives are OpenSim (mentioned
previously) and Open Wonderland [40, 41]. We have been
working on a game-based learning environment called
Immersive Security Education Environment (I-SEE) and
originally implemented it using Second Life, but found
that environment too constraining and moved our project
to OpenSim [8]. Because OpenSim is compatible with the
Second Life architecture, much of the existing code could
be moved without considerable modification. This shows
that OpenSim is a viable platform for researchers current-
ly using Second Life but are looking for more flexibility.

As an additional alternative to Second Life, Open
Wonderland was originally developed by employees at
Sun Microsystems (now Oracle) to provide a much more
extensible and controllable platform than offered with Se-
cond Life [42]. This toolkit utilizes a Java programming
codebase, potentially giving it the same kind of platform
independence as OpenSim [40]. Additionally, it supports
features for voice communication, and advanced extensi-
bility.

Similar to I-SEE, Parsons and Stockdale report their
project moving from Second Life to Open Wonderland
[43]. They provide a technical evaluation of Open Won-
derland for this purpose. One of the important contribu-
tions of this evaluation was the finding that despite Java’s
platform independence, applications written in it still suf-
fer from various configuration problems on certain sys-
tems. Additionally, the Open Wonderland client must
download the 3D content of the virtual world when it first
connects. If the content is large, it can take a considerable
amount of time before a user can participate in the envi-
ronment, leading Parsons and Stockdale to suggest “prim-
ing” the clients before actually using them in a classroom.

2) 3D Engines
While the open-source virtual world packages offer

flexibility and extensibility, researchers are still confined
by certain limitations imposed by the design decisions and
assumptions of the original developers. Additionally,
some educational games may not need the full implemen-

tation of a virtual world. For these reasons, a developer
may want to consider using an openly available 3D game
engine.

Panda3D is a game engine originally developed by
Disney for virtual reality theme park attractions, and even-
tually used for other video games such as Disney’s
MMORPG Toontown [44-46]. Originally being a closed-
source, purely commercial project, Panda3D was open-
sourced, and Carnegie Mellon University became in-
volved in its development [47]. Developers using Pan-
da3D have a choice between using Python and C++ for
programming.

Henrich and Reuter used Panda3D to implement a
game that teaches safer driving [48]. They integrated an
open-source ridged-body physics library (Open Dynamics
Engine) into their game to provide a realistic simulation of
driving a car. Although having had utilized open-source
libraries, there were still many issues to consider for their
project. The integration of two different open-source tools
solved some problems but generated additional challeng-
es. Because they were using a physics library that was
separate from Panda3D’s integrated system, it required
them to write functions to translate between the different
physical systems. Additionally, for the physics to be accu-
rate, the 3D models had to be constructed to be mechani-
cally consistent with real-world cars. Since enabling
precise physics on every object caused considerable per-
formance loss, the team implemented a Level of Detail
algorithm that selectively turned on physics for objects
near the car, and kept physics off for objects far away.

On the opposite end of the commercial and institution-
ally supported spectrum of Panda3D is the purely open-
source community-supported project called Ogre3D [49].
While Ogre3D incorporates many advanced graphics fea-
tures such as shaders, flexible shapes and skeletal anima-
tions, and customizable scene management, it is not as
fully featured as the Panda3D engine. Nevertheless, some-
times a developer only needs a graphics engine, and work-
ing around the integrated components of a full game-ready
platform can be more difficult. For instance, Ogre3D is
used as the graphics front-end for the ION Framework en-
vironment for intelligent agents [50]. ION was created to
facilitate separating an agent-based virtual environment
from what Vala et al. call the realization engine, which is
the visual representation of that environment including the
graphics engine and potentially physics engine.

By separating these factors from the virtual environ-
ment, their engine is suitable for a number of agent-based
simulations. They use a case study of an educational game
as an example of the usage of this framework. The game,
FearNot!, is designed to teach anti-bullying awareness and
techniques [50-52]. Having a separate graphics engine al-
lowed them to separate the agent simulation from their
graphical representation, which permits the re-use of
framework components for multiple simulations.

Certain research projects may require specific features
from the game environment. This is generally the case for
games implemented within the Delta3D gaming and simu-
lation engine [53]. Delta3D was developed with a very
specific purpose in mind – support for Department of De-
fense (DoD) simulations and games. This engine inte-
grates several other open-source projects (Open Scene
Graph, Open Dynamics Engine, Character Animation Li-
brary, and OpenAL) into a single framework that supports
DoD community standards for simulation such as the

16 http://www.i-jet.org

SPECIAL FOCUS PAPER
FREE AND OPEN SOURCE GAME-BASED LEARNING (GBL) PLATFORMS

High Level Architecture (HLA), After Action Review
(AAR), and SCORM Learning Management Systems
(LMS) [53-55].

Delta3D has already been used to move Marine Corps
training simulations from a commercial solution to lower
cost of deployment and increase utilization [55]. An addi-
tional case-study implements a simulation to train For-
ward Air Controllers (Airborn) (FAC-A). McDowell et al.
also mention the recent inclusion of an artificial intelli-
gence planning framework derived from a model imple-
mented in the popular video game F.E.A.R [55, 56]. The
flexibility of their approach developing Delta3D has al-
lowed them to integrate several useful open-source pro-
jects, as well as concepts from commercial games into an
extensible framework useful for many kinds of training
simulations.

3) Specialized Frameworks
Because virtual worlds do not fit the needs of every ed-

ucational game project, completing an entire game using a
framework graphics engine may be excessive in some cir-
cumstances. For some applications, a specialized game
engine may need to be used. This section summarizes four
specialized game engines and how they have been used
for educational research.

The Spring Engine is an open-source game engine spe-
cifically designed to support building 3D Real Time Strat-
egy (RTS) games in which the player controls multiple
“units” rather than a single avatar [57]. RTSes are general-
ly used for a variety of war or combat simulations. Kernel
Panic is one such game built using the Spring Engine, and
is likewise open-source. Muratet et al. chose Spring and
specifically, Kernel Panic over another open-source pro-
ject (Open Real-Time Strategy) to implement their serious
game because Spring has a larger community of both de-
velopers and players [26, 58]. They utilized these to create
a serious game to teach programming topics, by allowing
students to program AI into the existing game. By modi-
fying an existing open-source game called Kernel Panic,
they were able to concentrate their efforts on mapping the
educational context to the existing features

Another example of a specialized open-source game
engine is The Open Racing Car Simulator (TORCS) [59].
As the name implies, TORCS provides the graphics and
physics components necessary to implement a car racing
game. Coller and Shernoff used TORCS in a game for
mechanical engineering students to teach computational
numerical methods [60]. As they mention, “engineers like
to tinker” [60]. They were able to use TORCS to create a
game environment that directly supports this motivation,
while being closely linked to the subject matter (mechani-
cal engineering). As a result, they found that students
were more engaged and intellectually stimulated than in
previous versions of the same class using traditional
methods. Additionally, while they used TORCS as a base
for their project, they also implemented several new fea-
tures specifically related to more realistic physics and
simulation of different car components.

F. Platforms to Consider
While not explicitly used in much (if any) of the current

educational research, there are additional platforms and
technologies to consider. These consist of other open-
source graphics engines, commercially available game
engines, as well as commercial games that provide exten-

sion mechanisms that can be used to develop entirely new
games.

1) Engines and Component Frameworks
Anderson and Peters argue that many of the compo-

nents necessary to build games already exist in many
forms [61]. They provide a comprehensive list of several
technologies, organized by component types (graphics,
audio, multi-platform GUI systems, physics, 3D model-
loading, and many others), many of which are open-
source projects. Covering their entire paper is beyond the
scope of this article, but it is important to note that not on-
ly do they provide a list of software components that can
be used to create a game engine, but they also include
some nearly complete open-source 3D game engines.

These engines generally include all the facilities for the
creation of a full game, incorporating a graphics rendering
architecture, audio and physics libraries, as well as com-
ponents to handle input and networking. One of these en-
gines, Ogre3D has been used in a few case studies in
educational gaming [51, 62].

One of the major drawbacks of these free open-source
engines is that they are not always able to facilitate easily
creating a commercial-level quality game. The design
team may also wish to consider a commercial game en-
gine, many of which offer free versions, or significant ed-
ucational discounts. For instance, the game creation
framework called Unity 3D is available as a free product
for many platforms (including mobile and Web browser in
addition to Windows, Mac OSX, and Linux).

Not only does Unity 3D offer the same kinds of com-
ponents as an engine like Ogre3D, but it also integrates
editing and creation of the game directly into the engine.
That is, it provides the developer with many additional
game editing tools that can significantly reduce the time
and resources required to create an entire game. These in-
clude features such as advanced asset management pipe-
lines to terrain editing and audio manipulation.
Additionally, Unity3D offers a commercial service for
support and consultation if the developers encounter diffi-
culties that they are not able to overcome. Their services
range from software design to teaching and training as
well as design of the visual elements.

However, it is important to note that a functional and
enjoyable educational game does not always need a so-
phisticated 3D engine. Games using 2D graphics may be
completely adequate for the task, and may significantly
decrease the time required for development.

PyGame is a multi-platform library for creating 2D
games with the Python programming language [63]. It
combines a simple programmer interface for manipulating
2D graphics with the ease and power of Python. However,
using an interpreted programing language and the goal of
keeping the architecture simple have their drawbacks such
as limited additional functionality and possible perfor-
mance issues. The first issue is easy to overcome as Py-
thon has many other libraries available for a variety of
functions.

However, for more advanced applications, the C++ li-
brary called ClanLib is a viable option. ClanLib provides
all the functionality of PyGame with additional features
such as database support (SQLite), built-in collision detec-
tion, a CSS-based GUI framework, XML support, re-
source management with support for sprite-based
animations, access to hardware shaders, and more. How-

iJET ‒ Volume 8, Issue 6, December 2013 17

SPECIAL FOCUS PAPER
FREE AND OPEN SOURCE GAME-BASED LEARNING (GBL) PLATFORMS

ever, these features come with the additional complexity
of C++ and could add significant development time.

2) Existing Games as Platforms
While the existing games and their engines may not al-

ways be completely free, they can be relatively cheap as a
development platform. One such game called Half-Life 2
provides a software development kit (SDK) to facilitate
development using the game engine. The Half-Life 2 SDK
has been a successful tool to teach game programing con-
cepts to students at the high-school level, which reflects
its ease of use for specific scenarios [64, 65].
Additionally, Half-Life 2 (and its predecessor, Half-Life)
have been used extensively to create scenarios in game
effects research, algorithm analysis, server networking,
and several other areas [66-72]. The wide-range of re-

search topics covered in a multitude of papers further in-
dicates that the Half-Life 2 SDK is a viable platform to

implement games.
However, designers should use caution when selecting

to use a game or SDK for their particular application. The
Half-Life 2 game engine and its associated SDK were de-
signed primarily for first-person shooter (FPS) games in
mind. This means that it may be more difficult to imple-
ment games in other genres or formats using this tool. It
may not be impossible but require more time and re-
sources.

G. Assets – Where and How
Developing custom graphics and audio for a game can

take a significant amount of time and dedication. Profes-
sional development of these assets can also be quite ex-
pensive in many cases. However, a few resources are
useful for reducing the time and development cost. The
previously mentioned Unity 3D engine provides some as-
sets with the platform and through supporting webpages,
but it also integrates an asset store where users sell or give
away assets they have created for their own games (simi-
lar in some ways to the Second Life marketplace, but us-
ing real-world currency).

Additionally, websites such as OpenGameArt.org pro-
vide graphics and audio content free of charge, specifical-
ly for open-source video games. The assets hosted on
OpenGameArt are available under a variety of licenses,
similar to (or in some cases using) the licenses mentioned
in the previous section. Much of the content is high quali-
ty, and with the correct software should be usable in many
different game engines. Using websites such as this, or the
Unity asset store could save a considerable amount of de-
velopment time as well as lower the costs of production
significantly.

IV. ADDITIONAL RESOURCES
As game design itself is a specialized field, there are al-

so some comprehensive resources available for further
consideration. The following books and websites cover a
wide range of topics, generally in great depth and should
be helpful to different individuals depending on their in-
volvement in a game development project.

Firstly, searching for a game engine to use can be a dif-
ficult process. The website DevMaster
(http://www.devmaster.net) makes this process much eas-
ier by providing a comprehensive database of 3D game
engines. Game engines can be searched and sorted by
several categories including closed or open source, plat-

form support (Windows, OS-X, Linux, etc.), programing
languages used, physics availability, networking availabil-
ity, scripting support, and many more. Additionally, us-
ers, giving detailed accounts of their experiences, can
review each engine.

Both game development and game play include many
cultural, social, and psychological factors. Raessens and
Goldstein cover many relevant topics in The Handbook of
Computer Game Studies [73]. This book is a compilation
of sections from many subject experts in fields ranging
from artificial intelligence to narrative development. Ra-
ther than simply being a reference book on the subject,
this book is intended as an overview textbook for students
interested in learning more about video games as a new
medium. While the 2004 publication date may seem a bit
dated in the rapidly evolving scope of video game re-
search, this book is still quite relevant and a very good in-
troduction to the field of research and understanding of
video games.

As the name suggests, Designing Virtual Worlds by
Richard Bartle is a guide for the design and implementa-
tion of virtual environments for game play [20]. The book
provides a history of virtual worlds from MUDs (Multi-
User Dungeons) to contemporary MMORPGs (Massively
Multi-player Online Role Playing Games). In this book,
Bartle provides an overview of development team con-
struction and the development process, and eventually
moves into discussions about understanding players, game
world and narrative design, and game balance. While
many of the topics covered address issues from the stand-
point of a multi-player game, most are generalizable to
single player games as well (for instance, understanding
player motivations). While Raessens and Goldstein’s book
is more of an introduction to video games for researchers,
Bartle’s book fills this niche for beginning developers.

Bridging these two books, and providing theoretical
formalization to much of Bartle’s discussions is Salen and
Zimmerman’s Rules of Play – Game Design Fundamen-
tals [74]. This book provides a much more in-depth and
comprehensive look at game development, game play, and
game research than the other two. Their approach presents
a series of non-exclusive conceptual frameworks for un-
derstanding not just video games, but also games and play
in a broader sense.

Whether they are using an existing game engine or im-
plementing a custom one, any researchers or developers
considering a long-term pursuit of game development may
need to understand the theoretical implementations of dif-
ferent game components, architectures, or engines. In his
book Game Engine Architecture, Jason Gregory provides
a deep technical review of architecture design, develop-
ment tools, mathematical concepts used in games, and
game play [75]. While the book contains many examples
given in C++, each concept is described in a way that can
be implemented in many programming languages. Never-
theless, this book contains many advanced examples and
may not be helpful to a programming or software devel-
opment beginner.

A good resource for any researchers interested in a
deeper understanding of the development methodologies
used for open-source projects is the essay titled The Ca-
thedral and the Bazaar by Eric Raymond [76]. This essay
outlines two processes used by open source projects for
releasing their source code – either keeping their source
code open to the public during all development (the Ba-

18 http://www.i-jet.org

SPECIAL FOCUS PAPER
FREE AND OPEN SOURCE GAME-BASED LEARNING (GBL) PLATFORMS

zaar model) or only releasing their source code at specific
times and only allowing certain developers to contribute
to major features (the Cathedral model). Additionally, the
author outlines 19 guidelines for creating good open
source software projects.

V. CONCLUSION
Game Based Learning integrates two very complex top-

ics – education and game implementation. By including
open source software, a team can significantly reduce the
burden of creating an educational game, without consider-
ably reducing the quality of the experience. The resources
provided in this paper have illustrated several factors re-
searchers should be aware of, provided example resources
to consider, and reflected on the experiences of other re-
searchers implementing open source software for video
games in research. Through the consideration of the game
as three interconnected parts (the design team, pedagogi-
cal components, and the video game itself), we have out-
lined a structure to aid researchers in pursuit of
developing their own educational games while avoiding
and being aware of potential pitfalls and difficulties.

REFERENCES
[1] R. Teed. Game-Based Learning. Available:

http://serc.carleton.edu/introgeo/games/index.html
[2] S. Kennedy-Clark and K. Thompson, "What Do Students Learn

When Collaboratively Using A Computer Game in the Study of
Historical Disease Epidemics, and Why?," Games and Culture,
vol. 6, pp. 513-537, November 1, 2011 2011.

[3] H. Lu, "Rethinking game-based learning from a gender
perspective: a case study of a male English language learner in
China," Gender, technology and development, vol. 16, pp. 49-70,
2012. http://dx.doi.org/10.1177/097185241101600103

[4] F. Wang, et al., "Computer Game-Based Learning: Perceptions
and Experiences of Senior Chinese Adults," Journal of
Educational Technology Systems, vol. 40, pp. 45-58, 2012.
http://dx.doi.org/10.2190/ET.40.1.e

[5] M. Kordaki, "A computer card game for the learning of basic
aspects of the binary system in primary education: Design and
pilot evaluation," Education and Information Technologies, vol.
16, pp. 395-421, 2011. http://dx.doi.org/10.1007/s10639-010-
9136-6

[6] K. Silseth, "The multivoicedness of game play: Exploring the
unfolding of a student’s learning trajectory in a gaming context at
school," International Journal of Computer-Supported
Collaborative Learning, vol. 7, pp. 63-84, 2012.
http://dx.doi.org/10.1007/s11412-011-9132-x

[7] D. M. Adams, et al., "Narrative games for learning: Testing the
discovery and narrative hypotheses," Journal of Educational
Psychology, vol. 104, pp. 235-249, 2012. http://dx.doi.org/10.
1037/a0025595

[8] J. Ryoo, Techatassanasoontorn, A.A., Lee, D., and Lothian, J.,
"Game-Based InfoSec Education Using OpenSim," in Colloquium
for Information Systems Security Education, Fairborn, Ohio, 2011.

[9] J. Elliott, et al., "No magic bullet: 3D video games in education,"
2002, pp. 23-26.

[10] K. Squire, "From content to context: Videogames as designed
experience," Educational researcher, vol. 35, pp. 19-29, 2006.
http://dx.doi.org/10.3102/0013189X035008019

[11] M. J. Mayo, "Games for science and engineering education,"
Communications of the ACM, vol. 50, pp. 30-35, 2007.
http://dx.doi.org/10.1145/1272516.1272536

[12] M. Virvou, et al., "Combining software games with education:
Evaluation of its educational effectiveness," Educational
Technology & Society, vol. 8, pp. 54-65, 2005.

[13] B. Kapralos, et al., "A Serious Game for Training Health Care
Providers in Interprofessional Care of Critically-Ill and Chronic
Care Patients," Journal of Emerging Technologies in Web
Intelligence, vol. 3, pp. 273-281, 2011. http://dx.doi.org/
10.4304/jetwi.3.4.273-281

[14] K. Squire, "Changing the game: What happens when video games
enter the classroom," Innovate: Journal of online education, vol.
1, 2005.

[15] S. de Freitas. (2007). Learning in Immersive Worlds - A review of
game-based learning.

[16] K. A. Wilson, et al., "Relationships between game attributes and
learning outcomes," SIMULATION & GAMING, vol. 40, p. 217,
2009. http://dx.doi.org/10.1177/1046878108321866

[17] D. Oblinger, "Games and Learning," EDUCAUSE Quarterly, vol.
29, pp. 5-7, 2006.

[18] R. van Eck, "Digital game-based learning: It's not just the digital
natives who are restless," EDUCAUSE review, vol. 41, p. 16,
2006.

[19] T. W. Malone and M. R. Lepper, "Making Learning Fun: A
Taxonomy of lntrinsic Motivations for Learning," in Aptitude,
learning, and instruction, R. E. Snow, Farr, M.J., Ed., ed, 1987,
pp. 223-253.

[20] R. Bartle, Designing virtual worlds, 1st ed. Berkeley, CA: New
Riders, 2003.

[21] S. de Freitas and M. Oliver, "How can exploratory learning with
games and simulations within the curriculum be most effectively
evaluated?," Computers & Education, vol. 46, pp. 249-264, 2006.
http://dx.doi.org/10.1016/j.compedu.2005.11.007

[22] L. A. Annetta, "The “I's” have it: A framework for serious
educational game design," Review of General Psychology, vol. 14,
p. 105, 2010. http://dx.doi.org/10.1037/a0018985

[23] R. Rosas, et al., "Beyond Nintendo: design and assessment of
educational video games for first and second grade students,"
Computers & Education, vol. 40, pp. 71-94, 2003.
http://dx.doi.org/10.1016/S0360-1315(02)00099-4

[24] A. Lenhart, et al., "Teens, Video Games, and Civics," Pew
Internet & American Life Project2008.

[25] J. Robertson and J. Good, "Story creation in virtual game worlds,"
Communications of the ACM, vol. 48, pp. 61-65, 2005.
http://dx.doi.org/10.1145/1039539.1039571

[26] M. Muratet, et al., "Experimental Feedback on Prog&Play: A
Serious Game for Programming Practice," presented at the
EUROGRAPHICS 2010, Norrköping, Sweden, 2010.

[27] J. W. Rice, "New media resistance: Barriers to implementation of
computer video games in the classroom," Journal of Educational
Multimedia and Hypermedia, vol. 16, pp. 249-261, 2007.

[28] E. L. Deci, et al., "Motivation and education: The self-
determination perspective," Educational psychologist, vol. 26, pp.
325-346, 1991.

[29] N. Yee, "Motivations for play in online games," CyberPsychology
& Behavior, vol. 9, pp. 772-775, 2006. http://dx.doi.org/10.1089/
cpb.2006.9.772

[30] N. Yee, "The demographics, motivations, and derived experiences
of users of massively multi-user online graphical environments,"
Presence: Teleoperators and virtual environments, vol. 15, pp.
309-329, 2006. http://dx.doi.org/10.1162/pres.15.3.309

[31] R. Bartle, "Hearts, clubs, diamonds, spades: Players who suit
MUDs," Journal of MUD research, vol. 1, p. 19, 1996.

[32] R. L. M. van Meurs, "How to play the game?," Masters,
Department of Social Sciences, Tilburg University, Tilburg, 2007.

[33] A. Tychsen, et al., "Motivations for play in computer role-playing
games," 2008, pp. 57-64.

[34] J. L. Sherry and K. Lachlan, "Video game uses and gratifications
as predictors of use and game preference," Playing video games.
Motives, responses, and consequences, pp. 213-224, 2006.

[35] M. Csikszentmihalyi, Flow: The psychology of optimal
experience: Steps toward enhancing the quality of life: Harper
Collins Publishers, 1991.

[36] J. Chen, "Flow in games (and everything else)," Communications
of the ACM, vol. 50, pp. 31-34, 2007. http://dx.doi.org/10.1145/
1232743.1232769

[37] P. Sweetser and P. Wyeth, "GameFlow: a model for evaluating
player enjoyment in games," Computers in Entertainment (CIE),
vol. 3, pp. 3-3, 2005. http://dx.doi.org/10.1145/1077246.1077253

[38] R. Aylett, et al., "Unscripted narrative for affectively driven
characters," Computer Graphics and Applications, IEEE, vol. 26,
pp. 42-52, 2006. http://dx.doi.org/10.1109/MCG.2006.71

[39] (2011). Frequently Asked Questions about the GNU Licenses.
Available: http://www.gnu.org/licenses/gpl-faq.html

[40] (2011, 2011-06-10). Open Wonderland. Available:
http://openwonderland.org/

iJET ‒ Volume 8, Issue 6, December 2013 19

SPECIAL FOCUS PAPER
FREE AND OPEN SOURCE GAME-BASED LEARNING (GBL) PLATFORMS

[41] (2011, 2011-06-10). OpenSimulator. Available:
http://opensimulator.org/wiki/Main_Page

[42] M. Gardner, et al., "Reflections on the use of Project Wonderland
as a mixed-reality environment for teaching and learning," in
ReLIVE 08 - Researching Learning in Virtual Environments
International Conference, Milton Keynes, UK, 2008, pp. 130-141.

[43] D. Parsons and R. Stockdale, "Cloud as Context: Virtual World
Learning with Open Wonderland," presented at the 9th World
Conference on Mobile and Contextual Learning (mLearn 2010),
Valetta, Malta, 2010.

[44] M. Goslin. (2004, 2011-06-09). Postmortem: Disney Online's
Toontown. Available: http://www.gamasutra.com/view/feature/
2027/postmortem_disney_onlines_.php

[45] M. R. Mine, et al., "Building a massively multiplayer game for the
million: Disney's Toontown Online," Computers in Entertainment
(CIE), vol. 1, p. 6, 2003. http://dx.doi.org/10.1145/950566.950589

[46] (2011, 2011-06-10). Panda3D - Free 3D Game Engine. Available:
http://www.panda3d.org/

[47] M. Goslin and M. R. Mine, "The Panda3D graphics engine,"
Computer, vol. 37, pp. 112-114, 2004. http://dx.doi.org/10.1109/
MC.2004.180

[48] V. Henrich and T. Reuter, "CarDriver–Using Python and Panda3D
to construct a Virtual Environment for Teaching Driving,"
Reykjavík University RUTR-CS08003, May 2008.

[49] (2011, 2011-06-10). OGRE - Open Source 3D Graphics Engine.
Available: http://www.ogre3d.org

[50] M. Vala, et al., "ION Framework – A Simulation Environment for
Worlds with Virtual Agents," in Intelligent Virtual Agents. vol.
5773, Z. Ruttkay, et al., Eds., ed: Springer Berlin / Heidelberg,
2009, pp. 418-424.

[51] R. Aylett, et al., "Fearnot!–an emergent narrative approach to
virtual dramas for anti-bullying education," Virtual Storytelling.
Using Virtual Reality Technologies for Storytelling, pp. 202-205,
2007.

[52] R. S. Aylett, et al., "FearNot!-an experiment in emergent
narrative," in Fifth International Conference on Intelligent Virtual
Agents, 2005, pp. 305-316.

[53] (2011, 2011-06-10). Delta3D - Open source gaming & simulation
engine. Available: http://www.delta3d.org

[54] R. Darken, et al., "The Delta3D open source game engine," IEEE
computer graphics and applications, pp. 10-12, 2005.
http://dx.doi.org/10.1109/MCG.2005.67

[55] P. McDowell, et al., "Delta3D: a complete open source game and
simulation engine for building military training systems," The
Journal of Defense Modeling and Simulation: Applications,
Methodology, Technology, vol. 3, p. 143, 2006.
http://dx.doi.org/10.1177/154851290600300302

[56] J. Orkin, "Three states and a plan: the AI of FEAR," in
Proceedings of the Game Developer's Conference 2006.

[57] (2011, 2011-06-10). The Spring Project. Available:
http://springrts.com/

[58] M. Muratet, et al., "Towards a serious game to help students learn
computer programming," International Journal of Computer
Games Technology, vol. 2009, pp. 1-12, 2009.
http://dx.doi.org/10.1155/2009/470590

[59] (2011, 2011-06-10). TORCS. Available:
http://torcs.sourceforge.net/

[60] B. D. Coller and D. J. Shernoff, "Video game-based education in
mechanical engineering: A look at student engagement,"
International Journal of Engineering Education, vol. 25, pp. 308-
317, 2009.

[61] E. F. Anderson and C. E. Peters, "No More Reinventing the
Virtual Wheel: Middleware for Use in Computer Games and
Interactive Computer Graphics Education," presented at the 31st
Annual Conference of the European Association for Computer
Graphics - Eurographics 2010 Education Papers, Norrköping,
Sweden.

[62] O. Shabalina, et al., "GAME-BASED APROACH IN IT
EDUCATION," in Human Aspects of Artificial Intelligence, ed
Sofia, Bulgaria: Institute of Information Theories and
Applications, 2009, pp. 63-69.

[63] (2011). Pygame - Python Game Development. Available:
http://pygame.org

[64] A. Eliens and S. Bhikharie, "Game@ VU–developing a
masterclass for high-school students using the Half-life 2 SDK,"
Proc. GAME’ONNA, pp. 19-21, 2006.

[65] M. S. El-Nasr and B. K. Smith, "Learning through game
modding," Computers in Entertainment (CIE), vol. 4, pp. 1-20,
2006. http://dx.doi.org/10.1145/1111293.1111301

[66] T. Wright, et al., "Creative player actions in FPS online video
games: Playing Counter-Strike," Game studies, vol. 2, pp. 103-
123, 2002.

[67] N. Cole, et al., "Using a genetic algorithm to tune first-person
shooter bots," in Proceedings of the 2004 Congress on
Evolutionary Computation IEEE, 2004, pp. 139-145.

[68] Y. W. Bernier, "Latency compensating methods in client/server
in-game protocol design and optimization," in Game Developers
Conference, 2001.

[69] J. T. Bell and H. S. Fogler, "Implementing virtual reality
laboratory accidents using the Half-Life game engine, WorldUp,
and Java3D," in Proceedings of the 2003 American Society for
Engineering Education Annual Conference & Exposition, 2003.

[70] L. Nacke, et al., "Log who’s playing: psychophysiological game
analysis made easy through event logging," Fun and Games, pp.
150-157, 2008.

[71] A. K. Przybylski, et al., "The motivating role of violence in video
games," Personality and Social Psychology Bulletin, vol. 35, p.
243, 2009. http://dx.doi.org/10.1177/0146167208327216

[72] S. McQuiggan, et al., "Story-based learning: The impact of
narrative on learning experiences and outcomes," in Intelligent
Tutoring Systems 2008, Montreal, Canada, 2008, pp. 530-539.

[73] J. Raessens and J. H. Goldstein, Handbook of Computer Game
Studies. Cambridge: MIT Press, 2005.

[74] K. Salen and E. Zimmerman, Rules of Play: Game Design
Fundamentals: The MIT Press, 2004.

[75] J. Gregory, Game Engine Architecture. Natick, Massachusetts: A
K Peters Ltd, 2009.

[76] E. Raymond, "The cathedral and the bazaar," Knowledge,
Technology & Policy, vol. 12, pp. 23-49, 1999.
http://dx.doi.org/10.1007/s12130-999-1026-0

AUTHORS
J.M. Lothian is with The Pennsylvania State Universi-

ty, University Park, PA 16802 (e-mail: jlothian@psu.edu).
J.Ryoo is with The Pennsylvania State University, Al-

toona, PA 16601 (e-mail: jryoo@psu.edu)
This article is an extended and modified version of a paper presented

at the 2011 Interdisciplinary Conference of AHLiST, held May 20-22,
2011, at College of Technology, University of Houston, TX, USA. Sub-
mitted 16 June 2013. Published as re-submitted by the authors 08 No-
vember 2013.

20 http://www.i-jet.org

