
PAPER
PROJECT-DRIVEN LEARNING-BY-DOING METHOD FOR TEACHING SOFTWARE ENGINEERING USING VIRTUALIZATION…

Project-Driven Learning-by-Doing Method for
Teaching Software Engineering Using

Virtualization Technology
http://dx.doi.org/10.3991/ijet.v9i9.4006

Kun Ma, Hao Teng, Lixin Du, and Kun Zhang
University of Jinan, Jinan, China

Abstract—Many universities are now offering software engi-
neering an undergraduate level emphasizing knowledge point.
However, some enterprise managers reflected that education
ignore hands-on ability training, and claimed that there is the
isolation between teaching and practice. This paper presents
the design of a Software Engineering course (sixth semester
in network engineering) at University of Jinan for under-
graduate Software Engineering students that uses virtualiza-
tion technology to teach them project-driven learning-by-
doing software development process. We present our motiva-
tion, challenges encountered, pedagogical goals and ap-
proaches, findings (both positive experiences and negative
lessons). Our motivation was to teach project-driven Software
Engineering using virtualization technology. The course also
aims to develop entrepreneurial skills needed for software engi-
neering graduates to better prepare them for the software in-
dustry. Billing models of virtualization help pupils and instruc-
tors find the cost of the experiment. In pay-as- you-go manner,
two labs and three step-by-step projects (single project, pair
project, and team project) are designed to help the students to
complete the assignment excitedly. We conduct some detailed
surveys and present the results of student responses. The
assessment process designed for this course is illustrated.
The paper also shows that learning-by-doing method corre-
lates with the characteristics of different projects, which has
resulted in a successful experience as reported by students in
an end of a semester survey.

Index Terms—Learning by doing, software development
process, software engineering, teaching, virtualization

I. INTRODUCTION

Software engineering is a mature discipline that plays
an increasingly important part in a technology-enabled con-
nected world. These changes in this new century are prob-
ing the boundaries of software engineering education and
training. It is often claimed that new technologies can help
educators to make a difference in software engineering
teaching and learning at the undergraduate and graduate
level [1]. Traditional software engineering focuses on the
knowledge point teaching of requirement, design, develop-
ment and testing of a desktop computer or Web application.
Common language usage is either C++ or Java. However,
the spoon-feeding method of teaching often tends to make
the traditional classroom teaching dull and tedious. It ig-
nores the training of application and manipulative ability.
Some enterprise managers complained that college gradu-
ates could not meet the requirement for talent raining out
of touch with business needs, and they are not familiar with
the popular software engineering tools. Current status of the

talent cultivation in software engineering has been
disjointed to it [2]. Therefore, the motivation of our
course is more turned toward professional ability train-
ing that the engineers face in the real world, including
emerging development method and usage of recent
software tools.

Currently, Virtualization Technology (VT) is one of
significant technologies that provide maximum benefits
and opportunities for research and education [3]. The
infrastructure in the cloud provides an experimental
environment for testing and deploying applications.
An innovative idea is how to benefit teaching of soft-
ware engineering from the emerging virtualization
techniques [4]. Accordingly, this paper will showcase
how alternative virtualization technologies have been
already successfully leveraged in teaching of software
engineering to senior students.

We have made significant development efforts to ar-
chitect a lightweight virtualization platform, which will
direct students to test and deploy applications that
they develop. By using such a platform, computational
resources to be allocated are in a pay-as-you-go manner.
This change is beginning to percolate into undergradu-
ate curriculum. We emphasize the design and imple-
mentation of an application with lowest cost that is
evaluated by the billing models caused by virtualiza-
tion.

There are many other challenges as the frontiers of
software engineering education and training [5]. For
example, how to apply the software engineering
knowledge in software development process? How to
make students understand software engineering princi-
ples through interactive development? How to apply
some emerging techniques in teaching of software en-
gineering?

The contributions of this paper are several folds.
First, this paper describes the experiences and lessons
on integrating virtualization into senior software engi-
neering course, allowing testing and deploying appli-
cations in virtual machines. We started this profes-
sional curriculum to the students who majored in
network engineering at University of Jinan (UJN),
which was ordinarily taken by students in the sixth
semester. To make the course more relevant to current
computing challenges, we made virtualization an im-
portant theme of software engineering. We wanted to
emphasize virtualization at all levels, from concept to
application. For the past two years, we have used the
virtualization as the experimental environment. We had

26 http://www.i-jet.org

PAPER
PROJECT-DRIVEN LEARNING-BY-DOING METHOD FOR TEACHING SOFTWARE ENGINEERING USING VIRTUALIZATION…

33 students in 2013, and 23 students in 2014. Moreover,
we had an assistant, who was responsible to the laboratory
education.

Second, we want the students to understand principles of
software engineering, and overcome any resistance and
obstacles that students meet during collaborative develop-
ment process. Therefore, three step-by-stop leaning-by-
doing projects are introduced.

Third, clouds make the cost and efficiency explicit. For
many instructors and pupils, the virtualization platform
will be a novel environment, in which students are given
quotas for virtual resources available to them. This new
experimental environment is different from traditional soft-
ware engineering lectures. In the cloud, users rent resources
for testing and deploying applications. This alternative offers
an experimental testing and deploying environment, which
is the tradeoff between efficiency and cost. Accordingly, we
will design this course to teach software engineering using
this technology.

Beyond technical aspects, the discussion of the pedagogi-
cal benefits will help instructors and pupils find motiva-
tions to give a practical try to lightweight virtualization
solutions in software engineering course. Therefore, our
objectives are to foster the kind of hands-on practical ability
in the perspective. The success of this software engineering
curriculum is a typical case of the integration with cloud
platform.

The remainder of the paper is organized as follows. The
related work is discussed in Section II. In Section III, we
introduce an overview of technological and pedagogical
goals and methods. Section IV presents the course design. In
Section V, we evaluate our experience in several dimen-
sions, such as student work, student satisfaction, and case
teaching. In Section VI, we analyze several negative lessons
learned. Brief conclusions and future research directions are
outlined in the last section.

II. RELATED WORK

Several schools are now teaching software engineering
as part of their undergraduate curriculum. Next, we sum-
marize these efforts in contrast with our own.

Teachers in some universities teach software engineering
using object-oriented principles. The success of the course
comes from the way in which object oriented design, soft-
ware engineering process and the case study work so well
together. They are used to teaching waterfall-like model in
the textbook, but ignore the changes of software develop-
ment process with some new techniques in reality. It leads to
some inconsistency between the knowledge hierarchy and
practical needs.

Recently, there are some popular ways to teach software
engineering abroad. The first way is the Massive Open
Online Course (MOOC), which has recently gained high
popularity among various universities and even in global
societies [6]. Students from a variety of geographical loca-
tions, can learn software engineering online. However, this
way has some drawbacks on assignment grading due to
the lack of enough interaction between teachers and stu-
dents. For example, the Coursera MOOC on ”Software
Engineering for SaaS” taught by Fox and Patterson adopted
an auto-grader based on a test suite prepared by the teach-
er [7]. However, the grading effectiveness heavily depends
on the quality of the prepared test suite. Monash Universi-
ty owns large-scale students who enroll in software engi-

neering. Teachers has developed a course centered
around a large but enjoyable software project.

”Do more with less” (higher pass rates and higher
student satisfaction) is the basic principle to achieve
even higher quality results. Teachers in Microsoft at-
tempt to take the development of an interactive game
as a typical case with a strategy for teaching univer-
sity students the dynamics of a software project [8].
Teachers in Jackson State University taught software
engineering through the use of innovative mobile appli-
cation development [9]. Developing applications for
mobile devices provides the opportunity to meet
both of these requirements while introducing under-
graduate and graduate students to topics and skills
that can contribute to their employability.

III. OVERVIEW

A. Technological and Pedagogical Goals
First, we wanted instructors and pupils to see the ac-

tual cost of resources that are caused by the applica-
tions they develop. This cost is considered as the evalua-
tion criterion of the quality of the software development
process. Second, we wanted students to experience
project-driven learning in practice. They will have fun
in the collaborative labs and projects. Third, we
wanted students to experience developing and testing
in different virtual machines. Three machines are
assigned to each pupil to do the experiment. Consid-
ering the number of students, using purely physical
university IT resources (40 machines per room) would
have forced unacceptable infrastructure costs. Last, we
wanted the students to master principles of software
engineering by solving the concerns they meet during
the software development process.

B. Technological and Pedagogical Methods
The focus on this paper is inspired by the oppor-

tunities and challenges of cloud to be applied in soft-
ware engineering course, rather than the technology
itself. We answer four questions: Can we effectively
make the students understand knowledge points of
software engineering, and present the cost of this
process using cloud economical billing models? Can
students manage virtual machines to test and deploy
applications they develop? Can students write a testing
script to evaluate the applications they develop? What
difficulties do senior students confront with during
collaborative labs and projects, and what will they do
to solve these issues?

C. Billing Model
Billing is the most important module of the virtual-

ization platform. In the pay-as-you-go manner, we de-
signed the post- paid billing model of virtual resources.
We created the on- demand instances to let students
pay for the resources by hour or number of times.
This price is just to evaluate our expense on the devel-
opment process. The price details are listed in Table I.
The configuration of the guest VM is one CPU, 1G
memory, 10G non-system disk, and 10 M bps band-
width. Since it is encouraged that students use green
computing techniques, the cost of the guest VM with
lower CPU utilization is low fee-based.

iJET ‒ Volume 9, Issue 9: "Blended Learning", 2014 27

PAPER
PROJECT-DRIVEN LEARNING-BY-DOING METHOD FOR TEACHING SOFTWARE ENGINEERING USING VIRTUALIZATION…

TABLE I.
THE PRICING OF THE CLOUD BILLING.

On-demand instances Usage

Creating of guest VM
Start or stop VM
Guest VM (CPU utilization < 30%)
Guest VM (CPU utilization > 30%)

CNY 1 per time
CNY 0.1 per time
CNY 0.15 per hour
CNY 5 per hour

At the end of the semester, the details of billing were

sent to the students. Although instructors and pupils could
use this platform we developed for free, the billing was
just helping them understand the economic model of cloud
computing. Our budget was for CNY 100 per student per
semester. But we estimated that cloud usage could easily
exceed the expectation based upon our experience. We
anticipated that most of our usage would occur shortly
before the deadline. We have also made extra budget for
students who made mistakes and needed additional resources
could still complete the assignment. We wanted the stu-
dents to fully utilize resources using the least expensive.

IV. COURSE DESIGN

We wanted students to understand the principles of
soft- ware engineering and experience software develop-
ment (coding, testing and deploying) using the virtualiza-
tion platform. Therefore, we designed our assignments to
be sufficiently measurable that it would be obvious why
one would want to rent virtual resources rather than use
one’s own machines. We choose some testing scripts to
evaluate the performance of applications students develop
because the cost and efficiency benefits are more apparent
using billing models. In this study, we use these testing
scripts to evaluate the performance of each application.

It was important to us that students used the same
tools that professionals use as much as practical. One
reason was teaching students the mature tools. Another
was that we did not want students to form the impression
that they only do simulation experiments. We wanted stu-
dents to understand that the development process is per-
vasive when they do in the enterprise.

Originally, our programming language of the assign-
ments was Java. This relied on that Java course is taught
before the sixth semester in our university.

A. Labs
Our course had two hours labs to utilize the popu-

lar soft- ware engineering tools in year 2013 and 2014,
which is shown in Table II. The first lab is experienc-
ing version control tool, and the second lab is experi-
encing UML tool. An integrated tool may be employed
that assists the student in learning not only how to de-
velop applications collaboratively but also how to man-
age the project team. All the labs served as tutorials
and preparatory work for the project assignments.

B. Projects
We had only one team project in the year 2013. We

adopt a waterfall-like model to develop applications
collaboratively. Some feedbacks of students indicate that
students cannot learn much as we expect. Therefore,
we switched the project to three groups in 2014. We
want the students to experience more than before. Be-
sides, we added an demonstrative case to teach students
by hand in the year 2014.

The first project is single project with two class hours.
Each pupil will think about the historical software as-
signment of the leading course in the prospective of
software engineering. The second project is pair project
with four class hours. In this project, one student will
cooperate with another peer to develop an application.
The assignment is usually accompanied by both stu-
dents. The third project is agile team project with six
class hours. Several students (from 3 to 5) are grouped
to develop the applications together.

We have an intermediate check at the end of the pair
project, which is just an acquaintance of the project
progress to direct the students to answer questions and
complete the assignment successfully.

C. Lectures
Beside labs and projects, we had 48 class hours of

lectures (average 3 class hours per week) to teach soft-
ware engineering knowledge and cases. These lectures
are just up to one semester. We had one written exam-
ination at the end of the semester. Students were as-
sessed primarily on their projects and the examinations.

TABLE II.
ASSIGNMENTS USED.

Semester Line of Code Description Time
2013/2014 0 Lab 1: version control tool 2 class hours
2013/2014 0 Lab 2: UML tool 2 class hours

2014 200 Project 1: single project 2 class hours
2014 200 Phase 1: object-oriented coding after class
2014 0 Phase 2: unit testing 1 class hour
2014 0 Phase 3: performance analysis 1 class hour
2014 500 Project 2: pair project 4 class hours
2014 0 Phase 1: role assignment 2 class hours
2014 500 Phase 2: object-oriented coding after class
2014 0 Phase 3: code review 2 class hours

2013/2014 1500 Project 3: agile team project 6 class hours
2013/2014 0 Phase 1: project start 2 class hours

2013/2014 0 Phase 2: rapid iterative process (requirement analysis, design, development, and
testing) 4 class hours

28 http://www.i-jet.org

PAPER
PROJECT-DRIVEN LEARNING-BY-DOING METHOD FOR TEACHING SOFTWARE ENGINEERING USING VIRTUALIZATION…

V. EXPERIENCES LEARNED

This section evaluates our experience in several dimen-
sions. First, we evaluate the quality of student work of labs
and projects. Second, student satisfaction is also surveyed to
improve the teaching of software engineering. We empha-
size case teaching and collaborative development, because it
is tied directly to our pedagogical goal. When using this
platform, the cost per student becomes visible to both in-
structors and pupils in a way that is not currently common
in other courses.

A. Student Work
First, all the students completed Lab 1 and 2. They

were experiencing the use of version control and UML
tools. The potential peak for our assignment was approxi-
mately 90 virtual machines (3 VMs per student and about
30 students) using over-commit technology. As a rule of
thumb, most of the students will do the experiments near
the intermediate checking point and the last deadline. This
might run out of the virtual machines since the virtual
resources (at most 70) are limited. We wished enough stu-
dents to do the assignment early. So we decided to record
the number of active virtual machines for further observa-
tion. Fortunately, this has not caused any issues we worried.

Second, we provided students with testing scripts to
launch automated software performance test. These scripts
were responsible for the necessary billing. Most students
got closer and right results, which reached the expecting
target basically. That some students submit anomalous
results is also useful pedagogically. Students benefit from
seeing what happened to them or their classmates at least.

Last, the overall quality of case teaching impressed us.
In the year 2013, 42.1% of student projects passed all our
test use cases, and many more failed only due to minor bugs
that could have been caught with more testing. 93.6% of
student projects passed design report test. It is surprising
to us that some students who failed programming complet-
ed the report test. It is an important reminder for all of us
that students who memorized the knowledge points me-
chanically were lack of the ability in practice.

We want students to complete all the assignment in
class except class preparation and some coding. Table III
shows average time and energy of students take. It is shown
that students invest more time and energy after curriculum
reform.

B. Student Satisfaction
We now turn to quantitative evaluation of how well our

course ran in terms of student satisfaction. At the end of
the 2013 semester, we made a survey to our class. We
asked students to rank the two labs and one project in
terms of value. The first two labs are impressive. Table
IV shows the feedback of student satisfaction. About 70%
of students listed that team project was the most important,
another 20% considered it general, and 10% did not care
about team project. However, the project received some
criticism. The students who were dissatisfied primarily
focused on the unfamiliarness with collaborative program-
ming. Many students had comments like ”I didn’t know
what to do in the team project, since we had no experi-
ences on it”. After we change this project to three step-
by-step projects (single project, pair project and team pro-
ject), this course has won the praise of instructors and

pupils. We conclude that students are passionate
about the assignment, even given its deficiencies and
challenges. In general, the labs and projects were overall
definitely still worth it.

We asked students definitely whether they would
promote continuing or replacing the current labs or
project. The survey results were shown in Table V. 65%
of students advised to remain unchanged, and another
25% marked ”Although there are pros and cons, it is
better to keep it.” Only 5% marked ”better to drop”
without specific suggestions. Last, about 5% selected
”definitely drop”. Only one student choosing ”drop”
commented ”These labs and projects are too simple.”.
When all things are considered together, we still believe
that the difficulty is moderate to most of students.

Several students thought that the project was valu-
able to upgrade their professional knowledge. One stu-
dent commented:

”Too many employers are seeking for the graduates
who are good at skills of team development. This cur-
riculum is helpful to improve their competitiveness of
employment.” Another noted that ”employers at job
fairs really seemed to like the professional talents in
this field!”.

We designed a questionnaire to get more details.
Table VI shows the result. The standard for evaluation
is shown as 1: lowest level; 3: basic written knowledge;
5: capable of passing enterprise interview; 8: flexible
use; 10: master theory and practice. It is shown that
this course works well in the last two years.

TABLE III.
AVERAGE TIME AND ENERGY OF STUDENTS TAKE.

Survey Item
2012 semester
(Traditional

SE)

2013 semester
(Our SE)

2014 semester
(Our SE)

Number of students 30 33 23

Hour per week 2+0.5 3+1 3+1

Code line per student 0 3000 4000

TABLE IV.
QUESTIONNAIRE ON SATISFACTION.

Grade Comments Support proportion

Positive Team project was most important 70%

Cautious Team project was general 20%

Negative Not care 10%

TABLE V.
QUESTIONNAIRE ON THIS COURSE.

Positive comments Proportion of course

attendees remain unchanged 65%
better to keep 25%

Negative comments proportion of course
attendees better to drop 5%
definitely drop 5%

iJET ‒ Volume 9, Issue 9: "Blended Learning", 2014 29

PAPER
PROJECT-DRIVEN LEARNING-BY-DOING METHOD FOR TEACHING SOFTWARE ENGINEERING USING VIRTUALIZATION…

TABLE VI.
SELF EVALUATION.

survey item 2013 semester (before) 2013 semester (after) 2014 semester (before) 2014 semester (after)

Overview 2.9 4.1 2.3 4.9
Requirement Analysis 2.8 4.6 2.7 4.9
Project Management 2.7 4.8 2.6 4.8
Design 3.1 4.8 3.0 4.8
Coding 3.7 5.6 3.3 5.4
Testing 2.7 4.5 2.4 4.8

C. Case Teaching
We present an occurrent case-study on teaching an un-

der- graduate level course on software engineering. Our
approach has two main elements: start delivery of real pro-
ject and rapid iterative process. This project originated from
a real project of our development groups. We had 4 mem-
bers (a project supervisor, a technical manager, a system
analyst and a coding engineer) in this group. We adopted
agile development models. Project start costs us two weeks.
The delivery includes recapitulative requirement, software
architecture, business pro- cess, statistical statement, sched-
uling, staffing and quote. We provided the students video
recording of our rapid iterative process in class to show
project review, daily stand-up meet- ing, automated testing
and pair programming in practice.

VI. LESSONS LEARNED

Generally, our experiment using virtualization platform
we developed for undergraduate worked well. Even so,
what is more worthy of reflection are several lessons
learned.

A. Resources Waste
Inefficiency was the waste rather than costs. Some stu-

dents accidentally left virtual machines running idle. We had
written a script running in the hypervisor to automatically
shut down virtual machines after a period of inactivity,
though we did not always enable this feature initially.

A much larger problem was that some students would re-
start a new session of their entire experiment after any
technical glitch or mistake. Consequently, many students
would start a fresh set of virtual machines (killing and re-
moving the old ones) each time they experienced a glitch.
That is because solving the problem sometimes is more
complicated than creating a new environment. Thus, this
could get expensive quickly.

Our virtualization platform was only available on the
cam- pus hosts, so students were seeking to use the virtu-
alization platform from dormitories remotely. But these
students were generally not aware of tools like SSH client
or VNC remote desktop that would let them maintain their
session on the instructional machines after the failure on the
network. More- over, students assumed incorrectly that they
could not continue using their existing session when they
reconnected. This leads to the failures to reclaim memories
or release resources.

B. Step-by-step Development Process
In the 2014 semester, we adopt step-by-step strategy to

enrich the projects, since some students in the 2013 semes-
ter complained that the development process is difficult to
learn. The step-by-step process is essentially the breaking

down of the development to gain insight into the issues
with different- sized groups.

In single project, the point lies unit testing and script-
based performance testing. In pair project, it is refined
in role assignment and code review. Code review refers
to some reviews during pair programming. During pair
programming, developers write, inspect, and change
the code continuously. A code review, in contrast, in-
volves inspecting the code later, usually when the
author thinks it is ready for deployment. In this
process, both students are used to solving the issues
collaboratively. In agile team project, students can ex-
perience more than single and pair project, such as pro-
ject start delivery and rapid iterative process. This
change has drawn more attention from students to con-
cern about the experiment.

Figure 1 shows the project tasks left as the day pro-
gresses. It is concluded that students will not accelerate
progress until the checking point. In the new semester of
2015, we will make the check point every two weeks.
This will force the students to do the experiment in
each class.

C. Leading Knowledge Training
In the 2013 semester, some students complained

that they have not learned some basic software devel-
opment skills due to failing some leading courses. In
the 2014 semester, the course assistants added two
class hours lecture to train students basic methods of
unit testing, script testing, and IDE debugging.

D. Objective Evaluation
We simplified the homework. For single and pair

project, only a table was submitted as a homework. For

Figure 1. Project tasks left as the day progresses.

30 http://www.i-jet.org

PAPER
PROJECT-DRIVEN LEARNING-BY-DOING METHOD FOR TEACHING SOFTWARE ENGINEERING USING VIRTUALIZATION…

team project, a report table was submitted as a homework.
We do not want the students to do their assignments until
the last minute, and want them to complete it in class.

We make the team project to be a game. The program
speed, numbers of testing case, click count of the pub-
lished project website are all the objective factors to de-
termine the experimental results.

VII. CONCLUSIONS AND FUTURE WORK

We have developed the virtualization platform to teach
project-driven software engineering and bill for each stu-
dent adapted to academic needs. There are still some lessons
learned, but we have achieved tremendous benefits.

The cost to each student was calculated by the account.
In the year 2013, we only spent CNY 98 per student on
average. While in the 2014 version of our course, we only
spent CNY 83 per student on average to save resources. The
result of student satisfaction survey showed that students
were satisfied with the course design as a whole.

Another outstanding success is the step-by-step projects.
Students retrospected a program they develop in the
prospec- tive of software engineering, to experience unit
testing and performance analysis. In pair project, both
students have been working together to do code review.
Students have fun during team project to complete the as-
signment. The results of some surveys indicate learning-by-
doing pedagogical method is feasible in practice.

We will improve the teaching in the year 2015. We are
adding two class hours to discuss on the issues student
meet in the experiments.

REFERENCES
[1] Carter, Adam S., and Christopher D. Hundhausen. ”A review of

studio- based learning in computer science.” Journal of Computing
Sciences in Colleges 27.1 (2011): 105-111.

[2] Jaramillo, Carlos Mario Zapata, and Maria Clara Gomez Alvarez.
”In- corporating Playful Activities in the Software Engineering

Teaching.” Developments in Business Simulation and Experien-
tial Learning 41 (2014).

[3] Caminero, A. C., et al. ”Obtaining university practical compe-
tences in engineering by means of virtualization and cloud com-
puting technolo- gies.” 2013 IEEE International Conference on
Teaching, Assessment and Learning for Engineering (TALE).
IEEE, 2013.

[4] Sommerville, Ian. ”Teaching cloud computing: a software
engineering perspective.” Journal of Systems and Software
86.9 (2013): 2330-2332. http://dx.doi.org/10.1016/j.jss.2013.
01.050

[5] Sureka, Ashish, et al. ”A Case-Study on Teaching Undergrad-
uate-Level Software Engineering Course Using Inverted-
Classroom, Large-Group, Real-Client and Studio-Based Instruc-
tion Model.” arXiv preprint arX- iv:1309.0714 (2013).

[6] Coetzee, Derrick, et al. ”Should your MOOC forum use a
reputation sys- tem?.” Proceedings of the 17th ACM conference
on Computer supported cooperative work & social computing.
ACM, 2014.

[7] Fox, Armando, and David Patterson. ”CS169: Software Engi-
neering, University of California, Berkeley.” Computer Science
Curricula 2013 (2013).

[8] Tillmann, Nikolai, et al. ”Teaching and learning programming
and software engineering via interactive gaming.” 2013 35th In-
ternational Conference on Software Engineering (ICSE). IEEE,
2013.

[9] Skelton, Gordon W., Jacqueline Jackson, and F. Chevonne
Dancer. ”Teaching software engineering through the use of
mobile application development.” Journal of Computing Sci-
ences in Colleges 28.5 (2013): 39-44.

AUTHORS
Kun Ma, Hao Teng, Lixin Du, and Kun Zhang are

with the Shandong Provincial Key Laboratory of Net-
work Based Intelligent Computing University of Jinan,
Jinan, China.

This work was supported by the Teaching Research Project of
University of Jinan (J1344 and JZC12100), and the Doctoral Fund of
University of Jinan (XBS1237). Submitted 04 July 2014. Published as
resubmitted by the authors 15 October 2014.

iJET ‒ Volume 9, Issue 9: "Blended Learning", 2014 31

