
ENVELOPE TRANSACTION MECHANISM FOR A CLUSTER OF PEERS

Envelope Transaction Mechanism for a
Cluster of Peers

doi:10.3991/ijim.v3s2.953

Sushil Kulkarni1 and Mukund Sanglikar2
1 Jai Hind College, Mumbai, India.
2 Mithibai College, Mumbai, India.

Abstract—A new approach for mobile transaction process-
ing is presented in a cluster of peers. A cluster is a dynamic
collection of mobile hosts called peers that are clustered
around a single mobile host called a centroid to form a tem-
porary work group for processing and exchanging informa-
tion. All peers are connected to the centroid using a short
range wireless network. All peers and the centroid are
members of a peer connected set. The centroid is chosen in
such a way that it has a strong connection to the mobile
support station. After collecting data from a server, the cen-
troid is free to disconnect from the server and ready to cre-
ate its own cluster of peers. A dynamically configurable
data processing space, called envelope repository, is created
to process various transactions at the centroid. The proc-
essed data is kept in an envelope at a private work space of
the centroid and is brought to the envelope repository
whenever required. Peer initiates a jumping transaction to
fetch data objects to the centroid. The jumping transaction
initiates an envelope transaction to acquire the necessary
locks on data objects at envelope repository. After getting
the locks, pseudo transaction processes the data objects to
give the result stored in an envelope. Envelope pseudo write
protocol is designed to make jumping transactions globally
serialized.

Index Terms—Envelope repository, Envelope P-write proto-
col, Expected and average expected cost, Peer connected set.

I. INTRODUCTION
In the domain of telecommunications, there is an in-

crease in the emergence of portable devices, which makes
mobile computing a reality. However, many challenging
issues are faced by users to take part in mobile computing
while moving in an efficient and quasi-transparent man-
ner. All mobility applications tend to have a large central
server and use mobile platforms only as caching devices.
We want to increase the role of mobile hosts to allow the
mobile user to process the data independently or with
servers.

A mobile environment is a geographical territory and is
a collection of areas called closed spheres. Wireless com-
munications in each closed sphere is provided by a single
low-power transmitter-receiver [4]. There might be some
areas in mobile environments in which wireless communi-
cation is not available like concrete tunnels. Thus, a mo-
bile environment is a collection of closed spheres that are
separated or overlapped with each other. Every closed
sphere contains a mobile support station [30] for commu-
nication between mobile hosts or fixed database servers.
Mobile support stations are connected via a wired (fixed)
network. Mobile hosts or database servers with the mobile

support stations are connected via wireless networks.
Compared to wired networks, wireless networks are char-
acterized by: lower bandwidth, unstable, disconnections,
and ad-hoc connectivity [4]. A wireless network does not
have the same capacity as a wired network. For example,
a wireless network has bandwidth of the order of 10Kbps
or a wireless local area network (WLAN) has bandwidth
of 10 Mbps [4].

Mobile hosts like laptops, PDAs, and cellular phones
are portable mobile computing devices [30] which have
the capability to cache and process a limited amount of
information. Database servers are stationary computers
and are connected via high speed wired-networks, and
play roles as permanent data storage repositories.

Mobile hosts move in mobile environments and carry
out tasks called mobile tasks. While being in a closed
sphere, a mobile host can be either connected or discon-
nected with the mobile support station of this closed
sphere. A set of mobile hosts of a closed sphere are linked
together on demand using wireless (ad hoc) networks. At
any given time a subset of mobile hosts are disconnected
or a new subset of mobile hosts can be added in the ad hoc
network [27]. Communication between a set of mobile
hosts and a server is through wireless network.

A peer-to-peer (P2P) network is an ad hoc network and
can be built on the wireless network. In P2P, server and
mobile hosts are called peers. A server and set of mobile
hosts is called a peer group. In a peer group, the server is
always a member but mobile hosts keep on adding or de-
leting. Mobile hosts communicate via short-range wireless
technologies such as IEEE 802.11, Bluetooth, UMTS, or
UWB.

With such communication mechanisms, mobile hosts
receive information from their neighbors or from remote
objects by multi-hop transmission relayed by intermediate
mobile hosts. Peer groups or a cluster of peers can provide
services to their member peers but are also accessible by
peers of other peer group in the P2P network.

Mobile work in a mobile environment is an active re-
search field [20, 22]. A transaction in a mobile environ-
ment is different from distributed databases in many ways
[8]. To support mobile computing, the process of transac-
tion should support the limitations of mobile processing,
disconnections and power supply. Operations on shared
data should guarantee transactions to commit at servers
and mobile hosts. Mobile transactions must provide local
atomicity to allow the transaction to commit on mobile
hosts despite disconnections [12].

In this paper, we propose and design a comprehensive
model for a transaction processing system for a cluster of

iJIM – Volume 3, Special Issue 2: Technical Basics, October 2009 41

http://dx.doi.org/10.3991/ijim.v3s2.953�

ENVELOPE TRANSACTION MECHANISM FOR A CLUSTER OF PEERS

peers. This system has the ability to support mobile data
sharing and cope with the dynamic changes happening in
mobile environments.

Section 2 briefly provides a survey of a few transaction
processing models. Section 3 discusses the behavior of a
mobile host. Section 4 gives dynamic creation of a cluster
and its properties related to mobile environment. Section 5
is devoted to explaining a mobile data processing space
called the envelope repository. Section 6 and 7 explain
mobile transaction processing and the envelope transac-
tion mechanism for a cluster of peers. Section 8 gives the
different cost measures of our envelope transaction
mechanism and finally we give how it is implemented in
Section 9.

II. RELATED WORK
In this section, we will briefly overview some of the

previous work done for designing mobile transactions in
mobile environment.

The Report and co-transaction model [2] is based on a
reporting transaction RT shares its partial results to top
level transaction TT by delegating its operations. The
delegation process can take place any time during the exe-
cution of transaction RT. A co-transaction is a reporting
transaction, but it cannot continue executing during the
delegation process. This model does not support mobility
of mobile host from one cell to another and disconnection
is not supported. [6, 10] is nested transaction model,
which focuses on disconnected transaction processing
with client-server architecture. Top-level transactions are
executed at fixed hosts, and sub transactions are executed
at mobile hosts. The execution of sub-transactions at the
mobile host is archived using the concept of compact ob-
ject. The model does not discuss mobility of the mobile
host. The model requires high capacity resources at mo-
bile hosts and distributed transaction processing is not
supported. For each data object, there is a master copy and
several replicated copies. There are two types of transac-
tions: Base and Tentative. Base transactions operate on the
master copy, while tentative transactions access the repli-
cated copy version. A mobile host can cache either the
master or the copy versions of data objects. While the
mobile host is disconnected, tentative transactions update
replicated versions. The model does not support the mo-
bility of transactions. The Weak-Strict transactions model
[14] defines two types of transaction: weak and strict.
These transactions are carried out within the clusters that
are a collection of connected hosts which are connected
via high-speed and reliable networks. In each cluster, data
that is semantically related is locally replicated. Mobility
of transaction is not discussed in detail in this model. The
distributed transaction processing among mobile hosts in a
cluster is not discussed. [16, 18] model aims to increase
the data availability at mobile hosts. This is achieved by
allowing a transaction on a mobile host to submit pre-
write operations that write the updated data values, and
then issue a pre commit state to the mobile support station.
After that, the rest of the mobile transaction can be carried
out and finally committed at fixed hosts. A mobile host
does not play any role in the execution of the transaction.
The molex transaction model [1] is based on top of multi-
database and split-join transactions. A Mofix transaction is
accompanied with success and failure transaction depend-
ency rules. In the Adaptable Mobile Transaction model
[3], a mobile transaction service is proposed to support the

adaptability of mobile transaction execution with three-tier
client/agent/server architecture. The Kangaroo Transac-
tion Model [5] is designed to capture the movement be-
havior and the data behavior of transactions when a mo-
bile host moves from one mobile cell to another. This
transaction model is built based on the concepts of global
and split transactions in a heterogeneous and multi-
database environment. The global transaction is split when
the mobile host moves from one mobile cell to another
and the split transactions are not joined back to the global
transaction. The Kangaroo transaction model assumes that
the mobile transactions may start and end at different loca-
tions.

III. BEHAVIOR OF MOBILE HOSTS
Behavior of mobile host (M) in mobile environment is:
(a) Stable state of M: M is in stable state if jumping

condition, | S – M | < r, where r is the radius of a closed
sphere and M is static or moving inside a closed sphere
with no disconnection of M with the mobile support sta-
tion. A mobile host is said to be in static state either when
its movement velocity is zero, or when the location of the
mobile host is not considered changing within a period of
time. For example, bus stops at a bus-stop to pick up pas-
sengers, a salesman is selling products at a shopping cen-
tre, or two mobile hosts are always moving close to each
other. A mobile host is in a moving state if the velocity is
greater than zero or the location of M is moving over a
time and change direction of movements of M. For in-
stance, a passenger is travelling by bus; a post man deliv-
ers letters in a closed sphere.

(b) Restrictions of M: M possesses restrictions because
mobile computers have a limited energy supply, less stor-
age capacity, and limited functionality compared to sta-
tionary computers. The storage capacity of a mobile com-
puter (i.e., hard disks or memory) is much less than a sta-
tionary computer and is harder to be expanded. Therefore,
a mobile host may not be able to store the necessary data
that is required for its operations in disconnected mode. If
disconnection occurs at M, then the state of M is called
isolation state. In this state, the connection to other M is
established but not using mobile support station (MSS).
Disconnection may occur because of different factors like,
M moves out of the wireless communication range, net-
work services are not available, or M is running out of its
energy. The isolation state is further refined to an autono-
mous and idle state. In an autonomous state, M can proc-
ess the transaction on data objects available at M. If M can
not do any operation or if there is a delay the operation,
then M is in idle state.

IV. A CLUSTER OF PEERS
A cluster of peers is a dynamic group of mobile hosts

that form a temporary workgroup for processing and shar-
ing information as well as support each other. A cluster is
not predefined, but contains one or more mobile hosts. A
cluster has a centroid, which is a mobile host with a strong
connection to server.

The key idea that we propose in this section is to create
a cluster of peers using the concept of neighborhood de-
fined not in traditional distance-based approach but using
relations like reflexive and symmetric. Secondly, instead
of counting the number of peers in a cluster, we use other
measure to define the cardinality of neighborhood.

42 http://www.i-jim.org

ENVELOPE TRANSACTION MECHANISM FOR A CLUSTER OF PEERS

A. Neighbors of stable state mobile hosts
A mobile host is a neighbor of another mobile host if a

relation is reflexive and symmetric i.e. p, q are the objects
of a set mobile hosts say D and R is a relation such that

 R p) (p, ; R q p, ∈∈∀ and if (p, q) ∈ R, then (q, p) ∈
R. Then p is a neighbor of q.

Thus, we define the neighborhood of any mobile host as
follows:

Definition1. (Neighborhood of q): Let R be a relation
on D, which is reflexive and symmetric. For any D p ∈ ,
there exists q as a mobile host from D such that R q) (p, ∈ .
A neighborhood of q is denoted by NR (q) and given by

R} q) (p, / D {p (q) NR ∈∈=
NR

 (q) is also called a cluster of peers with q as centroid
and mobile hosts p clustered around q are called peers.
The centroid is, in fact, a static mobile host as compared
to peers. After the peers become members of a cluster,
they may be disconnected from a server. The definition of
a cluster in [7] is restricted to the special case of a distance
based neighborhood N ε

 (q) = {p ∈D / |p – q| ≤ ε}, where ε
> 0. In our context, this definition of Nε

 (q) is not appro-
priate because of mobility of p. Peers, with the exception
of the centroid, can participate in more than one cluster for
sharing information. A Peer moves out of a cluster if it is
disconnected from a centroid directly or indirectly. This
might happen because of a disconnection of wireless net-
work, low battery energy or a peer moving out of commu-
nication range of a cluster.

There are different types of peers: (i) peers inside the
cluster are called core peers (ii) peers, on the boundary of
one cluster but are core peers of another cluster are called
boundary peers. (iii) a mobile host not in any cluster is
called noise.

Figure1 shows clusters with centroid 1 with 2, 3 and 5
as core peers. On the other hand, 7 is the only core peer of
a cluster with centroid 6. Peer 4 is on the boundary of both
clusters. Mobile hosts 8 and 9 are the noise for both clus-
ters. We assume that centroids are connected to each other
if required.

Before forming a cluster of peers, centroids cache data
objects from the server and disconnect from the server. To
become a dynamic member of a cluster, a short range
wireless channel is used. In other words, peers of a cluster
are connected using a P2P communication network with
the server as mobile host called a centroid. In continua-
tion, we discuss a method to form NR(q) using a short
range wireless network.

Assume that q is a static mobile host and taken to be a
centroid of a cluster NR(q). Let stime and ctime be starting
and completion time of activities by centroid q then there
exists a mobile host p which may be in static or isolation
state, and wants to join NR

 (q) at time t i such that stime ≤ t
i (p) ≤ ctime. Let r q be a full range of a centroid to reach
mobile hosts and r p is a full range of mobile hosts wishing
to reach centroid or mobile hosts using short range wire-
less network. Let R be a relation ‘reachable from’ defined
as the maximum of r p and r q i.e. R = {(p, q) / p, q ∈D;
max {rp, rq}}. R is reflexive and symmetric. Therefore, p
∈ NR

 (q) i.e. p is reachable from q and p is a peer of a
cluster NR

 (q). Following are a few cases:

Figure 1. Centroid 1, 6. Core 2, 3, 5, 7. Boundary 4,

Noise 8, 9

(i) p is a core peer of NR
 (q) iff max{r p, r q} = r q and

stime (q) ≤ t i
 (p) ≤ ctime (q). (ii) p is a boundary peer of

NR
 (q) iff max{r p, r q} = r p

 = r q ; stime(q) ≤ t i
 (p) ≤

ctime(q) and max{rp, rs} = rs ; stime(s) ≤ t i
 (p) ≤ ctime(s).

This means p is on the boundary of NR
 (s) but is a core

peer of NR (s). (iii) p is a noise iff max{r p, r q} = r p and
stime(q) ≤ t i (p) ≤ ctime(q). (iv) If p, s are core peers in NR

(q) then it is not always true that p is a core peer of NR
 (q)

i.e. p, s ∈ NR
 (q) does not imply p ∈ NR

 (s) as R is not
symmetric.

B. Capacity of NR
 (q)

Capacity is the cardinality of NR
 (q) and can be deter-

mined by defining a function pCap – peer capacity from a
power set D to positive real numbers; pCap: 2 D → R +

given by pCap(S) =x, where S is the set of centroids and is
a subset of D. The value of x can be thought as (i) Number
of peers getting services from a centroid at a specific time
(ii) Number of peers using a specific service provider or
(iii) Number of clusters to be formed. We assume minCap
-minimum capacity of a cluster and the centroid condition
to form a cluster as follows:

Definition 2. (Centroid condition): Let pcap: 2 D → R +
be a function given by pCap(S) =x, where S is the set of
centroids and is a subset of D. Let minCap be a + ve real
number. Then the boolean predicate minPeer is defined to
be true iff pCap(S) ≥ minCap.

For example, if S = {q, q’} with pCap ({q}) = 4 and
pCap ({q’}) =6. Let minCap=1 then minPeer (NR (q)) and
minPeer (NR

 (q’)) satisfies centroid condition.

C. Peer Connectivity
To connect all peers and centroids of clusters, we define

a peer connected set analogous to the definition of density
based clusters [9]. The given definition fails as there are
two kinds of peers in a peer connected set besides the cen-
troid; the core peer (inside the centroid) and boundary
peer (on the fence of the centroid). The value of pCap for
the boundary peer is taken to be low as compared to core
peer of a cluster so minCap value is to be set low to add as
many peers as possible in a peer connected set. All objects
of peer connected sets are to be connected directly or indi-
rectly to each other. The following definitions are useful
for connecting peers using NR (q) and minPeer where q is
taken as centroid:

Definition 3. (Direct Peer Reachable): A peer p is a di-
rect peer reachable from another peer q with respect to (R,
minPeer) if (i) p ε NR

 (q), (ii) minPeer (NR
 (q)) = true.

Obviously, a direct peer reachable is symmetric for all
core peers or boundary peers from the centroid. In general,
however it is not symmetric. For instance two peers of the

iJIM – Volume 3, Special Issue 2: Technical Basics, October 2009 43

ENVELOPE TRANSACTION MECHANISM FOR A CLUSTER OF PEERS

same cluster need not be direct peer reachable from each
other.

Definition 4. (Peer Reachable): A peer p is a peer
reachable from another peer q with respect to (R, min-
Peer) if there is a chain of peers p1, p2, … pn ,where p1 = q
and p n = p such that for all i = 1 to n, pi + 1 is directly peer
reachable from pi with respect to (R, minPeer)

This definition is an extension of direct peer reachabil-
ity. The easiest way to have peer reachability between two
core peers is by connecting them with a centroid. Peer
reachable is transitive but not symmetric, in general.

Both the definitions are related to a single cluster and
all peers are reachable from one another. On the other
hand, the following definition gives the connectivity be-
tween peers from different clusters (adjacent clusters)

Definition 5 (Peer Connected): Peer p 1 of cluster C 1 is
peer connected to another peer p 2 of adjacent cluster C 2
with respect to (R, minPeer) if there is a peer (Core or
boundary) O such that p1 is peer reachable from O and O
is peer reachable from p2 with respect to (R, minPeer)

Obviously, Peer connected is reflexive, symmetric and
transitive. Thus, finally the peer connected set is the set of
peers which may be peer connected or reachable.

Definition 6 (Peer Connected Set): A peer connected set
C D⊆ with respect to (R, minPeer) satisfies following
conditions:

1. Connectivity: Dq,p ∈∀ ; p is peer connected to q
with respect to (R, minPeer).

2. Reachability: Cq,p ∈∀ ; if q ∈C and p is peer
reachable from q with respect to (R, minPeer) then p∈C.

Note that C contains at least one core peer as C contains
at least one peer p; which is peer reachable to it self. Fol-
lowing are the advantages of making a cluster of peers:

(i) A mobile host with a strong connection with MSS
can initiate cluster formation. A number of mobile hosts
can join or leave as a peer of a cluster at any given time
depending on the completion of sharing activities.

(ii) Mobile computing [29] must handle the inherent
characteristics of mobile environments [11]. In particular,
mobile applications have to face periods of disconnection
that may arise due to economic factors, unavailable con-
nectivity or the application model. To allow mobile users
to continue their work even in these periods, a cluster is
useful. A disconnected mobile user, who is peer from a
cluster, can be connected to centroid using peer connect-
edness.

Now, we propose an environment at the centroid to
process various transactions called envelope repository.

V. ENVELOPE REPOSITORY
The Envelope Repository (ER) is a dynamically con-

figurable mobile processing space located at the centroid
of a cluster of peers. This mobile processing space pro-
vides various envelopes to be processed using transactions
while peers are moving. An envelope is a container having
a virtual list of data objects obtained by processing a
transaction. Envelopes are stored in the private work space
[21, 23, 25] of a centroid. When a centroid reconnects to
the data base server, envelopes are propagated into the
server. Information at the envelopes is temporary incon-
sistent at the ER. We assume in this paper that the ER at
the centroid is capable of sharing and processing enve-

Figure 2.

lopes using transactions but the ER at each peer can proc-
ess only information located at that peer and send the cor-
responding envelope to the ER of the centroid for further
evaluation. Following are the advantages of envelopes:

(a) Sharing dynamic data by mobile hosts: An enve-
lope is created when more than one transaction is process-
ing data objects available in an envelope. A jumping
transaction JT1 initiated by peer p1 creates an envelope at
the ER of the centroid and reaches a synchronous point,
before another jumping transaction JT2 initiated by p2 oth-
erwise JT2 can create an envelope and other jumping
transactions can join the ER to process an envelope. After
all jumping transactions are processed successfully the
envelope is destroyed but the ER is not disturbed.

(b) Persistent temporary ER: Envelopes are persistent
temporary storage for sharing data objects from private
work spaces and are integrated into the server when the
centroid re-connects to the server. Jumping transactions
are changes the state of data objects at the centroid. When
the centroid reconnects to the server, the state of data ob-
jects at the server is modified. The envelope has partially
committed results obtained from the jumping transaction.

(c) Envelopes are distributed for processing jumping
transactions: Envelopes are created and distributed for
centroids for processing transactions. For example, 1 and
2 are centroids of two clusters C1 and C2. Assume that 3
and 4 are core peers and 5 is boundary peer. All are peers
connected to each other. ENV2 at the ER2 of C2 is entirely
used by 5 or distributed by 4 and 5 of C2. As 4 is peer
connected to centroid 1 of C1, 4 can process ENV1 of C1 at
envelope repository ER1. [See figure 2]

(d) Low battery of the centroid: Low battery of the cen-
troid may cause disconnections to peers of a cluster. In
such a situation, a centroid can be shifted to another mo-
bile host called a proxy peer of a cluster and the ER is
reallocated to a new centroid so that envelopes can still be
processed. A candidate centroid must satisfy the following
conditions: (i) The candidate centroid must have strong
and stable connectivity. (ii) The distance between the can-
didate centroid and centroid is less than the distance be-
tween peers and the centroid (iii) All peers are able to
connect to the candidate centroid using a short range wire-
less network.

VI. MOBILE TRANSACTION PROCESSING
Transactions in mobile environments are used to proc-

ess data objects with protections. They also allow access
and modify single or multiple data objects as single
atomic operations. A transaction in traditional data bases

44 http://www.i-jim.org

ENVELOPE TRANSACTION MECHANISM FOR A CLUSTER OF PEERS

cannot be considered as flat transactions as they do not
allow partial results to be committed or aborted. Such a
situation arises many times because of various limitations
of mobile computing [29] and the long transaction. Hence,
if the process terminates during transaction processing,
everything is to be restored to the point just before the
transaction started. To overcome this problem, a mobile
nested transaction can be considered.

A mobile nested transaction is constructed from a num-
ber of sub transactions. Each sub transaction is called a
jumping transaction. The top level jumping transaction
may have children that run in parallel with one another on
different centroids. Each of these children may also exe-
cute one or more jumping transactions of its own children.
Jumping transactions are executed at the centroid where
location data exists. All jumping transactions are con-
nected to each other to form a tree-like structure called
Directed Parse Tree [13, 15, 31]. Nodes in Directed Parse
Tree (DPT) correspond to execution of operations at a
particular level of abstraction in a layered system. The
DPT has the same height, which is equal to the number of
levels in the underlying system architecture. The edges in
DPT represent the implementation of an operation that is
invoked at level L(i) by a sequence of operation execu-
tions at the next low level L(i+1) (for i=0 to n-1 in bottom
up order). Execution of jumping transactions (JT) can be
location dependent; i.e. at level L(i), two JTs may be in-
voked on different data objects or at L(i) and L(i+1), JTs
can be executed on same data objects but initiated from
different location. Jumping transactions are executed se-
quentially in an envelope repository like JT1, [JT2: JT 21, JT
22, JT 23], [JT 3: JT 31, JT32, JT33], JT 4 .Where JT1 and JT4 are
executing on a data object from an envelope but JT2 and
JT3 are operating on data objects from different envelopes.

 Each node of a DPT corresponds to a jumping transac-
tion and has the following components:

(i) Order of processing is denoted by the JT i
(ii) Jumping action gives unary or binary action like

retrieval, updating, deletion, joining, etc.
(iii) An identification number of a centroid of a cluster

where jumping transaction is processed. Initially there is
no identification number in a DPT. Values are filled
when jumping transactions are executed.

(iv) A pointer is divided into two parts, right (y) and
left (x), and stores the index i of the executed JT of con-
nected nodes. A pointer may have an NIL value. Jumping
actions are identified by pointers. If a pointer is (NIL, x),
the action is unary and if it is (y, x), then it is binary. If
the pointer is (NIL, NIL), then an action is submitted to a
fixed server and a copy of the data objects are brought to
the private work space of the centroid to process the JT.
After data objects are brought the centroid is free to dis-
connect from the server.

VII. ENVELOPE TRANSACTION MECHANISM

In this section, a flexible processing mechanism is de-
signed to support processing of jumping transactions initi-
ated by a mobile host and joining an appropriate cluster.
Existing methods like delegation operations [24, 23, 28],
inter-process interactions [26] or for data processing do
not have the capacity to process data in a mobile environ-
ment. The proposed mechanism can be carried out in both
a synchronous and an asynchronous manner. Each jump-

ing transaction is initiated from a private work space and
after completion, the message is received. We differentiate
two types of transactions: Envelope and Pseudo transac-
tions. They are used as a coupling to process JTs at the
ER. Envelope transactions are used to gain locks on data
objects and then pseudo transactions are executed. Pseudo
transactions are used to read or update data objects from
an envelope at the ER. In concurrent JTs, processing enve-
lope transactions of two jumping transactions share the
lock and the associated pseudo transaction is processed at
ER independently. For example, if ET1 and ET2 are enve-
lope transactions of jumping transactions JT1 and JT2 then
process JT2, ET1 transfers the lock to ET2 and executes the
corresponding pseudo transaction.

Before we discuss various tasks of envelope and pseudo
transactions, we use the following notation: JTi p denotes
i th jumping transaction initiated by a peer p, JTiE p is the
envelope transaction and the JTiI p is the pseudo transac-
tion initiated by JTi

p. In our discussion, a peer may be
taken as mobile host.

The tasks of envelope and pseudo transactions are given
below:

Envelope Transaction (ET): For processing an enve-
lope, envelope transactions are used to acquire locks on
data objects of the envelope and various actions using
pseudo transactions. A lock may be read or written. The
role of envelope transaction the JTiE p is to support JT i and
(i) share the envelope with the other JTs; (ii) transfer the
locks for processing the JTs from L(i) to L(i+1) of the
same DPT; (iii) transfer the locks for processing the JT’s
from the associated DPT at any level; (iv) save partial or
updated results into envelopes. This will avoid loss of
work due to peer failure; (v) Each JT initiates at least one
envelope transaction, depending on the need of sharing
data with other JT’s.

Pseudo Transactions (PT): Pseudo transactions are the
local transactions of a centroid and are used to read or
update the data objects from an envelope. Pseudo transac-
tions use different actions depending upon the state as
follows:

Following actions are performed on consistent data ob-
jects at a centroid.
(a) A read action reads data objects where there are no
conflicts between the locks on data objects. This action
examines a set of attributes or set of tuples from consis-
tent data bases.
(b) A write action makes modifications to data objects
where there are no conflicts between the locks on data
objects. This action modifies the set of attributes or set of
tuples from a consistent database.

These actions are performed when the centroid has a
connection with the server so that consistent data objects
can be fetched. In a DPT, a node with a pointer (NIL,
NIL) always fetches consistent data objects.

Following actions are performed on data objects lo-
cated in an envelope at a centroid.

(a) A pseudo write action modifies data objects from
an envelope. This action makes modification in set of
attributes or set of tuples from an envelope.

(b) A pseudo commit (P-commit) action commits the
JT and creates an envelope and places it in the private
work space of the centroid. This is the final action of the

iJIM – Volume 3, Special Issue 2: Technical Basics, October 2009 45

ENVELOPE TRANSACTION MECHANISM FOR A CLUSTER OF PEERS

JT. Also an A pseudo abort action aborts the JT after
successfully undoing actions carried out by the JT and
destroys the envelope.

(c) A pseudo read action reads data objects from the
envelope. This action reads attributes or a set of tuples
from an envelope.

(d) Mobile transaction is committed (aborted) if all
jumping transactions are pseudo commit (aborted).

In an asynchronous process, the JT is initiated from a
user’s private work space and triggers the ET at the ER
followed by the PT at the run time in the ER of a cen-
troid. In other words, the ET provides an appropriate lock
to process the PT and the JT is P-committed. [See figure
3.]

An ET satisfies all ACID properties when one jumping
transaction is P-committed in the ER at a time. On the
other hand, the isolation property is relaxed when jumping
transactions are processed in a synchronous manner. This
means the data objects can be viewed before P-commit of
the JT.

In a synchronous process, if two concurrent jumping
transactions JT1 and JT2 want to update x from an enve-
lope and the envelope transaction ET1 of JT1 has a re-
quired lock, then ET1 transfers the lock on x to envelope
transaction ET2 of JT2 on demand to process x from an
envelope. Finally we define an envelope as follows:

Definition7. (Envelope): An envelope is a virtual list of
data objects and is a triple (L, E, D) produced by the
pseudo transaction. Here L is a mobile identification num-
ber of a peer, who has created an envelope using a JT, E is
the identification number of a centroid, where the JT is
pseudo committed to produce a list of data objects D. En-
velopes are store in the private work space of the centroid
until the transaction is committed.

A. Pseudo Commit Features
If all JT’s are pseudo committed then the transaction is

committed at the centroid. When a centroid reconnects to
the server, these transactions have to synchronize with
transactions from other centroids. If conflicts occur, they
will be resolved and the modification of data objects is
made permanent at the server; otherwise the transaction is
aborted. To execute all pseudo transactions, envelopes are
brought from the database server to the ER and modified
according to the DPT guidelines. Modified envelopes are
kept in a private local work space. The transaction is fi-
nally committed according to the order of the pseudo
commit jumping transactions mentioned in DPT.

In a DPT, if all JTs are intentionally committed at L (i)
then JTs at L (i+1) will be processed and can be intention-
ally committed. Envelope transactions are used to transfer
the necessary locks from L (i) toL (i+1) to process the
pseudo transactions.

[17] defined the ACTA transactional framework for
reasoning about and synthesizing the dependencies among
transactions. Here we reuse the commit dependency and
abort dependency rules from the ACTA transactional
framework where at least one JT is P-committed from the
DPT at the ER of the centroid:

(a) JT P- commit means the ET received an appropriate
lock to execute the PT. JT is P- aborted means the ET
may not get a required lock to process the PT or the ET
got a lock but the PT failed.

Figure 3.

(b) If the JT is initiated but the demanded lock to proc-
ess the PT is not issued by the ET, the JT is aborted.
However, processing the PT can be delayed until the ET
acquires a lock from an associated ET and hence the JT
can be P-committed.

(c) Suppose the JT is initiated and the corresponding
ET acquires a lock on the data object to process the PT. If
the PT is not P-committed, then the PT is P-aborted.

(d) In the process of P-commit of the JT, if the peer
goes into an autonomous or idle state, then the remaining
processing can be carried out by another peer of the same
cluster until peers establish a connection to centroid.

B. Envelope P- write protocol
In this section, we implement a consistency protocol for

envelopes to make transactions globally serialized. The
non-blocking primary protocol [19] is modified for enve-
lopes, created for data object x, to coordinate the write
operation on x at the ER.

In the envelope P-write protocol, all read and written
operations are performed on an envelope brought from a
database server to the ER of a centroid. A primary copy of
an envelope is also kept at one of the peers called proxy
peer. It is not used by any of the users but works as a cen-
troid when the centroid is not functioning. All the updates
are made to the proxy peer from a centroid, but block op-
erations on envelopes are made to update from the proxy
peer to the data base server. The advantages are: (i) In the
disconnected mode of a centroid, a proxy peer carries out
all the operations as a centroid. Later on, when connecting
again, updates are propagated from the proxy peer to the
centroid. (ii) All the updates also remain at the database
server. The protocol works as follows:

Suppose a JT wants to modify data object x, and if the
envelope is not at the ER of a centroid, then it is created at
a private work space of a centroid and brought to the ER
of a centroid. A copy of an envelope is placed at the ER of
the proxy peer. Updates are fetched by the proxy peer
from the centroid and acknowledgment is sent to a cen-
troid. A P-commit action is used to inform a peer for
completion of JT using DPT.

Block updates are sent to the database server by speci-
fying time (See Figure 4). The same way pseudo read ac-
tions can be performed on the envelope.

46 http://www.i-jim.org

ENVELOPE TRANSACTION MECHANISM FOR A CLUSTER OF PEERS

W1: P-Write request
W2: Move envelope to ER of a centroid
W3: Copy of an envelope to a proxy peer.
W4: Updates an envelope at ER of proxy peer
W5: Acknowledgment to envelope at ER of centroid
W6: Pseudo commit message to peer with DPT
W7: Blocked updates at a given time data base

Figure 4.

C. Envelope processing features
The jumping transaction process at the ER by two con-

secutive jumping transactions of the same DPT initiated
by a peer is carried out in an asynchronous manner on an
envelope and the resulting envelope is stored at the private
work space of the centroid. For instance, let JT1 p and JT2 p
be consecutive JTs of the same DPT initiated by p. If JT1 p
is pseudo committed and creates an envelope ENV1, then
an envelope transaction JT2E p connects to JT1E p and re-
quests a lock to process JT2I p on an envelope ENV1
changed by JT1 p to create a new envelope ENV2.

Processing of jumping transactions of the same DPT
initiated by p is carried out on different envelopes in a
synchronous manner.

(a) Let JTx p and JTy p be jumping transactions of the
same DPT and simultaneously connected to carry out a
synchronous process on different envelopes in the ER, the
envelope and pseudo transactions JTx E p, and JTx I p of JTx p
are initiated and executed in parallel with JTy E p and JTy I p
of JTy p on separate envelopes ENVx and ENV y in the ER.

(b) If the ER is physically distributed among different
centroids of a cluster, then jumping transaction process-
ing is carried out in synchronous manner.

Processing of JTx
 p and JTy

 p continues in a synchronous
manner at the ER until a asynchronous point is reached
and a new envelope ENVz is created in the ER. On the
other hand, if the ER is distributed among different cen-
troids of a cluster, then ENVx is brought to the ER where
ENVy resides and then makes a join or other way.

The envelope sharing process at the ER is carried out
by jumping transactions from different DPTs, initiated by
mobile hosts p and o in synchronous manner if JTx p and
JTy o are connected to each other simultaneously. In other
words, envelope transactions JTxE

p and JTyE
o are initiated

and executed in parallel with pseudo transactions JTx I p
and JTy I

o.
In mobile environments, disconnections can happen any

time during the processing of an envelope. The mecha-
nism should have the ability to recover from disconnec-
tions to ensure that the jumping transaction processing is
carried out correctly. Suppose JTx p and JTy

o are discon-
nected. The connectivity can be established by linking JTx

p

to ER and sharing an envelope with JTy o using envelope
transaction JTx E p. Furthermore, a jumping transaction JTy
o can be connected to the ER to obtain data objects of an
envelope using envelope transaction JTy E o. This is possi-
ble because JTx E p is connected to JTy E o for envelope
sharing in the ER. This process is completed in asynchro-
nous manner.

VIII. CONNECTED COST MODEL
In this section, we analyze our work using probabilistic

analysis. This section is divided into two subsections. In
the first section, we probabilistically study the static data
object allocation method and in the second section, we
study the dynamic data allocation method. In each of these
subsections, we derive the expected cost first and then
average expected cost and then compare these methods.

In this study, the communication cost is taken as 1 unit
if cost is required, otherwise 0 units are taken. We assume
that pseudo actions (read or write) follow a Poisson distri-
bution with parameter λ r for pseudo read and λw for

pseudo write. Denote
wr

w
λλ

λ
θ

+
= . At any point, the

action θ is the probability of pseudo write and 1- θ is the
probability of pseudo read because the Poisson distribu-
tion is memoryless. The following two measures are used
to do the analysis.

1. Suppose X is the data allocation method and λ r
, λw

are pseudo read and write distributions, respectively. We
denote Exp X

 (θ), the expected cost of a relevant action.
2. Suppose θ varies over time with equal probability of

having any value between 0 and 1. Then we define the
average expected cost per action, denoted AVG X, to be
the mean value of Exp X(θ) for θ ranging between 0 and 1,

namely: ∫=
1

0
XX dθ) (θ Exp)(θAVG

The cost depends on the existence of a copy of c at the
centroid (C) and the proxy peer (P). A cost is determined
as follows:

1. If there exists a copy at C and P, then pseudo write
cost is that cost which is required to make modifica-
tions at C and send to P. A pseudo read cost is taken to
be zero. This means, that if there is a copy of data ob-
jects at C and P, then the cost depends only on pseudo
write actions.
2. If no copy exists at C, then we assume that the cost
of pseudo read as one because data objects are to be
brought from the DB server to C and P. A pseudo write
cost is taken to be zero as there is no data object, so
pseudo write actions cannot be performed. This means
that if there is no copy of data objects, then the cost de-
pends on the pseudo read action. Here, a schedule must
contain the pseudo read action followed by the pseudo
write action.

A. Probabilistic analysis of static methods
A static method is used to determine the cost of a trans-

action when a copy of data objects may or may not exist at
C and P. Following are two types of static methods:

Method SA1: A method where copies of data objects do
not exist at C and P. The pseudo write cost is zero and the
pseudo read cost is one.

iJIM – Volume 3, Special Issue 2: Technical Basics, October 2009 47

ENVELOPE TRANSACTION MECHANISM FOR A CLUSTER OF PEERS

Method SA2: A method where copies of data objects ex-
ist at C and P. The pseudo write cost is one and the pseudo
read cost is zero.

From above,) (θExp and) (θExp
 21 SA SA have qual

probability for pseudo read and write actions respectively.
Thus, .θ) (θ Exp andθ - 1) (θ Exp

21 SA SA ==

Average expected costs are obtained as

∫

∫

==

==

1

0
SA

1

0
SA

2
1 dθθ)(θAVG

 and
2
1 dθ) θ-(1)(θAVG

2

1

B. Probabilistic analysis of dynamic method
A dynamic method DA executes k pseudo write actions

fired by n users. The probability of the existence of a copy
at C and P is denoted by kα and it is probable that the
majority among preceding k pseudo read actions and the
probability that the number of preceding k pseudo write
actions for n users. Assume that k > n. Thus,

jkj
j

n

0j

k
k)1(C −

=
−∑= θθα

Theorem 1. Expected cost of a DA is
)1)(1() (Exp kkDA θαθαθ −−+= for all k and θ.

Proof: Let p be an action. When there is a copy at C and
P then the expected cost of p is equal to the probability
that p is pseudo write and is θ. When there is no copy at C
and P, then the expected cost of p is equal to the probabil-
ity that p is a pseudo read action and is 1- θ. Thus, the
expected cost of p is the probability that p is a pseudo
write action under the condition that there exists a copy of
data objects or the probability that p is a pseudo read ac-
tion under the condition that there is no copy of data ob-
jects. Hence we get)1)(1() (Exp kkDA θαθαθ −−+= .

Now we see the relationship between SA1, SA2 and DA.
Theorem 2. For all k and θ ,

}) (θExp ,) (θExp {min) (θExp
 21 SA SA DA ≥

 Proof: We have,

)(Exp)1(

)(Exp
)1)(1() (Exp

2

1

SAk

SAk

kkDA

θα

θα
θαθαθ

−

+=
−−+=

Thus }) (θExp ,) (θExp {min) (θExp
 21 SA SA DA ≥

This shows that the expected cost of dynamic methods
is greater than that of static methods. The following theo-
rem calculates the average cost of the DA and shows that
it is less then the minimum of static methods.

Theorem 3. Let the DA execute k pseudo write actions
fired by n users such that k > n. Then

2)1)(k(k
k)(n1)(n

2
1)(θAVG DA ++

−+
+=

Proof: Using theorem 1, after some algebraic simplifi-
cations, it can be shown that,

obtain,we
ions,t simplificafewafterand(1)inSubstitute

2)k(1)(k2
2)1)(n(ndθθα(ii)

and
1k
1ndθα(i)

:identityaboveUsing
!)1b(a

!b!adθ))x1((x

:bandaintegerspositiveforused
isidentityfollowingintegralabovethefindTo

(1)dθθ)2ααθ1(

dθθ))1)(α(1θα() (θAVG

k
1

0

k
1

0

1

0

ba

kk
1

0

kk
1

0
DA

++
++

=∫

+
+

=∫

++
=∫ −+

+−−∫=

−−+∫=

2)k(1)(k
k)1)(n(n

2
1

1k
1n

2)k(1)(k
2)1)(n(n

2
1) (θAVG DA

++
−+

+=

+
+

−
++
++

+=

Corollary 1. The average expected cost of static meth-
ods decreases when pseudo write actions k increase and

}) (SAAVG,) (SA{AVGmin <) (AVG
21DA θθθ

Proof: From the above theorem and as k> n, we see
that) (AVG DA θ decreases when pseudo write action k

increases.
From the above, we conclude that if the number of us-

ers n increases and the number of pseudo write actions is
greater than n, then the average expected cost decreases.

IX. IMPLEMENTATION
The implementation of a jumping transaction mecha-

nism is done as follows:
All the related information regarding transactions in

clusters of peers is described by an XML document. The
specification of a submitted transaction is converted into
an internal SQL query representation via XML parser. We
used Xerces2 parse, which is the existing parser [34] to
support the transformation of transaction specification.

The transaction execution manager takes an SQL query
as input. When an SQL query is received, the transaction
execution manager will submit this to be executed in
server via standard JDBC connection. If an envelope
transaction is received, the transaction execution manager
will carry out the execution of pseudo transactions via
write () or read () method of the Java Transaction API.

The envelope repository is designed and implemented
with Jini and JavaSpace [32, 33]. An envelope repository
is created by the transaction execution manager when an
envelope transaction is initiated by the jumping transac-
tion. An envelope repository is allocated at one computer
due to the limitation of the JavaSpace technology.

In this implementation, the MySQL locking model is
used with the standard commit functionality. This does not
contrast with switching off the auto-commit functionality
in the mobile locking system.

The performance of the jumping transaction mechanism
with the support of envelope repository has been tested by
assuming that data objects and corresponding locks exist

48 http://www.i-jim.org

ENVELOPE TRANSACTION MECHANISM FOR A CLUSTER OF PEERS

at a centroid and we got significant improvement in sys-
tem throughput.

X. CONCLUSION
In this work, we presented a jumping transaction

mechanism to process data objects at the centroid of a
cluster of peers. After reviewing related works, the con-
cept of a peer connected set and cluster of mobile hosts
was introduced. We then discussed various features and
related concepts required to process transactions at the
centroid of a cluster initiated by peers. Envelopes are kept
at a private local work space and are brought to an enve-
lope repository to process until the transaction is commit-
ted. Pseudo committed data objects are visible to other
transactions before committing the transaction. This re-
laxes the isolation property. A proxy peer is kept for proc-
essing transaction as standby if the centroid fails in pseudo
write protocol. Various features related to sharing an en-
velope by jumping transactions are also discussed.

Further research will have to consider the following is-
sues. Firstly, proper lock management is to be developed.
Secondly, a data conflict awareness mechanism is to be
developed to support mobile transactions to show conflicts
among database operations in mobile environments.

REFERENCES
[1] K.-I. Ku and Y.-S. Kim: Moflex Transaction Model for Mobile

Heterogeneous Multidatabase Systems, Research Issues in Data
Engineering (RIDE), 2000, pp 39- 46.

[2] P. K. Chrysanthis: Transaction Processing in Mobile Computing
Environment, IEEE Workshop on Advances in Parallel and Dis-
tributed Systems, 1993, pp 77-83.

[3] P. Serrano-Alvarado: Defining an Adaptable Mobile Transaction
Service, Extending Database Technology (EDBT) Workshops,
2002, pp 616-626.

[4] R. Schneiderman: The Mobile Technology Question and Answer
Book A Survival Guide for Business Managers, American Man-
agement Association, 2002.

[5] M. H. Dunham, A. Helal and S. Bal Krishnan: A Mobile Transac-
tion Model Tha Captures Both the Data and Movement Behavior.
Mobile Networks and Applications (MONET), 2(2), 1997, pp 149-
162. (doi:10.1023/A:1013672431080)

[6] G. D. Walborn and P. K. Chrysanthis: Transaction Processing in
PROMOTION ACM Symposium on Applied Computing (SAC),
1999, pp 389-398.

[7] Ester M., Kriegel H.-P., Sander J. and Xu X. A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases
with Noise. Proc. 2nd Int. Conf. on Knowledge Discovery and
Data Mining. Portland, OR, 226-231, 1996.

[8] P.K. Chrysanthis: Transaction processing in a mobile computing
environment proceeding of IEEE work shop on Advanced in Par-
allel and Distributed Systems , pp 77-82,Oct. 1993

[9] Ester M., Kriegel H.-P., Xu X: A Database Interface for Cluster-
ing in Large Spatial Database, Proc. 1st Int. Conf. on Knowledge
Discovery and Data Mining. Montreal, Canada, 94-99. 1995.

[10] D. Ratner, P. L. Reiher, G. J. Popek and G. H. Kuenning: Replica-
tion Requirements in Mobile Environments, Mobile Networks and
Applications (MONET), 6(6), 2001, pp 525-533.
(doi:10.1023/A:1011862121702)

[11] Satyanarayanan.M. Fundamental Challenges in Mobile Comput-
ing In Proceedings of the 15 th ACM Symposia on Principles of
Distributed Computing, 1996.

[12] P.A. Bernstein, V. Hadzilacos, Goodman: Concurrency control
and recovery in database systems, Addison Wesley 1997

[13] Sushil Kulkarni, Dr. M.A. Sanglikar: Spatio-Temporal Schema
Model And Carrier and Courier mobile query processor for Spa-
tio-Temporal database Urban Planning and Environment: Strate-
gies and Challenges international Conference , Elphinstone Col-
lege, Mumbai, pg.116-117, January 30th & 31st, 2007

[14] E. Pitoura and B. K. Bhargava: Data Consistency in Intermittently
Connected Distributed Systems, IEEE Transactions on Knowledge
and Data Engineering (TKDE), 11(6), 1999, pp 896-915.
(doi:10.1109/69.824602)

[15] Sushil Kulkarni: Envelope Model: Data Access from any where,
International Conference by IPSI - Montenegro, September 24-
29, 2005

[16] S. K. Madria and B. K. Bhargava: A Transaction Model for Mo-
bile Computing, International Database Engineering and Applica-
tion Symposium (IDEAS), 1998,pp 92-102.

[17] P. K. Chrysanthis and K. Ramamritham: Synthesis of Extended
Transaction Models Using ACTA, ACM Transactions on Database
Systems (TODS), 19(3), 1994, pp 450-491.
(doi:10.1145/185827.185843)

[18] S. K. Madria and B. K. Bhargava: A Transaction Model to Im-
prove Data Availability in Mobile Computing, Distributed and
Parallel Databases, 10(2), 2001, pp 127-160.
(doi:10.1023/A:1019232412740)

[19] Budhiraja N, Manzullo K. Schneider E. and Toueg S: The Primary
Backup Approach, In Mullender S(ed.), Distributed Systems,pp
199-216. Wokingham, Addison Wesley, 2 nd edition 1993.Cited
on page 297.

[20] D. Bottazzi, A. Corradi and R. Montanari: A context-aware group
management middleware to support resource sharing in MANET
environments, International Conference on Mobile Data Manage-
ment (MDM), 2005, pp 147-151.

[21] J. Holliday, D. Agrawal and A. E. Abbadi: Disconnection Modes
for Mobile Databases, Wireless Networks, 8(4), 2002, pp 391-
402. (doi:10.1023/A:1015542723791)

[22] J. Liu, D. Sacchetti, F. Sailhan and V. Issarny: Group management
for mobile Ad Hoc networks: design, implementation and experi-
ment, International Conference on Mobile Data Management
(MDM), 2005, pp 192-199.

[23] H. Ramampiaro: CAGISTrans: Adaptable Transactional Support
for Cooperative Work, Dr.ing thesis, Norwegian University of
Science and Technology (NTNU), 2001.

[24] P. K. Chrysanthis: Transaction Processing in Mobile Computing
Environment, IEEE Workshop on Advances in Parallel and Dis-
tributed Systems, 1993, pp 77-83.

[25] G. P. Picco, A. L. Murphy and G.-C. Roman: Developing mobile
computing applications with LIME, International Conference on
Software Engineering (ICSE), 2000, pp 766-769.

[26] N. Prabhu, V. Kumar, I. Ray and G.-C. Yang: Concurrency Con-
trol in Mobile Database Systems, International Conference on Ad-
vanced Information Networking and Applications (AINA), 2004,
pp 83-86.

[27] C. Chen, W. Wu and Z. Li, Multipath Routing Modeling in Ad
Hoc Networks, Proc. of ICC’ 05, Volume 5, May 2005, pp. 2974
– 2978

[28] A. Brayner and J. d. A. M. Filho: Sharing Mobile Databases in
Dynamically Configurable Environments, 15th International Con-
ference on Advanced Information Systems Engineering (CAiSE),
2003, pp 724-737.

[29] Istanbullu, A. (2008). Mobilim: Mobile Learning Management
Framework System for Engineering Education. Int. Jour. Ed.Educ.
Vol. 24, No. 1, p.32-39.

[30] Economides, A.E. and Nikolaou, N. (2008). Evaluation of Hand-
held Devices for Mobile Learning. Int. Jour. Ed. Educ. Vol.24.
No.1. p. 3-13.

[31] Sushil Kulkarni, Dr. M.A. Sanglikar: Envelope Transaction Mo-
bile Model; Second International Conference on Informatics, Uni-
versiti Malaya, Kuala Lumpur, Malaysia. 26, 27 Nov 2007.

[32] Jini Specifications and API Archive, Sun Microsystems,
http://java.sun.com/products/jini/.

[33] F E. Freeman, S. Hupfer and K. Arnold: Java Spaces: principles,
patterns, and practice, Addison-Wesley, 1999.

[34] http://xml.apache.org/xerces2-j/

iJIM – Volume 3, Special Issue 2: Technical Basics, October 2009 49

http://dx.doi.org/10.1023/A:1013672431080�
http://dx.doi.org/10.1023/A:1011862121702�
http://dx.doi.org/10.1109/69.824602�
http://dx.doi.org/10.1145/185827.185843�
http://dx.doi.org/10.1023/A:1019232412740�
http://dx.doi.org/10.1023/A:1015542723791�
http://java.sun.com/products/jini/�
http://xml.apache.org/xerces2-j/�

ENVELOPE TRANSACTION MECHANISM FOR A CLUSTER OF PEERS

AUTHORS
Sushil Kulkarni is with Mathematics Department, Jai

Hind College affiliated to University of Mumbai at Mum-
bai, India (e-mail: sushiltry@gmail.com).

Mukund Sanglikar is with Mathematics Department,
Mithibai College affiliated to University of Mumbai at
Mumbai, India. He was formerly Head of the Department
of Computer Science at University of Mumbai. (e-mail:
masanglikar@rediffmail.com).
Submitted 30 May 2009. Published as resubmitted by the authors on 9
October 2009.

50 http://www.i-jim.org

