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Abstract—This paper describes the uLab, a new method and 
framework for remote hardware design laboratories, which 
uses Linux and FOSS to provide real-time design and debug 
services to students over standard RDP channels. A secure, 
encrypted, plugin-based remote laboratory framework al-
lows customization of programming and debug/test services 
to match physical laboratory resources. Industry standard 
technologies such as LDAP and Kerberos are utilized to 
ensure scalability, security, and ease of management. Em-
phasis is placed on direct access to real hardware, with the 
normal array of simulation tools and design software also 
being provided. In contrast with many of the remote labora-
tories currently in existence, this system places strong em-
phasis on direct, long-duration access to real, physical 
hardware for non-trivial design and evaluation tasks. In 
order to achieve this goal, secure, network-enabled hard-
ware “pods” were created from inexpensive COTS compo-
nents, and a blend of new and existing open-source software 
was used to connect with the overall laboratory framework. 
Hardware-design software and tools, including the software 
for physical hardware access, are preloaded and made 
available within the desktop session, allowing students to log 
in and start working almost immediately. 

Index Terms—Client-server system, cost effective, engineer-
ing education, hardware-access pods, hardware design, 
online engineering, uLab, Universal Laboratory 

I. INTRODUCTION 
A typical hardware design laboratory consists of several 

workstations and associated hardware in an access-
controlled room with rigidly scheduled laboratory dates 
and times. This laboratory model inherently presents sev-
eral drawbacks. One of the typically overlooked issues 
with this type of laboratory is the low average utilization 
ratio; there normally are large portions of each day when 
the laboratory is nearly or completely idle with no student 
access permitted. Another drawback is a relatively short 
window for laboratory sessions, during which the students 
are more focused on completing particular assignments 
within the allotted time frame than they are on learning 
vital concepts via semi-structured, hands-on interaction 
with design tools and hardware. Additionally, in many 
institutions, there are insufficient resources available to 
handle simultaneous usage by all students within a partic-
ular laboratory period; this forces multiple students to be 
assigned to a given workstation and further removes each 
student from hands-on interaction with the design soft-
ware and physical hardware. Remote laboratories, such as 
the uLab system described in this paper, not only alleviate 
many of the drawbacks listed above, but also provide ex-
citing new opportunities for students to interact with the 
laboratory hardware in a non-traditional manner. 

In contrast to many of the remote laboratories currently 
in existence, the uLab places strong emphasis on direct, 
long-duration access to real, physical hardware for non-
trivial design and evaluation tasks. In addition, most of the 
existing laboratories offering access to real, physical 
hardware, such as MIT's iLab[1] or the VISIR sys-
tem[2][3], require expensive, proprietary software pack-
ages, such as LabView, in order to function. By contrast, 
the new uLab laboratory system, which derives its name 
from the goal of providing a “Universal Laboratory,” is 
not only open-source itself, but also is built entirely upon 
open-source software and, where possible, open hardware. 
This frees institutions from the requirement of purchasing 
expensive software licenses for each new hardware work-
space, and allows them to, instead, focus on providing the 
best possible experience for their students. This character-
istic also enables institutions to modify the uLab system to 
meet their particular needs rather than adjusting their cur-
riculum to work around any limitations present in existing, 
closed-source software. 

The uLab system is comprised of three main compo-
nents: infrastructure, terminal services, and hardware-
access workspaces. The infrastructure component pro-
vides relatively mundane but essential services, such as 
Kerberos authentication, to the other two main compo-
nents; the infrastructure component, therefore, plays a 
critical role in the provision of a unified laboratory experi-
ence. The terminal services component provides a full-
featured remote desktop environment, complete with 
hardware design and simulation tools, to the end user over 
a standard Remote Desktop Protocol (RDP) link. These 
terminal services leverage the provided Kerberos infra-
structure to enable single sign-on functionality across all 
uLab components, presenting a more unified environment 
to the end user. Finally, the hardware-access workspaces 
component provides the end user with access to real, 
physical hardware. This component also leverages the 
Kerberos infrastructure for authentication and encryption 
of both client-server and server-server connections, there-
by maintaining the security of all hardware-access com-
ponents. A diagram illustrating the relationships between 
major components in a typical uLab system is shown in 
Fig. 1. 

II. INFRASTRUCTURE 
The infrastructure component is comprised of a Ker-

beros realm controller or controllers; a large, central disk 
array; networking hardware; a router/firewall; and various 
related services. The Heimdal Kerberos realm controller 
utilized in the uLab system uses OpenLDAP as its directo-
ry backend, while OpenLDAP uses Kerberos as its prima-
ry authentication system. Due to the high level of difficul-
ty  involved  in  manually configuring Heimdal Kerberos,  
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Figure 1.  Major components of a generic uLab system 

OpenLDAP, SASL, and any necessary cryptographic 
components, new graphical and command line tools were 
created to provide easier set up and maintenance of the 
realm controllers. Central storage is provided by a 500GB 
RAID 1 disk array, which is then exported to the uLab 
servers using the Network File System version 3 (NFS v3) 
protocol. Several independent internal networks are uti-
lized, with a 1Gbps Ethernet switch handling most non-
storage traffic, and a 10Gbps Infiniband switch handling 
disk array access over NFS v3; these networks are fully 
isolated from any external networks, including the Inter-
net. Internet service is provided though the use of a 
pfSense router and firewall, which provides appropriately 
filtered Internet service to dedicated Ethernet ports on the 
servers though the use of Network Address Translation 
(NAT). In the current uLab system, a single master server 
contains the disk array and also provides NFS, Domain 
Name Service (DNS), Dynamic Host Configuration Pro-
tocol (DHCP), Trivial File Transfer Protocol (TFTP), 
Network Time Protocol (NTP), and MySQL database 
services to the entire internal network. 

The terminal servers and workspace servers, the opera-
tion of which will be detailed below, contain no disks; 
they store their system files on the central disk array and 
boot via NFS. This configuration allows servers to be 
easily and quickly replaced in the event of hardware fail-
ure; instead of reinstalling and reconfiguring software, the 
MAC address configured in the DHCP server simply is 
updated to reflect the MAC address of the replacement 
hardware. An exception to this rule is found in the work-
space servers residing outside the central uLab cluster; 
these workspace servers use local disk and/or Flash-based 
storage as appropriate. Each terminal server, hereinafter 
referred to as a “node,” is configured to boot using its 
built-in Preboot Execution Environment (PXE) client; the 
PXE client on each server then acquires an Internet Proto-
col (IP) address from the DHCP server. Since each server 
has its MAC address preassigned to a specific IP address 
within the DHCP server's configuration files, each server 
reliably boots with a known IP address. Once an IP ad-
dress has been acquired by the PXE client on a particular 
node, the PXE client proceeds to download the Linux ker-
nel, the initial RAM disk (initrd), and the parameter list 

for that IP address from the TFTP server into RAM. After 
download, the Linux kernel is booted; the kernel then 
mounts the configured NFS root directory to the local root 
directory and allows the node to finish booting via its 
standard System V Init system. 

III. TERMINAL SERVICES 
Unlike most competing remote laboratory solutions, the 

uLab system does not use a Web-based interface for ac-
cess to any of its services; instead, it provides a traditional, 
feature-rich, WIMP-based GUI in order to provide an ex-
perience that is as close to real world as possible. This 
requires a full desktop environment in which the design 
tools and remote laboratory GUI can be utilized effective-
ly and efficiently. For this reason, terminal services are 
provided to the students over Microsoft's industry-
standard Remote Desktop Protocol (RDP)[4]. Although 
normal terminal services over RDP--such as those provid-
ed by Microsoft or the open-source FreeRDP project[5]--
are not easily scalable due to the fact that each client must 
connect to a given server, providing additional terminal 
servers to alleviate overcrowding on existing servers 
brings significant challenges in the form of session con-
sistency, server management, and active session resump-
tion after disconnection. 

To provide redundancy and scalability to uLab's termi-
nal services, the xrdp server from the FreeRDP project 
was modified to support the concept of a central forward-
ing server. This forwarding server is responsible for initial 
authentication and selection of an appropriate RDP 
backend server; each backend server is then responsible 
for hosting individual terminal sessions. This architecture 
alleviates the scalability and reliability concerns typically 
associated with a single terminal server by allowing mul-
tiple RDP backend servers to be utilized transparently; in 
this configuration the system only presents a single termi-
nal services address to its users. Cross-session consistency 
is ensured through the use of the central disk array, which 
stores all user data including each users' desktop configu-
ration files. Additionally, each login is recorded in a dedi-
cated database with all of the pertinent information re-
quired to reestablish a connection to the backend server if 
needed. This information includes the username, backend 
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server, X11 display number, and Process Identifier (PID) 
of the window manager in control of the session. Upon 
termination of the window manager, the associated ses-
sion information is removed from the database, and all 
daemons and processes related to that session are termi-
nated. 

Communication between the RDP forwarding server 
and the RDP backend servers is accomplished over three 
separate channels. Control of the RDP backend servers is 
handled via passwordless secure shell (SSH) commands; 
the commands originate on the forwarding server in re-
sponse to login and termination requests, and are sent to 
the appropriate backend server during session startup and 
teardown. RDP video and input device actions are handled 
via an xrdp session stream, with the forwarding server 
acting as a simple router, ensuring that each stream is 
routed from the appropriate RDP backend server to its 
attached remote client. Audio is handled in a third 
PulseAudio stream. Each terminal session executes an 
independent PulseAudio server; this server then captures 
all sounds generated within the active session, and trans-
mits the resultant audio stream to the RDP forwarding 
daemon for subsequent transmission to the client. While 
portions of this architecture were present as legacy code 
within the xrdp project, the original intent of that code 
appears to have been separation of a single forwarder and 
single backend server. A significant amount of work on 
the xrdp codebase was required to make the aforemen-
tioned design work reliably and to incorporate much-
needed features, such as remotely commanded termination 
of active sessions and tracking of active-connected versus 
active-disconnected sessions. The final design of this 
component is shown in Fig. 2. 

Since Linux provides a wide variety of desktop envi-
ronments to choose from, selection of an appropriate envi-
ronment for the uLab that both enables complex engineer-
ing tasks and functions well over RDP is critical. The two 
most widely available desktops, as of this writing, are 
KDE[6] v4.x and Gnome[7] v3.x; however, neither of 
these is suitable for use over RDP for a number of rea-
sons. Both rely heavily on OpenGL and raw CPU power 
for “eye candy” (graphical effects that primarily serve to 
entertain the user); because the terminal servers do not 
contain graphics cards to enable accelerated OpenGL, 
severe performance penalties would be incurred by 

OpenGL's continual use. Although KDE contains an 
OpenGL-free compatibility mode, it is built on top of the 
Qt v4.x toolkit, which does not perform well over remote 
desktop links. Furthermore, both desktops are built around 
a concept generally referred to as the “semantic desktop”; 
this concept primarily is designed for personal information 
management and retrieval. The search and indexing tools 
on which the semantic desktop is built also require a fair 
amount of CPU power and memory to function properly, 
and the desktop environment itself will not function cor-
rectly without them. Supporting the maximum number of 
users on a given terminal services node requires that all 
sources of replicated bloat, that is, any unneeded CPU and 
memory usage caused by a single user session, must be 
carefully controlled. In the author's opinion, neither KDE 
nor Gnome is a suitable candidate for use with the new 
remote laboratory system, since both inherently use non-
trivial amounts of CPU and memory per session for func-
tions that do not enhance the overall laboratory experi-
ence. 

Fortunately, there are several less popular, non-
semantic, WIMP desktops from which to choose, includ-
ing LXDE[8], XFCE[9], Cinnamon[10], and TDE[11]. All 
are reasonable choices for inclusion in a remote laborato-
ry, however TDE was chosen due to both its unique fea-
ture set and the author's familiarity with this desktop envi-
ronment. In the author's opinion, LXDE and XFCE are too 
light on features to be chosen if another reasonable alter-
native is present; also, they, together with Cinnamon, suf-
fer from a somewhat complex, confusing programming 
style and set of Application Programming Interfaces 
(APIs). Because all three desktops are based on the Gimp 
Toolkit (GTK)[12], programs written in the competing 
Qt[13] toolkit do not integrate well with any of these 
desktop environments, and vice versa. Providing a con-
sistent user experience requires the use of the native pro-
gramming toolkit of the desktop environment in use; 
where workarounds do exist for other desktops, they gen-
erally consist of complex and largely unsupported pieces 
of software. By contrast, TDE is built on the older Qt 3.x 
toolkit, which, despite its age, not only works efficiently 
over RDP and XDMCP links but also presents a reasona-
bly powerful programming style and set of APIs to the 
developer, thus making it the best choice for the uLab 
system. The feasibility of using the uLab desktop even on 

 
Figure 1.  Architecture of the terminal services component 

26 http://www.i-joe.org



PAPER 
A LOW-COST FULL-FEATURED EXTENSIBLE LABORATORY FOR ONLINE HARDWARE ENGINEERING 

 

completely closed systems such as the newer Apple iPh-
one and iPad devices has been verified by the author, alt-
hough either one will require a keyboard and the iPhone 
screen generally is too small for comfortable use in this 
application. The fact that these types of devices are usable 
means that a student who has access to a tablet type device 
and compatible keyboard has a third option with which to 
complete his or her assignments instead of being limited 
to a more expensive laptop or desktop computer. It is ex-
pected that Android devices, which typically enforce few-
er software restrictions than comparable Apple devices, 
will work just as well with the uLab system. 

The desktop environment in use is only one considera-
tion in providing a full-featured laboratory workspace for 
the student. Careful attention also must be given to the 
applications that are made available to the user; for a 
computer engineering laboratory to be successful, a wide 
variety of design tools must be installed. Broad categories 
include: software development tools, hardware develop-
ment tools, hardware simulation tools, office and graphics 
tools, and remote-hardware access tools. In the uLab sys-
tem, the first category is populated with FOSS programs, 
such as KDevelop[14], Eclipse[15], gcc[16], and similar 
utilities, with no need to resort to proprietary or closed-
source tools of any type. Hardware development tools are 
a different matter; in particular, FPGA design tools, such 
as Xilinx's ISE, are only available as closed-source bun-
dles from the FPGA's manufacturer. However, a few no-
table exceptions to this general rule exist, such as 
gEDA[17] and LibreCAD[18]. The new remote laboratory 
also includes closed-source freeware, such as LASI, an 
integrated circuit design package. Hardware simulation 
tools include KPicoSim, a FOSS Picoblaze simulator, and 
LTSpice, an excellent closed-source, SPICE-based circuit 
simulator. Office and graphical tools are provided through 
the comprehensive FOSS LibreOffice suite, with ad-
vanced graphics handled through the inclusion of 
GIMP[19], another excellent FOSS program. Finally, a 
means of accessing the hardware of the remote laboratory 
must be provided; in the uLab system, this is handled via 
the inclusion of the uLab remote client, as detailed below. 

IV. HARDWARE-ACCESS WORKSPACES 
Because students will be using the hardware-access 

workspaces as a substitute for direct, physical access to 
laboratory hardware, this component of the uLab system 
must expose the functionality of the remote laboratory 
hardware in an easy-to-use manner. Furthermore, since the 
hardware-access workspaces cannot be combined into one 
server, as the terminal services can, it is important to keep 
the cost of each hardware-access workspace to a mini-
mum. To accomplish this goal, hardware-access “pods” 
were created using the BeagleBone Black[20] ARM v7 
single-board computer (SBC). The pods in the reference 
uLab implementation are each comprised of a single Bea-
glebone and two attached Xilinx FPGAs, with the Bea-
gleBone acting as both JTAG programmer and debug in-
terface. 

As with the other uLab components, the hardware-
access workspaces are integrated with Kerberos to enable 
transparent authentication and encryption; this not only 
ensures security between client and server, but it also al-
lows hardware-access pods to be placed at remote loca-
tions and accessed safely over public networks, such as 
the Internet. A central arbiter daemon provides a uLab 

Kerberos service, and each client (including hardware-
interface servers) must present a valid Kerberos ticket on 
initial connection. Upon successful Kerberos authentica-
tion, the communications channel immediately is switched 
to encrypted mode for security purposes. The lowest lev-
els of this functionality are broken out into a new library 
(tdekrb), which provides an easy-to-use, frame-based data 
transfer method to higher-level applications, while trans-
parently handling Kerberos-based authentication and 
channel encryption. The use of Kerberos tickets in this 
application ensures that the hardware-access client can 
utilize the credentials provided on initial login, thus avoid-
ing the need for the user to re-enter login credentials when 
starting the hardware-access client. 

The central arbiter utilizes a MySQL database to store 
its configuration information. The central arbiter checks 
each authenticated, incoming service-access request 
against the permissions database to ensure that only au-
thenticated users are allowed to access the hardware-
access daemons for which they have permission. Upon 
detection of a request to access a disallowed resource, an 
authorization failure message is sent and the connection is 
terminated immediately; this happens without establish-
ment of a connection to the requested hardware access 
daemon. This process effectively prevents an anonymous 
Distributed Denial of Service (DDoS) attack against the 
hardware-access servers themselves. 

Hardware-access servers utilize the same authentication 
methods and encrypted links as the hardware-access cli-
ent; therefore, the hardware-access servers can be placed 
safely away from the remote laboratory cluster if desired. 
The central arbiter utilizes a persistent, non-expiring Ker-
beros ticket to identify itself to each hardware-access 
server; this prevents a rogue or malicious arbiter from 
utilizing hardware resources to which it has not been 
granted access. If a hardware-access server becomes com-
promised, the damage would be limited to any directly 
connected hardware and/or the hardware-access server 
itself, presenting, in the worst case, an effective Denial of 
Service (DoS) attack against a single laboratory work-
space. This design allows inexpensive hardware-interface 
servers to be placed directly on site, where bulky or sensi-
tive equipment is present. This also could allow laboratory 
hardware located on the other side of the world to be safe-
ly and securely accessed by users of a given remote labor-
atory cluster. 

The hardware-access client is primarily a container ap-
plication into which GUI client “parts” can be inserted. 
The container provides a Multiple Document Interface 
(MDI) container window and status bar; the latter may be 
changed by the active client part to present informative 
status messages to the user. Additionally, toolbars and 
menus are provided from which installed GUI parts may 
be launched as desired. These toolbar buttons and menu 
items automatically change, based on the type of remote 
workspace the user has selected; for example, an FPGA 
development workspace might show the FPGA program-
mer and FPGA viewer parts, while a process-control 
workspace might show sensor plotter and PLC program-
mer parts. Each part communicates with the central arbi-
ter, utilizing a rigidly defined protocol. If the client part is 
authorized to use the requested hardware on initial con-
nection, then the central arbiter contacts the appropriate 
hardware-access server and routes the client connection to 
that server. This architecture allows multiple, identical 

iJOE ‒ Volume 10, Issue 3, 2014 27



PAPER 
A LOW-COST FULL-FEATURED EXTENSIBLE LABORATORY FOR ONLINE HARDWARE ENGINEERING 

 

workspaces to be provided within a given laboratory with 
the system, not the user, deciding which particular work-
space will be utilized for a given connection; this type of 
architecture provides redundancy and masks from the end 
user any potential hardware-access server failures. A 
screen shot of a typical FPGA development session, illus-
trating the use of the FPGA Viewer, FPGA Programmer, 
and Serial Console is shown in Fig. 3. 

The client MDI container handles initial connection to 
the central arbiter, and on initial connection receives a list 
of available workspace types to which the user has been 
granted access. It presents this list to the user; then, after 
the user selects a workspace type, the client MDI contain-
er requests a workspace reservation, matching the selected 
type, from the central arbiter. If all workstations of that 
type are in use, the central arbiter will respond with a busy 
code, and the client will prompt the user to try again later. 
Otherwise, a reservation for a specific workspace of the 
selected type is entered into the system, and will remain 
valid until the initial connection to the arbiter has been 
terminated, either through a client disconnection or 
through the action of a laboratory manager. The central 
arbiter keeps track of these reservations and, on estab-
lishment of a connection by a client part, will ensure that 
the reserved workspace receives the client part's connec-
tion request. The client MDI container is designed to take 
a single command line parameter that specifies the DNS 
address of the central arbiter of the cluster; this can be 
used to hide the implementation details from the user and 
present an “instant-on” hardware-access interface when 
used with existing Kerberos tickets from the initial login. 
If this command line parameter is missing, the client will 
prompt for the address of the central arbiter to which it 
should connect and authenticate. All of these details are 
hidden from the client parts, simplifying development of 
new client parts and ensuring that system security is con-
tinuously maintained. 

Each client part connects to a specific hardware-access 
daemon that runs on a hardware-access server. In turn, 
each hardware-access daemon is assigned a specific port 
on a given host; this architecture allows one workspace to 
be assembled from either one server running one or more 

hardware-access daemons, or from multiple hardware-
access servers, each running one or more access daemons. 
Each access daemon opens a Kerberized server socket and 
expects connections to be made from the central arbiter; if 
the provided Kerberos credentials do not match the known 
arbiter credentials, the connection is immediately termi-
nated. As with the central arbiter, each hardware-access 
daemon follows a strict protocol for identification and 
connection setup; after this process is completed, arbitrary 
data may be transmitted between the client part and the 
hardware access daemon until the connection is terminat-
ed. 

The hardware-access system currently includes several 
client parts and hardware-access daemons that will find 
use in most electrical engineering laboratories. A GPIB-
based oscilloscope and spectrum analyzer part is provided, 
along with an I2C sensor plotter part. All three parts allow 
export of captured data to external files for later analysis, 
and import of external data files for viewing. FPGA ac-
cess is included via two parts: one for programming the 
FPGA and one for interacting with the design after it has 
been loaded into the laboratory hardware. A serial console 
part also is provided for low-speed communication with 
the user's design. On the management end, two parts have 
been provided: one to manage authenticated user access 
permissions, and one to view and control both active ter-
minal service and active workspace users. The latter part, 
in particular, allows a laboratory manager to set session 
timeouts and even disconnect users who have, for exam-
ple, been idle for too long or who might not be using la-
boratory resources in accordance with an institution-
specific acceptable use policy. Following UNIX tradition, 
each part has been designed to do one thing and to do it 
well. This separation of duties not only allows the main-
tainer of each part to stay within his or her areas of exper-
tise, but also has the effect of dividing loosely related 
functions into separate GUI windows. For example, the 
FPGA programmer is separate from the FPGA viewer, 
allowing the FPGA programmer to be minimized or ob-
scured when testing the FPGA, and vice versa. Alterna-
tively,  on  large  screens, both may be visible at the same  

 
Figure 2.  A typical FPGA development session illustrating use of several different “parts” 
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time, with the user choosing where each part should be 
located on his or her screen for maximum usability and 
efficiency. By following this UNIX tradition, the user is 
granted more control over how he or she sets up and uses 
his or her workspace. 

The GPIB interface part, unlike its distant predecessor 
utilized in the RemoteFPGA system[21], handles all dis-
play and processing of the raw instrument data on the cli-
ent end. This increases responsiveness and enables real-
time operation; unlike the older system, which captured 
raw screen shots of the instrument displays, the uLab sys-
tem essentially comprises a complete instrumentation 
front end, similar to the interfaces that have been integrat-
ed with stand-alone test equipment since the beginning of 
the digital test equipment era. This allows the backend test 
equipment in use to be fully abstracted from the user; 
aside from various hardware-driven specifications, such as 
number of traces and bandwidth, each major type of test 
equipment added to the system will present the same ge-
neric graphical interface to the user. This also enables the 
possibility of using “headless” test equipment, such as 
some of the more recent PC-based oscilloscopes that do 
not contain a display or physical keypad, in the laboratory 
to reduce overall cost. In addition, it also enables the re-
purposing of specialized hardware for more general pur-
poses without the added complexity this often brings; for 
example, the spectrum analyzer server included in the 
uLab software package interfaces with an Agilent CDMA 
test set, allowing use of the spectrum analyzer functionali-
ty buried within that specialized equipment without re-
quiring the user to first understand how to operate the 
basic functions of the test set. 

It should be noted that the general principles discussed 
herein are not only applicable to GPIB; the principles 
documented above are applicable to newer interfaces as 
well. As long as the manufacturer provides a program-
ming reference manual that is not protected by a non-
disclosure agreement (NDA) or similar legal instrument, 
new backend server daemons can be written to interface 
with test equipment over almost any hardware interface. 
Special effort was made to ensure that the test equipment 
client parts use a generic protocol that should be applica-
ble to all test equipment within a particular class; there-
fore, for example, the oscilloscope client part and protocol 
should be usable with any type of oscilloscope backend 
interface daemon. GPIB interfaces were implemented 
primarily because of the low cost of GPIB-enabled test 
equipment, the fact that a GPIB interface is all that typi-
cally is required to obtain adequate functionality from 
oscilloscopes and other signal analyzers, and the fact that 
most GPIB-enabled equipment manufacturers freely pro-
vide protocol documentation for those instruments. The 
author recommends that only GPIB, VXI-11, or similarly 
fully open and documented equipment be utilized in new 
remote access laboratories because this will ensure that 
support for the resultant laboratory can be maintained 
even if the original test equipment interface becomes un-
usable. 

Because the reference uLab installation at Raptor Engi-
neering initially will be used for FPGA design, the archi-
tecture of the FPGA viewer part will be examined. The 
new FPGA viewer is a full rewrite with improvements of 
the original FPGA remote access solution created by the 
author and deployed in 2009 at Northern Illinois Universi-
ty (NIU)[22]. The new system uses a hardware interface 

module, contained within a dedicated control FPGA, that 
interacts with a given set of signals connected to the user 
FPGA. This interface module then transmits current signal 
levels to the hardware-access server via a high-speed, 
memory-mapped interface while allowing a second set of 
signals to be controlled by the hardware-access server via 
the same memory-mapped interface. The hardware-access 
server translates the raw signal values to a basic com-
mand-oriented protocol, then sends the translated data 
across the network to the client part, which interprets the 
data and displays the current status of the virtual lights, 
switches, and displays. The interface module also includes 
the ability to read and write to either internal block RAM 
or external RAM; when interfaced with both the client 
part and the user FPGA, this allows block-data-based al-
gorithms, such as image processing, to be implemented on 
the user FPGA, then to be tested easily using the FPGA 
viewer client part. A final feature, implemented within the 
client part itself, is the ability to run a batch test and rec-
ord the results. This batch-test feature takes a list of inputs 
from a simple text file, sequentially applies them to the 8-
bit data bus, and records the results in a second text file. 

V. CURRENT STATUS AND FUTURE WORK 
Work is ongoing to make the uLab even better by add-

ing new features and expanding the number of supported 
devices. Solicitation of student feedback has led to the 
split of the control and user FPGAs into two separate de-
vices; this allows a student to retain full control of the 
DUT, including generation of an appropriate implementa-
tion constraints file specific to his or her design. This new 
architecture also will enable the rapid integration of other 
types of devices, such as microprocessors, to the uLab 
system. The user FPGA is now forcibly reset immediately 
upon client disconnection in order to better avoid the 
slight but non-negligible chance of hardware damage by a 
malicious student, and an additional user logic reset signal 
is provided for student use. The FPGA devices currently 
in use at Raptor Engineering are fully open hardware de-
signs, produced by Numato, in keeping with the stated 
goals of the uLab project. Users now have access to a 
large, dedicated DDR RAM device for advanced data pro-
cessing in addition to the emulated SRAM device provid-
ed by the control FPGA. As of this writing, a built-in 64-
channel logic analyzer is in the final stages of develop-
ment; it is hoped that this instrument will help to demysti-
fy high-speed digital interfaces for intermediate hardware 
design students. By making the uLab more instrumenta-
tion-rich than the small development kits typically used by 
engineering students--while keeping costs to a minimum 
though open design--the degree of learning attainable in a 
typical hardware design course should increase while the 
cost of the same course per student decreases. 

Because the uLab makes extensive use of encrypted 
network communication, it is possible to safely and seam-
lessly create workspaces comprised of hardware devices 
located in different rooms, buildings, or even countries. 
This offers an excellent opportunity for worldwide collab-
oration on a single project; for example, one institution 
offers hardware resources while another offers intellectual 
property and/or experience with the technology being de-
veloped. Similarly, development hardware in one country 
can be made available to students in another where the 
hardware in question may not be affordable or widely 
available. This concept also is extensible to the terminal 
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services themselves; provided that sufficiently fast net-
work connections are available between the disparate 
physical locations, there is no requirement that all the 
equipment be installed in a single location. This function-
ality is particularly useful when the DUT is located in an 
area that cannot support a standard development computer 
due to harsh environmental conditions or a lack of physi-
cal space. 

When deploying a large system such as the uLab, it is 
important to identify and address potential bottlenecks and 
single points of failure. The main bottleneck in a typical 
uLab setup is the limited bandwidth of the Internet con-
nection between the master server(s) and the remote desk-
top clients. It is important, therefore, to secure an Internet 
connection of the highest speed possible for the master 
server(s), as well as to selectively fall back to executing 
the remote hardware access client on local PCs if a suita-
bly fast connection is not available to one or more users. 
The central disk array and master server both present sin-
gle points of failure that must be addressed. The disk array 
uses btrfs and can make use of redundant storage pools 
spread across multiple machines in a Storage Area Net-
work (SAN). Similarly, the master server can be duplicat-
ed across multiple machines in a fail-over configuration, 
reducing the impact of a potential master server failure--
from complete inaccessibility of the uLab cluster to a nui-
sance disconnection of users on a failed server. If multiple 
physical server locations are in use, performance can be 
enhanced by selectively routing incoming connections to 
the closest available master server. 

VI. CONCLUSION 
In this paper, a new method and framework for a full 

featured, cost-effective, extensible remote laboratory has 
been introduced. Several current remote access laborato-
ries were identified, along with their major limitations. 
The three main components of the new uLab system were 
discussed, and the concept of self-contained, network-
attached hardware-access “pods” was introduced. A modi-
fied open-source terminal services framework and its us-
age was described, along with a new, secure, hardware-
access workspace architecture. Requisite laboratory infra-
structure was discussed, and novel uses of this new archi-
tecture and framework were highlighted. Finally, several 
specific hardware-access implementations were described 
from both client and server perspectives. 

Because a major goal of this research not only is to 
prove that a fully open-source remote laboratory can be 
built, but also to ensure the sustainability of such an envi-
ronment for multiple institutions to use, all source code 
written for the uLab system has been released in a set of 
Git trees. At the time of this writing, the uLab system uses 
donated space in the TDE project's infrastructure for bug 
tracking and patch submission. Project code repositories 
also are available at http://ulab.trinitydesktop.org; authori-
tative protocol documentation for developers is included 
in a text file within the hardware-access package Git tree. 
In addition, a highly condensed set of installation instruc-
tions for a lab using the design detailed herein is available 
at the same location. These instructions are designed to be 
read and understood by a Linux system administrator or 
similarly qualified individual, and assume familiarity with 
UNIX-like systems, the Linux command line, and various 
configuration files for several software packages. Finally, 
the aforementioned Kerberos realm setup and manage-

ment tools have been integrated into the TDE project at 
http://www.trinitydesktop.org, and are, therefore, availa-
ble in both source and binary form for TDE R14.0.0 and 
above. 
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