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Abstract—Trajectory data generated from personal or vehi-
cle use of GPS devices can be utilized for travel analysis and 
traffic information service, whereas trip segmentation is a 
key step toward the semantic labelling of the trajectories. 
Two issues are difficult to deal with by the traditional densi-
ty-based algorithms, i. e. multiple stops at the same spatial 
location with different visit times and non-consecutive point 
sequence for stop definition due to signal drifting. This 
article aims to develop a modified density-based clustering 
algorithm, named T-DBSCAN, by considering the time-
sequential characteristics of the GPS points along a trajec-
tory. Two new premises (i.e. state continuity within a single 
stop and temporal disjuncture among stops) were proposed 
as a theoretical basis for regulating the trajectory point 
selection in clustering. An empirical test was performed 
using a GPS-based personal travel dataset collected in the 
city of Shanghai to compare T-DBSCAN against DBSCAN. 
The results indicated that T-DBSCAN effectively improved 
both accuracy and computational speed in trajectory seg-
mentation. 

Index Terms—Personal travel trajectory, Trip segmenta-
tion, Density-based clustering, T-DBSCAN 

I. INTRODUCTION 
The widespread use of GPS-equipped personal travel 

and vehicle navigation generates huge amounts of trajec-
tory data on a daily basis. As they contain rich information 
about inner-city travel and spatiotemporal behaviour of 
urban residents [1], the data have been proven useful for 
intelligent traffic management and transportation planning 
[2]. Despite their great application potentials in many 
fields, the processing of and information extraction from 
these trajectory data remain a common technical bottle-
neck. The key issue is how to correctly convert a set of 
spatiotemporal points (i.e. S{s: x, y, z, t}) that describe 
movement to activity information that describes personal 
travel characteristics (i.e. trip, trip purpose, and travel 
mode) [3]. This process, usually termed a “semantic anno-
tation of trajectories” [4], needs to be automated in order 
to support mass data processing.  

Trip segmentation is the first and the most important 
task in trajectory data processing, as its correctness will 
largely affect such subsequent analyses as OD matrix 
construction, trip purpose identification, and travel mode 
detection. As a trajectory is comprised of a series of con-
secutive moves and stops, a trip can then be defined as a 
move for a given purpose between two adjacent stops [5]. 
Therefore, the essential task of trip segmentation is to 
identify stop points, which are characterized with a num-

ber of travel-related measures that can be derived directly 
from the trajectory itself. Up to date, several algorithms 
have been developed and used for trajectory segmentation, 
including simple time-based clustering, k-means cluster-
ing, and spatial density clustering. The purpose of this 
article is to review the existing major algorithms with 
respect to trajectory segmentation, identify unsolved is-
sues related to personal travel, and propose a modified 
density-based method to address these issues. A thorough 
discussion of the new method and its trajectory segmenta-
tion process is provided, which is followed by an empiri-
cal test and a comparative evaluation of the new algo-
rithm.   

A. Literature Review and Problem Identification 
Previous research has mainly identified two ways for 

stop derivation based on different GPS signal characteris-
tics: (1) comparing temporal gaps between adjacent points 
along the trajectory to detect stops that are signified by 
absence of GPS points due to indoor activities [6,7], and 
(2) applying statistical clustering analysis to identify stops 
that are signified by a cloud of GPS points confined with-
in a small space due to poor signal reception during out-
door activities [8,9]. The latter case is commonly seen in 
real applications yet more difficult to deal with, and it is 
the research focus of this paper.  

At present, popular methods for trip segmentation 
mainly include time-based clustering, K-Means clustering, 
and density-based spatial clustering [10]. Time-based 
clustering searches for a point cluster in which the dis-
tance between any point pair is less than a distance thresh-
old, d, and their time difference is greater than a given 
time-interval threshold, t. When found, all points enclosed 
within the two points are designated as a stop, and the 
cluster center is calculated. Then, the distance of neigh-
boring points to the cluster center is examined in temporal 
sequence against the d/2 threshold, and those with a dis-
tance less than the threshold is labelled as part of the clus-
ter; otherwise, the above procedure is repeated to check 
for the next stop till the entire trajectory is processed 
[11,12]. The K-Means clustering for trajectory segmenta-
tion is a variant modified from its classic form [13]. It first 
divides the GPS trajectory with a user-defined number of 
randomly selected cluster centers (possible stops), then 
uses a predetermined search radius to re-compute new 
cluster centers in an iterative manner until the results con-
verge to a satisfactory level (i.e. the cluster centers no 
longer move from the previous iteration). DBSCAN is a 
density-based spatial clustering method commonly used 
for trajectory data processing [14]. It is based on the ob-
servation that points surrounding a stop usually form a 

iJOE ‒ Volume 10, Issue 6, 2014 19



PAPER 
T-DBSCAN: A SPATIOTEMPORAL DENSITY CLUSTERING FOR GPS TRAJECTORY SEGMENTATION 

 

high-density cluster. Hereby two parameters are used to 
define density: the search radius (Eps) and the minimum 
number of points (MinPts) within a circular area defined 
by the radius. Points which satisfy some conditions related 
to density are grouped to form stop clusters (more details 
in section 3.2). Table 1 shows each of the three methods 
has its own merits and pitfalls in terms of cluster shape 
restriction(CS), noise robustness(NR), ease of initial pa-
rameter setting(InPara), result certainty(Cert), and compu-
tational complexity (CC). 

Perusal of the comparative listing in Table 1 indicated 
that DBSCAN was of overall advantages and especially 
suitable for irregularly shaped trajectory point clusters. 
But when processing large-scale spatiotemporal trajectory 
data, DBSCAN suffers from two drawbacks. First, 
DBSCAN has a computational complexity of O(n2), 
which may cause unbearable time consumption for pro-
cessing the large amount of daily collected sample data for 
this study (10,000~30,000 points per day per person). 
Second, DBSCAN is originally designed for spatial data 
clustering and handicapped when temporal information is 
involved. As to the first issue, Ref. [10] proposed a modi-
fied algorithm known as DJ-Cluster to simplify 
DBSCAN’s three basic concepts (i.e. direct density reach-
able, density reachable, and density connected) into a 
“density-joinable” concept, so that the clusters with com-
mon points can be combined in the clustering process. 
This way, the constraints on computer memories are re-
laxed to some degree. Another possible solution is to 
adopt R-tree indexing to reduce the computational com-
plexity [15]; yet none of the currently available open-
source software packages with DBSCAN (e.g. R and 
Weka) supports data indexing. Aiming at the second issue, 
Ref. [16] brought forward ST-DBSCAN, a DBSCAN 
variant by indexing spatiotemporal data with R-Tree to 
explicitly organize observations into temporal neighbours 
and using two distance thresholds (i.e. Eps1 for spatial and 
Eps2 for non-spatial) to identify clusters. This approach 
was mainly designed to process data within an implicit 
spatial and temporal context; however, it is not suitable for 
handling GPS-based trajectories, for which the explicit 
spatial and temporal data are themselves the target of data 
processing. 

When dealing with trajectory data, the situation be-
comes more complex. One complicated issue is related to 
repeated visits to an activity location within the same 
trajectory. As shown in Fig. 1, suppose a person starts his 
daily travel from home (point B) to office (point S1) in the 
morning, goes to a restaurant (point S2) for lunch and then 
back to office (point S3), runs errands at a different loca-
tion (point S4) in the afternoon and back to office (point 
S5) again, then travels to another restaurant (point S6) for 
supper, and finally comes back home (point E) at the end 
of the day. This example clearly presents a typical human 
travel pattern that is difficult for traditional density-based 
clustering methods to deal with, as they will wrongly 
lump together S1, S3 and S5 as one single stop. In this 
paper, this type of errors is referred to as a “many-visits-
to-one-stop” problem. Apparently, DBSCAN lacks a nec-
essary mechanism to process the temporal sequence of 
activity stops along the trajectory.  

The second limitation of DBSCAN has to do with a 
stop containing points drifting outside the cluster search-
ing area. As illustrated as S2 in Fig. 1, due to the existence 
of poor GPS signals, some of the sample points within the  

TABLE I.   
PROS AND CONS OF THREE MAJOR METHODS FOR TRAJECTORY 

SEGMENTATION 

Method CS NR InPara Cert CC 

Time-
Based circular low 

Min duration and 
max range of stop, 
empirically based 

Certain O(n) 

K-
Means circular low 

The number of 
stops (clusters), 
arbitrarily based 

Uncertain O(nkt) 

DBSCA
N irregular high 

Point density and 
density search 
radius, empirically 
based 

Certain O(n2) 

 
Figure 1.  Potential problems associated with the use of DBSCAN for 

trajectory segmentation 

duration of stay at stop 2 drift outside the spatial range of 
the cluster area. This will lead to misinterpretation of these 
points as part of a move rather than a stop, causing so-
called “spatial disparity of a stop”. In this paper, both 
issues and their combined complexity will be dealt with in 
the formation of the new algorithm. 

II. DEVELOPMENT OF THE T-DBSCAN ALGORITHM 
T-DBSCAN (acronym for Trajectory DBSCAN) was 

developed by extending and modifying the formal defini-
tions of DBSCAN from the basic concepts of GPS based 
trajectories. Numerous studies unanimously recognize the 
decomposition of a trajectory into a series of stops and 
moves; therefore, it is instructive to review these basic 
concepts in their formal expression first and then provide 
additional definitions to build the conceptual framework 
for T-DBSCAN development. 

A. Trajectory, Stop, and Move 
The conceptual view of a trajectory and its components 

adopted here is based on the formal work of Ref. [5]. The 
following three simplified definitions provide a founda-
tion for the work in this paper. 

Definition 1: A trajectory is the user defined record of 
the evolution of the position of an object that is moving in 
space during a given time interval in order to reach a giv-
en destination. 

trajectory: [tbegin, tend] ! space 

Definition 2: A stop is a part of a trajectory, such that 
(1) The user has explicitly defined this part to represent a 
stop, (2) The temporal extent [tbeginstopx, tendstopx] of this part 
is a non-empty time interval, and (3) The traveling object 
does not move, i.e. the spatial range of the trajectory for 
the interval is a single point. (4) All stops are temporally 
disjoint, i.e. their temporal extents are always disjoint. 

Definition 3: a move is a part of a trajectory, such that 
(1) The part is delimited by two extremities that represent 
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either two consecutive stops, or tbegin and the first stop, or 
the last stop and tend, or tbegin and tend. (2) The temporal 
extent [tbeginmovex, tendmovex] is a non-empty time interval, 
and (3) The spatial range of the trajectory for interval 
[tbeginmovex, tendmovex] is a spatiotemporal polyline defined by 
the trajectory function. 

B. Definitions for T-DBSCAN 
Spaccapietra’s definitions clearly indicate some im-

portant spatial and temporal characteristics that need to 
take into account when extracting stops from a trajectory. 
For the purpose of this paper, these characteristics are 
expressed as three concepts, i.e. (1) Spatial density – the 
sample points of one stop are spatially gathering together; 
(2) State continuity – during the time period of stop, there 
is no move; and (3) Temporal disjuncture – the temporal 
extent of two stops are not overlapping with each other. 
Based on the three concepts, the definitions of the T-
DBSCAN algorithm extended from DBSCAN are hereby 
given below. 

Definition 1: Continuous density-based neighborhood 
(shortened as CEps&Eps-neighborhood). Suppose Eps is 
an inner radius defining the density calculation area for a 
given point taken at time k, pk, CEps is an outer radius for 
limiting the density searching range, and T is a time inter-
val, during which the distance between pk and any other 
point taken at time t, pt, is less than CEps. We then have 
P, the set of points during T. Then the CEps&Eps-
neighborhood of pk, denoted N(pk), is defined as:  

{ }N( ) | ( , )

space,

k kp q P dist p q Eps
where
P T

= ! "

= #

 

T is a time interval, that satisfies, 
for [min( ),max( )], ( , )t kt T T dist p p CEps! " <  

Definition 2: Core point. Let MinPts be a threshold 
number of points within Eps. If N(pk) " MinPts, then pk is 
called a core point. A sample trajectory with a begin point 
and an end point is shown in Fig. 2. With MinPts = 4, 
point p is designated as a core point since there are four 
points (in black) within its Eps radius comprising its 
CEps&Eps-neighborhood (Fig. 3). The gray points, 
though also within the same circle, are ruled out since 
they do not satisfy the “continuous” condition defined by 
T.  

Definition 3: Directly continuous density-reachable 
(DCDR). If point q is in the CEps&Eps -neighborhood of 
point p, and p is a core point, then q is directly continuous 
density-reachable from p (Fig. 3). That is, meeting the 
conditions of q�N(p) and N(p) " MinPts. 

Definition 4: Continuous density-reachable (CDR). For 
a spatially ordered set of points p1, p2…,pz, denote p1=n, 
pz=m, and n is not DCDR from m. If any pi is DCDR 
from pi+1, then n is known as continuous density-
reachable from m (Fig. 3). 

Definition 5: Continuous density-connectable (CDC). 
For two points s and t, which are neither DCDR nor CDR 
from each other, if there is a point o, from which both s 
and t are CDR, then s and t are known as being continuous 
density connectable (Fig. 3). 

 
Figure 2.  Trajectory example 

 
Figure 3.  Basic definitions of the T-DBSCAN algorithm 

Definition 6: Cluster. Let D be a whole set of the tra-
jectory points. Cluster C is a nonempty subset of D with 
at least one core point such that, for any two 
points ,p q! �D, (1) q C! if p C! and q is CDR from 
p or (2) ,p q C! " if p and q are CDC from each other. 
Examples are illustrated as the gray and dark points in 
Fig. 3. 

Definition 7: Temporally continuous (TC). Let the min 
and max time stamps of a cluster C ( D) be mint and 
maxt, respectively. C is known as being “temporally 
continuous” if, for tp D! " and mint < t < maxt, 

tp C! . 

Definition 8: Temporally overlapping (TO). Let two 
clusters C1( D) with a time extent t[mint1, maxt1] and 
C2( D) with t[mint2, maxt2]. C1 and C2 are known as being 
temporally overlapping, if t[mint1, maxt1] #t[mint2, maxt2]$ .

Definition 9: Stop. Let C1,C2,…,Cn be n clusters in D. 
Stop S results as a nonempty subset of D from the follow-
ing situations: (1) iC is a stop if it is TC and not TO with 

any other cluster; (2) For iC! , if Ci is not TC but the non-
TC points (blank points in Fig. 3) are within its time ex-
tent, Ci is still treated as a stop, and the non-TC points are 
merged to Ci as part of the stop; (3) For ,i kC C! , if Ci 
and Ck are TA to each other, then a stop is formed by 
merging Ci and Ck. 

III. DEVELOPMENT OF T-DBSCAN 
The new definitions, i.e. “temporal continuous” and 

“temporal overlapping”, are intended to express the spatial 
and temporal rules for identifying true stops from a trajec-
tory. T-DBSCAN is so designed to overcome the prob-
lems of “many-visits-to-one-stop” and “spatial disparity of 
a stop” that cannot be handled by the traditional DBSCAN 
method. Its development process hereby consists of an 
overall workflow, a search method for continuous density-
based neighborhood, and a cluster expanding method. 

A. T-DBSCAN Workflow 
Except the last step, T-DBSCAN follows roughly the 

same general workflow as DBSCAN. It first creates clus-

iJOE ‒ Volume 10, Issue 6, 2014 21



PAPER 
T-DBSCAN: A SPATIOTEMPORAL DENSITY CLUSTERING FOR GPS TRAJECTORY SEGMENTATION 

 

ters by searching the continuous density-based neighbor-
hood of qualified core points, then expands the clusters 
based on the core point and its neighboring points, and 
finally merges the clusters which are temporally adjacent 
to each other. More differences are presented in the details 
of the algorithm. As shown in the following pseudo code, 
four input parameters are required for T-DBSCAN: D is 
the set of points comprising the trajectory; CEps is the 
distance range to ensure that the points comprising a stop 
are of state continuity (that is, to rule out the points that 
belong to a “move” during the time extent of the stop); 
Eps is the search radius for identifying density-based 
neighborhood; and MinPts is the minimum number of 
neighboring points to identify a core point. 
T-DBSCAN (D, CEps, Eps, MinPts) 
   C = 0 // id number of the cluster currently being searched 
   MaxId = -1 //the maximum id of the visited point 
/*Because the points of a trajectory are time ordered, the points 
with an id smaller than MaxId are supposed to either belong to 
the previous cluster (the points unvisited but during the time 
extent of a cluster also belong to the cluster based on definition 
7) or identified as noise. So here only the points with an id 
greater than MaxId are processed, and this helps to improve the 
efficiency of the method.*/  

for each P > MaxId in dataset D  
      mark P as visited 
//search for continuous density-based neighbors, N is the set of 
neighbors 
      N = getNeighbors (P, CEps, Eps)  
      MaxId = id of P 
      if sizeof(N) > MinPts 
          C = C+1 
      endif 
//expand the cluster based on definition 3, 4, and 5; Cp is the 
point set of the cluster with id of C 
      (Cp,MaxId) = expandCluster(P, N, Eps, MinPts, MaxId)  
   endfor 
//process the clusters into stops based on (3) of definition 9 

for each cluster  
       if max point id of cluster_i >= min point id of cluster_i+1 
       else merge cluster_i and cluster_i+1 

endfor 

B. Searching for Continuous Density-based 
Neighbourhood 

Fig. 4 illustrates how a continuous density-based neigh-
borhood is found with T-DBSCAN. Since GPS points of a 
trajectory are time ordered, in most cases two consecutive 
points in time sequence are also spatially most adjacent. In 
Fig. 4, let p be the target point. A forward search in time 
sequence is first performed to identify and collect contin-
uous density-based neighboring points. If the distance 
between p and a candidate point is less than Eps, then the 
point is labelled as a neighbor of p, else if the distance is 
greater than CEps then the searching process stops. This 
results in the grey points as the neighbors of p. And the 
hollow ones are separated from p by the points that indi-
cating a move. 

Here, CEps is a key parameter to avoid the above two 
groups of points to be lumped into one cluster. Its physi-
cal significance is: when the GPS carrier stops or moves 
slowly, the signal quality of GPS might become poor, 
causing the GPS track points to drift. Here, parameter 
CEps takes the experimental value of maximum drift 
range. If the distance of two points is beyond the range, it 
is reasonable to believe that there is a move, so the cur-

rent point and the core point cannot be in the same clus-
ter. The pseudo code of the continuous density-based 
neighborhood searching process is as follows. 
N = getNeighbors(P, CEps, Eps) 
// searching forward for neighbors 
for each P' when id of P'> id of P 
   if distance(P',P) < Eps 
       Add P'into N  

else distance(P',P) > CEps 
       break 
   endif 
endfor 

C. Cluster Expanding Process 
As previously defined, a new cluster is created when 

point p is qualified as a core point, which is in turn de-
fined by its neighbouring points being equal to or greater 
than MinPts. The cluster expanding process proceeds as 
follows. Each neighbour of the core point is traversed to 
examine its quality for being a core point until all CDR 
and CDC points are examined. The final cluster is then 
formed with interconnected core points and their neigh-
bouring points, as well as their CDR and CDC points.  
 (Cp,MaxId) = expandCluster (P, N, Eps, MinPts, MaxId) 
   add P to cluster Cp 
   for each point P' in N  
      mark P' as visited 

if id of P'> MaxId 
      Maxid = id of P' 
      endif 

// find the neighbors of neighbors of core point P 
      N' = getNeighbors(P', CEps, Eps) 
      if sizeof(N') >= MinPts 

// classify the points into current cluster based on defini-
tion 3,4,5 
         N = N joined with N' 
      endif 
      if P' is not yet member of any cluster 
         add P' to cluster Cp 
      endif 

endfor 

 
Figure 4.  Searching method of continuous density-based neighborhood 

IV. TESTS AND COMPARISONS 
Two tests were performed to provide a comparative 

analysis between DBSCAN and T-DBSCAN in terms of 
segmentation accuracy and computation efficiency. One-
day GPS travel trajectories collected from 50 volunteers 
in Shanghai were used as the test dataset, which con-
tained such essential data items as point ID, timestamp, 
and location in 3-dimensional space. A laptop computer 
with a 2.4 GHz CPU, 2 GB memory, and Windows XP 
was used to perform the analysis. In the tests, both algo-
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rithms used the same parameter setting, i.e. MinPts = 
120, Eps = 20 m, and CEps = 300 m. 

The first test was designed to compare computational 
efficiency of the two algorithms at different levels of data 
volume. The trajectories were first sorted and grouped 
into three classes of data volume (Table 2) before seg-
mentation processing. The processing time was recorded 
for either algorithm per trajectory, and the average 
amount of processing time was summarized for each 
volume class for either algorithm separately (Table 2). It 
indicated that T-DBSCAN was significantly faster than 
DBSCAN in segmenting the trajectories at all data levels, 
and the efficiency improvement seemed to ascend with 
the data volume to be processed. Specifically, T-
DBSCAN took only 6.25% of DBSCAN’s time to pro-
cess up to 8000 points, and this ratio decreased to 5.72% 
and further 4.34% when 8000~20000 points and 
20000~30000 points were processed, respectively.  

The second test involved comparison of segmentation 
accuracy between the two methods. One trajectory was 
chosen for demonstration here, and its geometry and 
actual activity stops were illustrated in Fig.5 Excluding 
the start and end points (symbolized as red bubbles in the 
figure), the entire trajectory contains a total of nine stops 
(represented by blue bubbles). The number in each blue 
bubble indicates the order of the stop being visited along 
the one-day trajectory. As a matter of fact, some locations 
were visited more than once, hence forming the so-called 
“many-visits-to-one-stop” problem. The spatially-tangled 
but temporally separate clusters were properly decom-
posed by T-DBSCAN, as there was no overlapping be-
tween point ID ranges (i.e. not TO) of any pair of adja-
cent clusters (Table 3). Compared to the real stops from 
field verification, all T-DBSCAN-deduced clusters had 
correctly a match except cluster 5, though spatiotempo-
rally so well qualified but only found to be resulting from 
a traffic jam. In comparison, serious overlapping occurred 
between many pairs of clusters identified with DBSCAN, 
such as clusters 1 and 2, 6 and 7, as well as 9 and 10. 
Because of the serious overlapping resulting from the 
convoluted trajectory, these clusters could hardly match 
with any of the real stops in sequence.  

The spatial disparity problem, a second issue associat-
ed with segmenting a travel trajectory, was also adequate-
ly dealt with in the T-DBSCAN processing, as the algo-
rithm was able to automatically snap the temporally-
overlapping (note: including “temporally-touching”) 
clusters together to form one single stop (e.g. stops 3, 5, 
7, and 8). As a result, the total number of stops identified 
using T-DBSCAN basically matched the number of real 
stops from field verification, whereas the stops produced 
from DBSCAN could not be easily fit to the real observa-
tions.  

V. CONCLUSIONS 
Personal travel trajectories as recorded by a GPS de-

vice can simply be as complex as the daily spatiotemporal 
behavior of any individual human being. Convoluted 
trajectories may contain the so-called “many-visits-to-
one-stop” and “spatial disparity of a stop” problems. Trip 
segmentation of a GPS-induced trajectory involves 
properly utilizing inherent information of not only the 
spatial distribution of sample points and related geometric 
features,  but  also  their  temporal  sequence.  As demon- 

 
Figure 5.  The geometry of and activity stops along the selected trajec-

tory 

TABLE II.   
COMPARISON OF COMPUTATIONAL EFFICIENCY BETWEEN DBSCAN 

AND T-DBSCAN 

Class Number of Points 
Processing Time 

DBSCAN T-DBSCAN 
1 0~8000 16s 1s 
2 8000~20000 70s 4s 

3 20000~30000 369s 16s 

TABLE III.   
COMPARISON OF TRAJECTORY SEGMENTATION ACCURACY BETWEEN 

DBSCAN AND T-DBSCAN 

Method Sequence of clusters being identified (represented as 
ClusterID: {PointID1, PointID2}) 

DBSCAN 1:{3, 7602}; 2:{620, 7533}; 3:{1721, 6368}; 4:{6509, 
6646}; 5:{7770, 8155}; 6:{8270, 16441}; 7:{8346, 

23200}; 8:{16907, 22652}; 9:{18580, 21115}; 
10:{18740, 18876}; 11:{16761, 22974}; 12:{23401, 

25140} 

 T-
DBSCAN 

Identified Clus-
ter 

Real 
Stop Identified Cluster Real 

Stop 

1:{3, 593} Stop 1 7:{8270, 15911} 
8:{15912, 16336} Stop 5 

2:{622, 821} Stop 2 9:{16442, 16592} Stop 6 

3:{1721, 5694} 
4:{5695, 6154} Stop 3 10:{16907, 17039} 

11:{17040, 17876} Stop 7 

5:{6509, 6630} No stop 
12:{18580, 19805} 
13:{19806, 20098} 
14:{20099, 21111} 

Stop 8 

6:{7770, 8129} Stop 4 15:{23401, 25025} Stop 9 

 
demonstrated in this study, traditional density-based clus-
tering methods were proven both theoretically and practi-
cally incapable of identifying multi-visited stops, as they 
only consider the spatial characteristics of a trajectory. 
The design of T-DBSCAN was based on comprehensive 
consideration of spatiotemporal characteristics of the 
trajectory. By doing so, the new algorithm was able to 
untangle convoluted travel patterns through proper treat-
ment of the state continuity and temporal disjuncture 
issues, leading to a higher accuracy in trip segmentation. 
In addition, T-DBSCAN was proven computationally 
more efficient and therefore suitable for mass data pro-
cessing. On the other hand, running T-DBSCAN requires 
more input parameters, and they are empirically based 
and therefore necessarily difficult to determine. This 
issue must be dealt with in the future work. 
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