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Abstract—Support Vector Machines (SVM) are popular 
machine learning algorithms that have been successfully 
applied in diverse aspects, but for large training data sets 
the processing time and computational costs are prohibitive. 
This paper presents a novel fast training method for SVM, 
which has been applied in the fault diagnosis of a service 
robot. First, sensor data were sampled under different run-
ning conditions of the robot and those samples were divided 
as training sets and testing sets. Second, the sampled data 
were preprocessed and a principal component analysis 
(PCA) model was established for fault feature extraction. 
Third, the feature vectors were used to train the SVM classi-
fier, which achieved the fault diagnosis of the robot. To 
speed up the training process of the SVM, on the one hand, 
sample reduction was done using the proposed support 
vectors selection (SVS) algorithm, which can ensure good 
classification accuracy and generalization capability. On the 
other hand, we took advantage of the excellent parallel 
computing abilities of a Graphics Processing Unit (GPU) to 
pre-calculate the kernel matrix, which avoids recalculation 
during the cross validation process. Experimental results 
illustrate that the proposed method can significantly reduce 
the training time without decreasing the classification accu-
racy. 

Index Terms—SVM, fast training method, support vectors 
selection, GPU, robot fault diagnosis. 

I. INTRODUCTION 
Robots are playing more and more important roles in 

our daily life [1], particularly in the home service area [2-
3]. However, most of the robot users are ordinary people 
or even the frail elderly who have low self defense abili-
ties, which implies that the faults occured in the robot 
system are serious threats to the user’s property and life. 
Hence, it is meaningful to do study on the fault diagnosis 
methods (FDMs) for service robots that work in a man-
robot coexistent environment. 

In general, existing FDMs for robots can be divided in-
to two major types: model based and data driven. In [4], a 
model based discrete-time fault diagnosis framework for 
the manipulator is presented. Yu et al. [5] introduced a 
robot fault-proneness prediction method based on particle 
filters. Moreover, Hoang et al. [6] developed a nonliner 
observer-based fault diagnosis framework for wheeled 
mobile robots. Those model-based methods are effective, 
but it is not easy to get an accurate mathematical model of 
a service robot that works in a dynamic environment. On 
the contrary, data-driven FDMs can achieve good diagno-
sis performance without an accurate mathematical model.  
Machine learning based fault diagnosis methods are usual-
ly regarded as the most typical data-driven FDMs [7]. As 

one of the state-of-the-art machine learning algorithms, 
SVM has shown potential and promising performance in 
classification and has been successfully applied in many 
fault diagnosis occasions [8-9], which include robot fault 
diagnosis. However, the standard SVM algorithm consists 
of solving a mathematical optimization problem of Quad-
ratic Programming (QP), and its computational cost is at 
least O(n2), where n is the number of training vectors. 
Thus, the training speed of SVM for large datasets be-
comes a bottleneck.  

To accelerate the training speed of an SVM, intensive 
research efforts have been made [10]. An intuitive solu-
tion to reduce the training time is to decompose the whole 
optimization problem into several sub-problems, and thus 
the overall training time can be reduced [11]. However, 
the hyper plane constructed by SVM is only dependent on 
a small number of training samples named as support 
vectors, which lie close to the decision boundary. Inspired 
by this idea, clustering algorithms [12] and random sam-
pling algorithms [13] can be applied in SVM to select the 
support vectors from the whole dataset. Moreover, GPU-
based parallel SVM training methods [14-15], which are 
much faster than the traditional CPU-based serial ones, 
have been proposed. Although the above mentioned 
methods are effective to some extent, there are still several 
problems in those methods: (1) the sample reduction 
based SVM training methods are usually designed for 
binary classification, but for multi-classification tasks, the 
computational costs of the sample reduction process are 
huge and (2) the loss of support vectors caused by the 
sample reduction process is negative for the generalization 
capability of SVM.  

To cope with the above mentioned problems, this paper 
presents a novel fast training method for SVM. Consider-
ing that the training vectors that lie near the decision hy-
perplane are likely to become support vectors, we pro-
posed a novel support vectors selection (SVS) algorithm 
to preserve the support vectors and delete the redundant 
training vectors that are far from the margins. First, the C-
means clustering algorithm was applied to detect the C 
cluster centers. Second, the clusters with more than one 
class label (named as CML) are preserved, while the oth-
ers (named as CSL) are selected to be further analyzed. 
Third, the k nearest clusters of each CSL are preserved 
and applied as the training vectors together with the CML. 
With the proposed SVS algorithm, we can accomplish the 
sample reduction procedure with the lowest loss of the 
support vectors, which implies that the proposed method 
can guarantee the accuracy and generalization of SVM. 
Further, we pre-calculated the kernel matrix to avoid re-
calculation during the cross validation. Taking advantage 
of the parallel computing techniques, the pre-calculation 
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was implemented on a GPU, which contributed to the 
reduction of the SVM training time. To verify the effec-
tiveness of the proposed method, an application in robot 
fault diagnosis was demonstrated and experimental results 
are given. 

The remainder of this paper is organized as follows. 
Section II briefly introduces the SVM theory. Section III 
presents the proposed fast training algorithm for SVM.
Experimental results are given in Section IV. Finally, 
Section V is devoted to conclusions. 

II. SUPPORT VECTOR MACHINES 
The basic SVM deals with linearly separable binary 

classification problems and can cope with the non-
linearly separable cases by introducing the kernel fuctions 
and slack penalty. Given a labeled training set consisting 

of a group of data points { ,y }t 1
nS xi i i= = , where mx Ri !  

is the thi training input vector, n  is the number of train-
ing data, m is the dimension of the input data, and 

{ 1,1}iy ! "  is the set of labels. The SVM training prob-
lem can be written as the following Quadratic Program: 

1 , 1

1

1min( )
2

s.t. 0, 0 , 1, ,

i

n n
T

i i j i j i j
i i j

n

i i i
i

y y x x

y c i n

!
! ! !

! !

= =

=

"
#$

$
%
$ = & & =$'

( (

( !
             (1) 

where i!  is the Lagrangian coefficient and c is the slack 
penalty. 

The kernel function can map the input vector x  into 
feature spaces and returns a dot product of the feature 
space. The liner discriminant function with kernel 
( , )i jK x x  is given by the following: 
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where sgn( )x  is the signum function and the structure of 
SVM classifier is shown in Fig. 1.
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Figure 1. Structure of SVM 

III. Fast Training Method for SVM 
The proposed fast training method for SVM mainly 

contains two processes, namely, the support vectors se-
lection (SVS) process and the GPU-based acceleration 
process. In the former process, the C-means clustering 
algorithm is applied to find the C cluster centers, and 
those clusters are divided as the CML and the CSL. Se-
cond, the CML are preserved as they are more likely to 
become support vectors, while the CSL are selected to be 

further analyzed. Third, the k nearest clusters of each 
CSL are preserved and applied as the traning samples 
together with the CML. Thus, sample reduction can be 
accomplished using the proposed SVS algorithm, which 
retains the support vectors to the utmost extent. In the 
latter process, a GPU-based pre-calculation of the kernel 
matrix is done to avoid the recalculation during the cross 
validation. 

A. Support Vectors Selection Algorithm 
Step1. Based on the C-means clustering algorithm, the 

original training samples are divided into c clusters, from 
which we can easily distinguish the CML and the CSL. 
The details are described in Table 1. 

TABLE I.   
PSEUDO CODE OF PROCEDURES IN FINDING CML AND CSL  

Finding the CML and the CSL ( ix , c, N) 
1. Randomly select a set of initial candidates 1 2{ , , , }cv v v!  

for c cluster centers from the training samples 
1 2{ , , , }nX x x x= ! . 

2.   for p=1 to N do 
3. Calculate the Euclidean distance between each 

( 1,2, , )ix i n= !  and ( 1,2, , )jv j c= ! , then assign each 

ix to the nearest cluster jC  whose center is jv . 

4.   Recompute the centers of the c clusters ( 1,2, , )jC j c= !  

and we can get the new cluster centers: 
1 ( 1,2, , )

j

j
x Cj

v x j c
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where jn  is the number of samples in cluster jC  and the 

sum of square error is calculated by (4). 
2
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5.  if no more reassignment of samples or E is below a thresh-
old  

6.         break. 
7. end for 
8. c clusters 1 1 2 2{( , ), ( , ) , ( , )}c cC x y x y x y= !  can be got, 

where ( , )i ix y  represents the thi cluster center ix  with la-

bel iy  and csl cmlC C C= ! . 

9.  Return cslC  and cmlC . 
 
Step2. To retain support vectors as much as possible, 

we needed to do analysis on the CSL, which can be denot-
ed by 1 1 2 2{( , ),( , ) ,( , )}csl m mC x y x y x y= ! . Then we 
found the k nearest cluster sets of ix  (marked as ( )k iC x ) 
by solving the following problem: 
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Step3. The final training datasets can be found 
through the following equation 

1 2( ) ( ) ( )T cml k k k mC C C x C x C x= ! ! !" !         (6) 

where TC  represents the training sets after sample reduc-
tion, cmlC  represents the set of CML, and ( )k iC x  repre-
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sents the k nearest cluster sets of ix .GPU-based Acceler-
ation Process 

The calculation of the kernel matrix (KM) is one of the 
most time consuming procedures in the training process of 
SVM. The kernel matrix will be recalculated k times dur-
ing the k-fold cross validation, which increases the train-
ing time enormously. To avoid the recalculation and ac-
celerate the calculation process of KM, a GPU-based pre-
calculation of KM was proposed [16], which is shown in 
Fig. 2. 

Feature 
extraction

Optimal 
parameters

Optimal SVM 
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Figure 2. Proposed training procedure based on GPU 

In this study, the Gaussian RBF kernel function 
( , )i jK x x was calculated by

2( , ) exp( )i j i jK != " "x x x x! !             (7) 

where ix  and jx  are two input vectors and we can ex-
pand (7) in terms of matrix-vector multiplication 

( )T T( , ) exp ( 2i j i i j j i jK ! " #= $ % + % $ %& 'x x x x x x x x . Thus, 
we can get  
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where M  is the kernel matrix, A  and B  are input vec-
tor matrixes. In this form, it can be easily processed by the 
CUDA basic linear algebra library and GPU helper func-
tion. 
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Figure 3. Structure of kernel matrix 

The structure of KM is illustrated in Fig. 3, from which 
we can see the calculations of the elements in the kernel 
matrix are independent of each other, which is suitable for 
parallel computing.  

Recently, GPUs have become the mainstream device 
for general-purpose computation because of their relative-
ly low cost and high performance. CUDA is a convenient 
C-language programming API programming interface,
which makes a sizable boost for the wide applications of 
GPUs in scientific computing areas [16]. In CUDA, CPU 
works as the host that mainly deals with the logic events 
and serial computation, while GPU works as the device 
that can execute multiple concurrent threads. Table 2 
shows the pseudo code of the KM calculation process, 
from which we can see the pre-calculation is performed by 
combining CPU and GPU to get the best performance. 

TABLE II. 
PSEUDO CODE OF GPU-BASED KM CALCULATION  

Kernel matrix calculation  

1. Change the form of training vectors into column wise for GPU-
based calculation. 

2. Initialize the GPU equipment and allocate memory on GPU for 
the training vectors array.  

3. Load the training vectors to the GPU memory. 
4. Set parameters for kernel function and run it to call the calculation 

process on GPU. (Above four steps are performed on CPU side.) 
5. For ( each training vector ) do 

! Load the training vector to the GPU. 
! Perform the calculation according to Equation 8. 
! Retrieve the calculation results from GPU. 

6. End do
7. De-allocate GPU memory. 

IV. IMPLEMENTATION ON WHEELED ROBOT 
To verify the effectiveness of the proposed fast training 

method, implementation on a wheeled robot was carried 
out in this study. First, sensor data were sampled and 
preprocessed. Second, sample reduction was done based 
on the proposed SVS algorithm and a PCA model was 
established for fault feature extraction. Third, the GPU-
based KM calculation was performed to reduce the train-
ing time. Finally, an SVM model was trained and the fault 
diagnosis task was accomplished. The flowchart of the 
experimental process is illustrated in Fig. 4. 
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based on SVS PCA model GPU-based KM 
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SVM model 
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Data preprocessing Feature extraction

Fault diagnosis

Training data

Testing data Data 
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Figure 4. Flowchart of experimental process 
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A. Experimental Robot and Its Fault Diagnosis Problem  

 
Figure 5. Experimental mobile robot 

As shown in Fig. 5, the wheeled robot designed by our 
research group was applied as the experimental platform 
[17]. The robot was driven by two differential wheels and 
was equipped with various kinds of sensors, such as en-
coders, voltage detector, temperature sensor, etc. In this 
study, we mainly focused on the diagnosis of 7 common 
kinds of faults that occurred in the robot’s driving system. 
As shown in Table 3, the fault space can be defined as 
err 0 1 7S {S ,S , ,S }= ! , where 0S  represents the normal 

state and Si  represents the thi  fault state. 

TABLE III.   
Fault categories TYPE  

Fault categories Fault position Fault mode Label 
Normal condition None None S0 

Mechanical faults 

Left wheel Low presure S1 
Right wheel Low presure S2 

Left coupling Loosening S3 
Right coupling Loosening S4 

Sensor faults 
Left encoder Pulse loss S5 

Right encoder Pulse loss S6 
Gyroscope Constant drift S7 

B. Data sampling and preprocessing  
In this study, 400 sets of data under each of the running 

states (S0-S7) were sampled respectively. Thus, the raw 
data sets can be denoted by T 3200 9

0 7[ , , , ]all iD D D D R != "! !  
and 400 9

iD R !"  represents the data set sampled under the 
thi  fault condition. Then we randomly selected 200 sets 

of samples in each iD  as the training samples 
200 9 ( 0 ,7)iX R i!" = !  and the rest 200 sets of samples 

were used as the testing samples 200 9 ( 0 ,7)iY R i!" = ! .  
For a data set of 200 observations and 9 process 

variables 200 9
iX R !" , we can get the standardized data 

matrix iX  by Equation 9. 
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where ijd  is the element of matrix iX  and ijd  is the el-
ement of the standardized data matrix iX .  
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Figure 6. Boxplot of standardized data matrix (a) 
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Fig. 6 demonstrates the boxplot of the standardized data 
matrixes from which we can see that the mean and vari-
ance of each dimension of iX  equal 0 and 1, respectively, 
after standardization. Then the proposed SVS algorithm 
(see Section III) was carried out to do sample reduction. In 
this study, c=100, k=9, and the final training data set 

976 9
TC R !" . 

C. Feature Extraction and SVM Training 
PCA is one of the most widely used feature extraction 

methods [9] due to its simplicity and high performance. 
One of the key procedures of PCA is to determine the 
optimal number of principal components (PCs). In our 
experiment, we set the threshold value at 0.85! =r  and 
get the number of PCs 5l = . The cumulation variance 
proportion of the PCs is illustrated in Fig. 7. The final 
training data set 976 9

TC R !"  is projected onto the princi-
pal component subspace, and we get the feature vectors 

976 5
lF R !" .   
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Figure7. Cumulation variance proportion 

With the feature vectors 976 5
lF R !" , the SVM model is 

trained based on the procedures illustrated in Fig. 2. Dur-
ing the training process, a grid-search method was applied 
to optimize the parameters of the SVM; the parameters 
tuning process is demonstrated in Fig. 8, from which we 
can see the variation range of the parameters is 2-8~28. To 
reduce the training time, we pre-calculated the kernel 
matrix 976 976M R !"  based on the procedures shown in 
Table 2. On the one hand, the pre-calculation avoids re-
calculation during the k-fold cross validation procedure; 
on the other hand, the application of GPU-based parallel 
computing accelerates the pre-calculation  
process. Finally, the training process was accomplished,  

and we found the optimal SVM model, which was used 
to classify 8 kinds of running conditions of the robot. The 
training time and accuracy can be seen in the first group of 
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the contrast experiments, which are elaborated in Section 
D. 

D. Contrast Experiments 
To verify the effectiveness of the proposed fast train-

ing method, 5 groups of contrast experiments were car-
ried out between the traditional method and the proposed 
fast training method. In group 1, 200 samples were sam-
pled under each of the running conditions (S0-S7) and the 
whole training datasets in group 1 can be denoted by 

1 1600 9
allD R !"  . Similarly, we can get 

2 2000 9 3 2400 9 4 2800 9
all all all, ,D R D R D R! ! !" " "  and 5 3200 9

allD R !"  for 
the other four groups of experiments.  

For fair comparison, all experiments were implemented 
on the same experimental PC, which was equipped with a 
quad core Interl Core i5-240 processor with 8GB of 
DDR3 RAM and a NVIDIA GTX-750Ti GPU with 2GB 
on board RAM. In all experiments, a PCA algorithm was 
used for feature extraction and the grid-search method was 
applied for parameters tuning. The experimental results 
are shown in Table 4 and Fig. 9. 

TABLE IV.   
Experimental results  

Group Method 
Number of orig-

inal training 
samples 

Number of train-
ing samples after 

SVS 

Number of 
support 
vectors 

Training 
time (s) 

Testing 
accuracy 

1 Traditional 1600 -- 445 436.3 89.4% 
Proposed 1600 976 411 53.2 88.5% 

2 Traditional 2000 -- 514 614.6 92.3% 
Proposed 2000 1060 483 60.1 91.6% 

3 Traditional 2400 -- 553 892.3 92.5% 
Proposed 2400 1320 526 71.3 92.0% 

4 Traditional 2800 -- 618 1184.8 90.2% 
Proposed 2800 1512 599 79.0 90.0% 

5 Traditional 3200 -- 855 1378.8 90.2% 
Proposed 3200 1792 846 85.1 89.8% 
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Figure 8. Parameters tunning for SVM 
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Figure 9. Speed-up ratio 

From Table 4 and Fig. 9 we can see the training time of 
the traditional method increased rapidly with the increase 
of training samples. The speed-up ratios of the proposed 
method in Groups 1-5 are 8.2, 9.7, 12.5, 15.0 and 18.6, 
respectively, which implies that the more training samples 
provided, the more obvious the advantages of the pro-
posed method will be. Moreover, as the proposed method 
retained most of the support vectors, there was no appar-
ent decrease in the diagnosis accuracy. 

V. CONCLUSION AND FUTURE WORK 
In this paper, a novel fast training method for SVM 

was proposed. To increase the training speed, on the one 
hand, sample reduction was done based on the proposed 
support vectors selection algorithm, which could retain 
most of the support vectors and ensure good classification 
accuracy. On the other hand, we took advantage of the 
parallel computing abilities of GPU to pre-calculate the 
kernel matrix, which avoided recalculation during the 
cross validation process. To verify the effectiveness of 
the proposed method, an application in robot fault diag-
nosis is provided in detail. PCA is used to do feature 
extraction, and a grid-search method combined with 5-
fold cross validation was applied to optimize the parame-
ters of the SVM. Five groups of contrast experiments 
were carried out, and experimental results illustrated the 
effectiveness of the proposed method. 

For future work, we would like to use the proposed 
method to achieve online fault diagnosis. 
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