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Abstract—We consider the sensor deployment problem in 
the context of distance uncertainty. It is characterized by 
differentiated arrangement of specific detection probability 
thresholds at different locations. The problem is formulated 
as an integer linear programming (ILP) model firstly, 
aiming at optimizing the number of sensors and their 
locations. Based on the robust discrete optimization 
methodology, the uncertain model is transformed into an 
equivalent ILP problem considering distance uncertainty. 
The proposed approach can control the tradeoff between 
optimality and robustness by varying the parameters named 
protection levels. Uniform and non-uniform event detection 
probabiliy distributions are considered in the experiment. 
The results show that, as the distance uncertainty increases, 
the constraint violation can be avoided in the robust model 
and the robust solution can provide a significant 
improvement at the expense of a small loss in optimality 
when compared to the optimal solution of a deterministic 
scenario. 

Index Terms—sensor network; robust optimization; 
coverage; uncertainty; differential deployment 

I. INTRODUCTION 
With the rapid progress of sensor design and 

communication technique, sensor networks have been 
quickly evolving in both research and practical domains in 
the last few decades [1, 2]. They have been applied in a 
wide range of applications such as military surveillance, 
environmental monitoring, as well as natural disaster 
relief and health care. As one of the fundamental issues in 
such a network, coverage is important to determine how 
well an area of interest is monitored and a service is 
provided [3]. The placement of sensors is a critical issue 
for coverage, because it can affect cost and detection 
capability of a sensor network. 

Deployment can be random or pre-determined. When 
the environment is unknown or hostile, sensor nodes are 
air-dropped in a random manner. Random deployment is 
very simple, but the number of nodes to be deployed has 
to be much larger than what is actually required for the 
full coverage. In pre-determined deployment, the locations 
of nodes are specified and thus the quality of service can 
be provided in terms of coverage. It is mainly applied 
when sensors are expensive or when their operation is 
significantly affected by their positions. 

Distance between sensors plays an important role in 
deterministic deployment, which directly determines the 
accuracy of the node position. However, distance is 

generally affected by uncertain external factors, such as 
measurement error, actual interference. The actual 
performance of a deployment strategy can be severely 
influenced by distance uncertainty. Thus a key challenge 
in sensor deployment is to determine an uncertainty-aware 
sensor field that reduces cost and provides high coverage. 

In this paper, we use the robust discrete optimization 
methodology to deal with distance uncertainty for the 
deployment problem in sensor networks. Considering that 
the distance between nodes is uncertain, a deterministic 
robust deployment model is established and solved. With 
the distance uncertainty increasing, the robust solution for 
the problem provides a significant performance 
improvement at the expense of a small loss in optimality 
when compared to its primitive algorithm. 

The remainder of the paper is organized as follows. We 
first introduce a literature review of related work in 
Section 2. In Section 3, the deployment problem is 
formulated as an integer linear programming problem. 
Robust optimization methodology is presented in Section 
4. In Section 5, computational experiments are considered. 
We conclude the paper in Section 6.    

II. RELATED WORK 
Up to now, there are extensive research works that have 

discussed deployment strategies. According to the method 
adopted, approaches for sensor deployment can be 
classified into three categories: virtual force based [4, 5], 
grid-based [6, 7] and computational geometry based [8, 9]. 
In many cases, non-uniform detection requirements must 
be considered according to the importance of the 
surveillance area. High detection accuracy is required for 
sensitive regions, and low detection for less important 
regions. Consequently, differentiated deployment 
algorithms should be designed based on the required 
detection probability thresholds at different locations. 
Some differentiated strategies [11-14] will be listed as 
follows.  

The grid-based deployment algorithm is presented in 
Reference [10], and the binary detection model is assumed 
for simplicity. The strategy deals with the deployment of 
heterogeneous sensors, that is, their sensing ranges and 
unit price are different. The authors formulate the problem 
as an integer linear programming model and utilize a 
mathematical software tool lpsolve to solve it.  

In Reference [11], the authors propose two 
deterministic deployment algorithms, in which a 
probabilistic event detection model is assumed. The 
strategies are based on a grid structure. The first 
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algorithm, Max-Avg-Cov, aims to maximize the average 
coverage of the grid points. The second one, Max-Min-
Cov aims to maximize the coverage of the grid points 
which are the least effectively covered. Both Max-Avg-
Cov and Max-Min-Cov are initially designed for an area 
with uniform detection probability. 

Another differentiated deployment algorithm named 
Diff-Deploy is proposed in Reference [12]. As in [11], 
they assume a probabilistic event detection model. By 
using a Linear Shift (LSI) Invariant system to represent 
the relationship between the deployment strategy and the 
miss probability distribution, the authors construct an 
integer linear optimization problem and solve it 
iteratively.  

In Reference [13], the differentiated deployment 
problem is formulated as a combinatorial optimization 
model and then solved based on the Tabu search 
metaheuristic and the artificial potential field. In the 
strategy, a required event detection probability is 
guaranteed at each point. Furthermore, several objectives 
such as the cost, monitoring quality, connectivity and 
lifetime are all considered.  

In Reference [14], considering that sensors may not 
always provide reliable information, the authors define an 
evidence-based coverage model as a generalization of the 
probabilistic model. Under this model, the deployment 
problem is formalized as a combinatorial optimization 
problem, and an algorithm is designed based on dynamic 
programming. Such issues as the differentiated 
deployment, connectivity and cost are discussed in the 
paper. 

In Reference [4], the authors present two uncertainty-
aware algorithms for sensor deployment, called MIN-
MISS and MAX-MISS. They use a Gaussian probability 
distribution to model the deviation of the actual location 
from the intended location. Thus the algorithm produces 
the mean position of the sensor instead of the actual 
location of it. In each step, the overall miss probabilities 
are calculated over all possible grid locations for a newly 
introduced sensor. Based on these values, a sensor is 
deployed at the grid with the maximum or minimum miss 
probability. Nevertheless, it is used for uniform detection 
requirements. 

The optimality of all above algorithms is guaranteed 
depending on the accuracy of distance between nodes. 
However, in many applications, distance is usually 
uncertain due to measurement error or other reasons. 
Further, few of them [4, 12] have taken this uncertainty 
into account. If we consider the existence of uncertain 
factors, the optimality or even the feasibility of these 
algorithms is very difficult to guarantee. Therefore, the 
robustness of algorithms should be involved under 
uncertain environments. 

In practical applications, there are two principal 
approaches to deal with data uncertainty in optimization, 
namely stochastic and robust optimization. Stochastic 
optimization [15] has two main drawbacks, one is that the 
true probability distribution of uncertain data has to be 
known, and the other is that the stochastic programming 
model is difficult to solve, also it will suffer from the 
curse of dimensionality that afflicts it. In Reference [4] 
and [12], the probability distribution of uncertain location 
is supposed as the Gaussian distribution. Nevertheless, we 

cannot infer the result when the uncertain data follow 
other distributions or even they are ambiguous or rough. 

Robust optimization, on the other hand, does not 
assume that the probability distribution is known, instead 
it assumes that the uncertain data reside in a so-called 
uncertainty set [16]. By transforming the corresponding 
uncertain optimization model into a deterministic problem 
called its robust counterpart, the optimal solution of the 
robust counterpart, namely, robust solution is given when 
uncertain data changes in the uncertainty set. Robust 
optimization is popular because of its computational 
tractability for many classes of uncertainty sets and 
problem types. It has been widely applied to the domains 
of inventory and logistics, finance, machine learning, 
energy systems, scheduling, etc [17-19]. Although the first 
relevant study dates back to 1973 [20], robust 
optimization has been mainly developed in the last 15 
years. Soyster [20] proposes a linear optimization model 
to construct a solution that is feasible for all input data in a 
convex set. This approach, however, tends to find 
solutions that are too conservative to provide much more 
optimality. Later, Ben-Tal et al. [21–23] carry out further 
research on the robust optimization theory and have made 
significant progress in robust convex optimization. 
However, as the resulting robust counterparts involve 
nonlinear problems, such methods cannot be applied to 
discrete optimization. Bertsimas and Sim [24] propose an 
approach to control the degree of conservatism in the 
solution of a discrete optimization model by varying a 
single parameter, and this approach has the potential to be 
used especially for combinatorial optimization. 

For the first time, the robust optimization theory is used 
for solving the optimization model of sensor networks in 
Reference [25], in which the robust convex optimization is 
applied to continuous variables. When the distance 
between nodes is uncertain, robust counterparts are given 
and solved for three problems: minimum energy 
consumption, maximum data extraction, and maximum 
network lifetime; experimental results show that the 
robust optimization model has very good performance in 
practice. To the best of our knowledge, there has not been 
any sensor deployment research associated with robust 
optimization. Consequently, combined with the theory and 
methodology of robust discrete optimization, this paper 
will use the approach of [24] to address the distance 
uncertainty for the deployment problem in sensor 
networks. Belonging to problem-driven studies, this paper 
will have great theoretical and practical value in solving 
the uncertainty problem in applications of sensor 
networks.  

III. PROBLEM STATEMENT 

A. Sensor Detection Model   
The deployment problem is closely related to the sensor 

detection model, which can be defined in different forms 
and is subject to different interpretations, depending on 
sensor types and application scenarios [3]. Let j be a 
sensor node, and i be a target in the sensor field. In the 
binary detection model as shown in Eq.(1), an event of 
interest i is supposed to be detected by a sensor j if and 
only if their separating distance is less than the sensing 
range Rs. 
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1 if
0 otherwise
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$                                  (1) 

Where dij denotes the Euclidean distance between a 
sensor node j and a target located at grid point i. Although 
the binary sensor model is simpler, the uncertainty factors 
in the measurement are not taken into consideration. A 
more realistic detection model needs to be expressed in a 
probabilistic term. In a probability detection model, the 
target is discovered with a certain probability by several 
sensors in a cooperative manner. The following model 
given in Eq.(2) assumes the detection probability of event 
i by a sensor j follows an exponential decaying function of 
the distance between the target and the sensor.  

if
otherwise0

ijd
ij sj

i

d Ret
!"# $%
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                          (2) 

Where the parameter !  is used to model the quality of 
the sensor and the rate at which its detection probability 
diminishes with distance. This model is more realistic than 
the binary detection model. Therefore, we assume it as our 
model for the following deployment problem formulation.   

B. Problem Formulation 
The sensor field is represented as a two-dimensional 

m!n grid of points, denoted by { }1, 2, ,G m n= !! . The 
granularity l of the grid i.e., the distance between grid 
points can be adjusted based on a trade-off between the 
computation time and the precision of the coverage 
measure. Without loss of generality, we only consider the 
targets at the grid points. Let S denote the collection of 
sensors, and we suppose that the sensor nodes are 
deployed at the grid points, that is S G! . For each 
sensor, omnidirectional antenna is equipped. Sensor nodes 
can be assumed to be homogeneous or heterogeneous, that 
is, their sensing radii Rs are able to be identical or not. 
Furthermore, we consider that 2sR l! . 

Therefore, what we want to solve is the following 
placement problem: given points of interest G to be 
monitored, how to determine the collection of sensors S, 
with the minimum number of sensors and their locations 
obtained so that the detection probability of every grid 
point exceeds the respective predefined threshold. For 
each grid point i in G, we assume its minimum event 
detection probability threshold is thi. What is more, we 
allocate a binary variable Ii to indicate whether a sensor is 
placed at grid i. 

1 if a sensor is placed at grid
0 otherwisei

i
I i G!
= "#
$

         (3) 

Our objective is to minimize the number of sensors, 
formally, it can be expressed as 

  min i
i G
I

!
"                                     (4) 

We suppose that the event detection decision is made 
independently by a sensor. For each grid point i in G, its 
detection probability, denoted by Ti, is measured by all the 
neighbor sensors around it, that is  

 1 (1 )
i

j
i i

j N

T t
!

= " "#                             (5) 

where Ni is the neighbor set of grid i, i.e., the collection 
of sensors located in the circle with a center i and radius 

Rs. j
it  is the detection probability shown by Eq.(2). Eq.(5) 

is equivalent to  

1 (1 ) j

i

Ij
i i

j N

T t
!

= " "#                           (6) 

A differentiated deployment exists when different grid 
points must be covered by different numbers of sensors 
for preferential monitoring. Therefore, the constraint is 
that the event detection probability at any grid point i must 
exceed the threshold thi, and it can be formulated as 
i iT th! . 
After a logarithm fetch on this constraint, we have  

ln(1 ) ln(1 )
i

j
i j i

j N
t I th i G

!

" # " $ !% .           (7) 

Consequently, our deployment problem can be 
formalized as follows: 
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Problem (8) is an integer linear programming (ILP) 
problem. We assume that data uncertainty only affects the 
distance between the grid nodes and the sensors. In the 
next section, we will solve this problem using robust 
optimization methodology. 

IV. ROBUST OPTIMIZATION MODEL 

A. Robust Optimization Methodology 
Robust optimization is an effective method for dealing 

with uncertain data. To introduce this methodology, we 
consider the following optimization problem under 
uncertainty: 

min ( , )

. . ( , ) 0

f

s t g U! " #
x

x u

x u u
                   (9) 

where u is an uncertainty parameter that belongs to the 
uncertainty set U. A robust solution is feasible for all 

U!u  and optimizes the worst case objection function. In 
other words, the robust solution is obtained by solving the 
following robust counterpart problem: 

min max ( , )

. . ( , ) 0

f

s t g U! " #
x u

x u

x u u
                       (10) 

The task of robust optimization is to find robust feasible 
solutions that are feasible for any realization of the 
uncertain data in the uncertainty set and optimize the 
objective among these solutions. After constructing a 
reasonable uncertainty set, the tractable robust counterpart 
for it should be derived and solved via an exact or 
approximate approach [21].  

B. Model of Data Uncertainty 
In our model, the uncertainty parameter is the distance 

between the grids and the sensors. Although it is hard or 
even impossible to know the exact distribution of the 
distance, we can estimate its mean value and its range in 
typical applications. Since the logarithmic function is 
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monotone increasing, each uncertain constraint coefficient 
, ,i j ia i G j N! !  in Problem (8) is modeled as an 

independent and bounded random variable ija  that takes 
value in ˆ ˆ[ , ]ij ij ij ija a a a! + , where ija  is called the nominal 
value of ija , and ˆija  is the maximum deviation from the 
nominal value. In the worst case, when all the uncertain 
coefficients change, the robust solution is too 
conservative.  

In order to control the conservatism degree of the robust 
solution, for every grid point i in G, we introduce a 
protection level i! [24] for the ith constraint in Problem 
(8). It is used to control the number of coefficients 
,ij ia j N!  that are subject to parameter uncertainty, and it 

takes values in the interval [0, ]iJ , where 

{ }ˆ 0,i ij iJ j a j N= > ! . The role of the parameter i!  is 
to control the tradeoff between the optimality and 
robustness. Generally speaking, it is unlikely that all of the 
,ij ia j J!  will change. Our goal is to protect against all 

cases in which up to i!" #$ %  of these coefficients are 
allowed to change, and one coefficient ait changes by at 
most ˆ( )i i ita! " !# $% & .  

C. Robust Optimization Model 
Specifically, the proposed robust counterpart of 

Problem (8) is as follows [24]: 
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(11) 
The selection of i!  depends on the decision-maker’s 

preference for the robustness or the optimality of the 
solution. If the decision-maker pays more attention to the 
robustness of the solution, a higher value of i!  should be 
selected. On the contrary, if the decision-maker pays more 
attention to the optimality of the solution, a lower value of 
i!  should be selected. 
In order to reformulate Problem (11) as a linear 

programming model, we obtain [24] 
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Problem (12) is a mixed integer linear programming 
(MILP) problem. In contrast to its primal problem (8), this 
robust model introduces new variables iz  and ijp . While 

the original Problem (8) involves G  variables and G  
constraints, its robust counterpart Problem (12) has 

2 G l+  variables, where 
1

G

i
i

l J
=

=!  is the number of 

uncertain coefficients, and G l+  constraints. 

V. COMPUTATIONAL EXPERIMENTS 
The computational experiments are carried out to 

compare the performance of the robust solution of 
Problem (12) with the deterministic solution of Problem 
(8) without distance uncertainty. For these experiments, 
we solve Problem (8) and Problem (12) using MATLAB 
7.1 and Lingo 11.0. We consider two types of requested 
event detection probability distributions: one is uniform 
distribution and the other is non-uniform distribution, that 
is, the event detection probability threshold at each grid 
point is identical and different respectively. In the 
following, we will present the obtained results. 

A. Experimental Set Up 
Network model used in our simulation is the one as 

described in section �. We assume that the sensor field is 
a two-dimensional square area with a side equal to 10 
units, and the parameter !  in equation (2) is set to 0.2. 
For the square area, the number of grid points in each row 
is the same as that in each column. In the experiments, the 
number of grid points in each row/column increases from 
4 to 20.  

In Problem (8) and Problem (12), the constraint 
coefficient ija  is supposed to be uncertain, and 

ˆ ˆ[ , ]ij ij ij ij ija a a a a! " + , where we assume its nominal 
value ija  is induced by a distance measurement algorithm. 
With the measured distance as the norminal distance, the 
ratio of the distance deviation to this norminal value is 
denoted as the distance deviation coefficient ( 0)! ! "  
below. According to the equation constraint in Problem 
(8), distance deviation will lead to the deviation of ija . 
Therefore, ˆija  can be computed according to ! . In our 
experiments, the sensing range Rs is identical for 
convenience and is set to 2sR l= . As a consequence, 
there are 8 neighbors at each grid point and the protection 
level i!  can take its maximum value of 8.  

For a minimization problem, we compute the following 
ratios that compare the robust and deterministic solutions 
on the nominal data and their respective deviated data 
[25]: 

                      

( ) ( )
( )

( ) ( )
( )

,

.

sol solac

sol

sol solwc

sol

R D
R

D

D R
R

D

!
=

!
=

a a
a

a a
a

                     (13) 

Where  

( )solD a : optimal value of the deterministic solution.
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( )solR a : objective value of robust solution in the 
deterministic scenario. 

( )solD a : objective value of deterministic solution in its 
worst case.  

( )solR a : optimal value of the robust solution.  

Problem (8) is solved for the nominal value ija  to get 
the objective value ( )solD a , and when the constraint 
coefficients ija  is uncertain, ( )solR a  can be obtained by 
solving Problem (12). We solve Problem (8) in which the 
deterministic solution is fixed to determine its worst case 
for ( )solD a . The first ratio acR  quantifies the relative loss 
of optimality of the robust solution on the nominal data, 
while the second ratio wcR  measures the relative increase 
of the optimal value of the deterministic solution on the 
deviated data. Therefore the ratio wcR  measures the 
maximum protection that a robust solution can provide, 
while acR  is the percent increase in cost for this 
protection. 

B. Uniform Distribution 
We test the two deployment strategies when the event 

detection probability threshold ith  varies from 0.4 to 0.9 
in the whole area. When the distance deviation coefficient 
!  increases, that is, the distance uncertainty is enhanced, 
the robust solution and deterministic solution are 
compared.  
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Figure 1. Ratios acR  and wcR  for different distance deviation 
coefficient, scenario 7 7! . 0.9ith = , C1: 0.2i iJ! = , C2: 0.8i iJ! = . 

In Fig. 1 and Fig. 2, the ratios acR  and wcR  are 
presented in different grid dimension of 7 7!  and 14 14!  
respectively. In both figures, we illustrate the ratios as a 
function of the distance deviation coefficient ! . In Fig. 1, 
the event detection probability threshold is set to 0.9 and 
the protection levels i!  of all the grids are set to 0.2 iJ  
and 0.8 iJ , denoted as C1 and C2 respectively. As shown 
in Fig. 1, the ratio wcR  is larger than acR  in the two cases. 
With the increase of ! , this difference accentuate. 
Therefore, Problem (12) can provide the solution which 
exhibits an important improvement under distance 
uncertainty at the expense of a small loss in optimality. As 

also can be seen from Fig. 1, a higher value of i!  
increases the level of robustness at the expense of lower 
cost.  
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Figure 2. Ratios acR and wcR for different distance deviation 
coefficient, scenario 14 14! . 0.8i iJ! = , D1: 0.6ith = , D2: 0.9ith = . 
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Figure 3. The number of nodes deployed as a function of the protection 

level i iJ!" = , scenario 7 7! . 0.9ith = , 0.5! = . 

In Fig. 2, we set the protection levels i!  to 0.8 iJ  and 
the event detection probability threshold ith  is set to 0.6 
and 0.9, denoted as D1 and D2 respectively. Fig. 2 
indicates similar results to Fig. 1 in regard to the variation 
of wcR  and acR . The higher the detection probability 
threshold becomes, the more advantage the robust 
solution would have.  

For the deterministic Problem (8) with 0.9ith = , one 
important thing to note is that the deterministic solution is 
infeasible for the constraint when 1! "  in scenario 7 7! , 
and 3! "  in scenario 14 14! . However, its robust 
counterpart can protect it from this constraint violation 
and provide the robust solution. This observation indicates 
that robust solution exhibit better performance with the 
increasing uncertainty. Compared with scenario 7 7! , the 
distance between grids is shorter in scenario 14 14! . 
Consequently, distance deviation has a smaller effect on 
the constraints for more grid points.  

As noted by Ben-Tal [21], optimal solutions of linear 
optimization problems may become severely infeasible if 
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the nominal data are slightly perturbed. In realistic 
scenarios, we would like to accept a suboptimal solution 
for the nominal values of the data in order to ensure that 
the solution remains feasible and near optimal when the 
data changes. The model in Problem (12) is robust with 
respect to the distance uncertainty and is more practical in 
real networks.  

We next solve the robust Problem (12) by varying the 
protection levels and report the results in Fig.3, in which 
ith =0.9 and 0.5! = . We can see from Fig.3, the number 

of nodes deployed gradually increases as the protection 
levels increase, that is, the objective is marginally affected 
when we increase the protection level. 

C. Non-uniform Distribution 
In this section, we consider an area of 20!20 grids. We 

assume that the requested event detection probabilities are 
non-uniform distributed in the deployment field as shown 
in Fig. 4. The distribution is illustrated in Fig. 5, and the 
circled grids denote the locations of deployed sensors. The 
robust proposal deploys 82 sensors. As seen from Fig. 5, it 
places sensors according to the requested event detection 
probability. We also compare the ratios acR  and wcR  and 
the results mirror what we obtain in the previous section. 
In the interest of space, these results are omitted. 
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Figure 4. Non-uniform event detection probabilities 
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Figure 5. Robust sensor deployment for non-uniform distribution 

VI. CONCLUSION 
The efficiency of sensor deployment strategies depends 

largely on the accuracy of distance between nodes. 
Unfortunately, distance usually suffers from many 
uncertain factors, and few deployment problems have 
taken into account the distance uncertainty. To address 
this issue, we first formulate the grid-based deployment 
problem as an integer linear optimization model. Then, by 
using the 0-1 robust discrete optimization theory, its 
robust counterpart is obtained and solved. Experimental 
results show that the tradeoff between the optimality and 
robustness can be adjusted only by varying the protection 
levels in the robust model.    

 This paper has introduced the robust optimization into 
the deployment technology of sensor networks for the first 
time. Note that the robust optimization model is not 
restricted to the detection model we use, other models 
associated with the distance can also be put to use. The 
robust discrete optimization theory can also be introduced 
into other research directions of WSN, such as location 
technology, routing protocol, and so on. There are still 
some problems remaining to be solved. Since the ultimate 
goal of topology control is to provide a better basis for 
routing, meanwhile to prolong the network lifetime, it is 
quite necessary to consider routing when dealing with the 
power control problem. Therefore, the cross-layer power 
control routing protocols should be designed in the next 
work.  
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