
Paper—Toward Automatic Generation of Column-Oriented NoSQL Databases in Big Data Context

Toward Automatic Generation of Column-Oriented
NoSQL Databases in Big Data Context

https://doi.org/10.3991/ijoe.v15i09.10433

Redouane Esbai (*),	Fouad Elotmani, Fatima Zahra Belkadi
Mohammed First University, Oujda, Morocco

es.redouane@gmail.com

Abstract—The growth of application architectures in all areas (e.g.
Astrology, Meteorology, E-commerce, social network, etc.) has resulted
in an exponential increase in data volumes, now measured in Petabytes.
Managing these volumes of data has become a problem that relational
databases are no longer able to handle because of the acidity properties.
In response to this scaling up, new concepts have emerged such as
NoSQL. In this paper, we show how to design and apply transformation
rules to migrate from an SQL relational database to a Big Data solution
within NoSQL. For this, we use the Model Driven Architecture (MDA)
and the transformation languages like as MOF 2.0 QVT (Meta-Object
Facility 2.0 Query-View-Transformation) and Acceleo which define the
meta-models for the development of transformation model. The trans-
formation rules defined in this work can generate, from the class dia-
gram, a CQL code for creation column-oriented NoSQL database.

Keywords—SQL relational database, NoSQL, MDA, The transformation rules,
Big Data, CQL

1 Introduction

In recent years, the world of data storage is changing rapidly. New technologies
and new actors are settling when the old ones make the move. This scientific revolu-
tion that has invaded the world of information and the Internet has imposed new chal-
lenges on researchers in recent years and has led them to design new tools for specific
storage and manipulation. The development of these tools is generating a growing
interest among scientific and economic actors to offer them the possibility of manag-
ing all these masses of data with reasonable response times. Big Data is correlated
between four notions generally grouped under the acronym "4V", namely: Volume,
Variety, Velocity and Variability [1].

The Big Data issues are part of a complex context, faced two major concerns:

• Implementation of new mass storage solutions
• Capture information at high speed and if possible in real time

4 http://www.i-joe.org

https://doi.org/10.3991/ijoe.v15i09.10433
https://doi.org/10.3991/ijoe.v15i09.10433
mailto:es.redouane@gmail.com
mailto:es.redouane@gmail.com

Paper—Toward Automatic Generation of Column-Oriented NoSQL Databases in Big Data Context

Our focus in this paper is only on Big Data storage. Using relational databases
proves to be inadequate for all applications, particularly ones involving large volumes
of data. In this context, NoSQL databases offer new storage solutions in large-scale
environments, replacing many traditional database management systems [2]. The key
feature of NoSQL databases is that they are schema-less, meaning that data can be
inserted in the database without upfront schema definition. Nevertheless, there is still
a need for a semantic data model to define how data will be structured and related in
the database [3]; it is generally accepted that UML meets this requirement [4].

Nowadays, many organizations have begun to consider MDA as an approach to
design and implement enterprise applications. In this context the Model Driven Engi-
neering provides abstraction through high level models and allows the use of model-
ing languages to automate the generations of applications from the model. The inter-
est for the Model Driven Engineering (MDE) was increased towards the end of the
last century, when the Object Management Group had made public its initiative Mod-
el Driven Architecture (MDA) like as restriction of the MDE [5].

Therefore, Abdelhedi et al. [6] explain how to store Big Data in NoSQL databases
and they propose a MDA-based approach that transforms an UML conceptual model
describing Big Data into a column-oriented NoSQL model. The result of this trans-
formation is PSM model.

This paper aims to rethink the work presented in [6]. However, we develop the
transformation rules using the MOF 2.0 QVT standard to generate a file which con-
tains a code for creation a column-oriented NoSQL model. Our approach includes
UML modeling and automatic code generation using Acceleo with the aim to facili-
tate and accelerate the creation of column-oriented NoSQL database.

This paper is organized as follows: related works are presented in the second sec-
tion, the third section defines the MDA approach, and the fourth section presents the
NoSQL and its implementation as a database, column-oriented in this case. In the fifth
section, we present the source and target meta-models. In the sixth section, we present
the transformation process M2M and M2T from UML class diagram model to the
column-oriented NoSQL database. The last section concludes this paper and presents
some perspectives.

2 Related Works

Many researches on MDA and the process of transforming relational databases into
a NoSQL model have been conducted in recent years. The most relevant are [3, 6-10]:

Chevalier et al. [7] defined rules to transform a multidimensional model into
NoSQL column-oriented and document-oriented models. The links between facts and
dimensions have been converted using imbrications. Although the transformation
process proposed by authors start from a multidimensional model, it contains facts,
dimensions and one type of links only.

Gwendal et al. [3] describe the transformation from an UML conceptual model into
a graph databases via an intermediate graph meta-model. These transformation rules

iJOE ‒ Vol. 15, No. 9, 2019 5

Paper—Toward Automatic Generation of Column-Oriented NoSQL Databases in Big Data Context

are specific to graph databases used as a framework for storing, managing and query-
ing complex data with many connections.

Li et al. [8] propose a MDA approach to transform UML class diagram into HBase.
After building the meta-models of UML class diagram and HBase, the authors have
proposed mapping rules to realize the transformation from the conceptual level to the
physical level. These rules are applicable to HBase only. Another works followed the
same logic and have been the subject of a work Vajk et al. [9]. The authors propose a
mapping from a relational model to document-oriented model using MongoDB.

The purpose of the work [10] presented by Abdelhedi et al. is to implement a con-
ceptual model describing Big Data into NoSQL database and they choose to focus on
column-oriented NoSQL model.

This paper aims to rethink and to complete the work presented by Abdelhedi et al.
[6, 10], by applying the standard MOF 2.0 QVT and Acceleo to develop the transfor-
mation rules aiming at automatically generating the creation code of column-oriented
NoSQL database. It is actually the only work for reaching this goal.

3 Model Driven Architecture (MDA) Approach

In November 2000, OMG, a consortium of over 1 000 companies, initiated the
MDA approach. The major objective of MDA [5] is to develop sustainable models;
those models are independent from the technical details of platforms implementation
(JavaEE, .Net, PHP or other), in order to enable the automatic generation of all codes
and applications leading to a significant gain in productivity. MDA includes the defi-
nition of several standards, including UML [12], MOF [13] and XMI [14].

The key principle of MDA is the use of models at different phases of application
development. Specifically, MDA advocates the development of requirements models
(CIM), analysis and design (PIM) and code (PSM).

3.1 The Transformations of MDA Model

The MDA identifies several transformations during the development cycle [15]. It
is possible to make three different types of transformations: CIM to PIM, PIM to PSM
and PSM to Code.

Currently, the models’ transformations can be written according to three approach-
es: The approach by Programming, the approach by Template and the approach by
Modeling.

• Approach by programming: using the object oriented programming languages
such as Java, to write computer programs that are unique to manipulate models.

• Approach by Modeling: It consists of applying concepts from model engineering
to models’ transformations themselves. The objective is modeling a transfor-
mation, to reach perennial and productive transformation models, and to express
their independence towards the platforms of execution.

6 http://www.i-joe.org

Paper—Toward Automatic Generation of Column-Oriented NoSQL Databases in Big Data Context

• Approach by template: Consists of taking a "template model", canvas of config-
ured target models, these settings will be replaced by the information contained in
the source model. This approach requires a special language for defining model
template.

In this paper we chose two types of transformation, we start with the transfor-
mation PIM to PSM using the approach by modelling. This type of transformation
will allow us to automatically generate a column-oriented NoSQL model from an
UML model. The second transformation is of type PSM to Code using the approach
by template with Acceleo to develop the transformation rules aiming at automatically
generating the creation code of column-oriented NoSQL database.

3.2 The Elaborationist Approach

After analyzing the current state of the MDA implementation, it is reasonable to
say that there are two main responses to the OMG’s definition: the elaborationist and
translationist approach [16].

Fig. 1. Elaborationist approach [16]

The elaborationist approach is the one used in the present paper. The main ad-
vantage of MDA in the development of column-oriented NoSQL databases is the
automation. This way, to demonstrate the automation support provides by our MDA
approach, we are using the “Elaborationist approach” (see Fig. 1). With the elabora-
tionist approach, the definition of the application is built up progressively as you
progress through from PIM to PSM to Code. When the PIM has created, the tool
generates a skeleton or first-section PSM which the developer can then “elaborate” by
adding more detail. Similarly, the final code is generated from PSM, and this can also
be elaborated.

iJOE ‒ Vol. 15, No. 9, 2019 7

Paper—Toward Automatic Generation of Column-Oriented NoSQL Databases in Big Data Context

4 Column-Oriented NoSQL Database

There are four basic types of NoSQL databases: key-value, document-oriented,
column-oriented and graph-oriented [2]. In this paper, we choose to focus on column-
oriented NoSQL model. This model is considered to be the most efficient in terms of
performance, for multi-criteria access queries (vertical data organization with col-
umns-families).

The column-oriented databases were originally created by Facebook to store mes-
sages (non-instant) between users [17]. It is a key-value database extension, because
the column model is more evolved, it is called super-column or column-family that a
line identifier can store a structured set of data. A column-family has the following
characteristics: the data is sorted, associated, and can contain an array of columns of
unlimited size.

The storage of column-oriented databases is by column and not by row. These ba-
ses can evolve over time, either in number of rows or in number of columns. In other
words, and unlike a relational database where columns are static and present for each
row, the column-oriented databases are dynamic and present only when needed.

In column-oriented databases such as Cassandra [19] or HBase [20] there are some
additional concepts that are the column-family, which are a logical grouping of rows.
In the relational world this would be equivalent to a table. Cassandra offers an exten-
sion to the base model by adding an extra dimension called "Super Column" which
itself contains other columns.

The concept of column-oriented databases is created by the big web actors, to meet
the processing needs of large volumes of data precisely to manage large volumes of
structured data. Often, these databases integrate a minimalist query system close to
SQL called CQL [2].

In this paper, we choose the principle actor of column-oriented database such as
Cassandra.

5 Source and Target Meta-Models

In our MDA approach, we opted for the modeling and template approaches to gen-
erate the column-oriented NoSQL database. As mentioned above, these approaches
require a source meta-model and a target meta-model. We present in this section, the
various meta-classes forming the UML class diagram source meta-model and the
column-oriented NoSQL target meta-model.

5.1 UML source meta-model

Fig. 2 illustrates the simplified UML source meta-model based on packages includ-
ing data types and classes. Those classes contain typed properties and they are charac-
terized by multiplicities (lower and upper). The classes are composed of operations
with typed parameters.

8 http://www.i-joe.org

Paper—Toward Automatic Generation of Column-Oriented NoSQL Databases in Big Data Context

Fig. 2. Simplified UML source meta-model

• UmlPackage: is the concept of UML package. This meta-class is connected to the
meta-class Classifier.

• Classifier: This is an abstract meta-class representing both the concept of UML
class and the concept of data type.

• Class: is the concept of UML class.
• DataType: represents UML data type.
• Operation: is used to express the concept of operations of a UML class.
• Parameter: expresses the concept of parameters of an operation. These are of two

types, Class or DataType. It explains the link between Parameter meta-class and
Classifier meta-class.

• Property: expresses the concept of properties of a UML class. These properties are
represented by the multiplicity and meta-attributes upper and lower.

The works [21, 22] contain more details related to this section topic.

5.2 Column-oriented target meta-model

To fully understand the data model used by Cassandra, it is important to define a
number of concepts used:

• Keyspace: Appears as a namespace, this is usually the name given to the applica-
tion.

• Column: Represents a value, its have three fields (see Fig. 3): its name, its value
and a timestamp representing the date on which this value was inserted.

iJOE ‒ Vol. 15, No. 9, 2019 9

Paper—Toward Automatic Generation of Column-Oriented NoSQL Databases in Big Data Context

Fig. 3. Structure of the column element

• Super-Column: it's a list of columns (see Fig. 4), if you want to compare them with
an SQL database, it's a row. It contains the key-value correspondence; the key
identifies the super column while the value is the list of columns that compose it.

Fig. 4. Structure of the Super-column element

• Column-Family: it is a container of several columns or super-columns. Its notion is
closer to the SQL table (see Fig. 5).

Fig. 5. Structure of the Column-Family element

10 http://www.i-joe.org

Paper—Toward Automatic Generation of Column-Oriented NoSQL Databases in Big Data Context

Fig. 6 presents these concepts through the target meta-model.

Fig. 6. Simplified column-oriented target meta-model

By default, we store the database in a single Keyspace. This Keyspace is com-
prised of a set of column-families. Each Column-family is identified by a unique
identifier called "PrimaryKey" and contains several columns or super-columns that
must be declared up front at schema creation time.

6 The Process of Transforming UML Source Model to Column-
Oriented Target Code

We first developed ECORE models corresponding to our source and target meta-
models. The development of many meta-models requires multiple model transfor-
mations. From these developed meta-models, M2M (Model to Model) and M2T
(Model to Text) transformations are needed, to generate the code needed to create the
column-oriented database.

We have implemented the M2M transformation algorithm (see section 6.1) using
the QVT Operational Mappings language [23], and then the second M2T transfor-
mation is done with the Acceleo language [24] (see section 6.2).

iJOE ‒ Vol. 15, No. 9, 2019 11

Paper—Toward Automatic Generation of Column-Oriented NoSQL Databases in Big Data Context

6.1 The transformation rules M2M

This transformation uses, in entry, a model of the UML type, and in output a model
of column-oriented database. The first transformation rule establishes the correspond-
ence between all the elements of the UML package and the element of the Keyspace
type of the column-oriented database. The purpose of the second rule is to transform
each UML class and association into a family of columns by creating the columns and
references for each column-family. It is a question of transforming each property of
these classes in column, without forgetting to give names and types to the various
columns.

Fig. 7 presents the principle part of the M2M transformation with QVT language.

Fig. 7. M2M transformation with QVT From UML to NoSQL model

6.2 The transformation rules M2T

The transformation M2T towards the creation code of column-oriented database in
Cassandra is realized with Acceleo transformation language, and the writing of the
transformation rules itself does not present any problems in practice. It simply boils
down to creating a text file where the transformation rules are written.

12 http://www.i-joe.org

Paper—Toward Automatic Generation of Column-Oriented NoSQL Databases in Big Data Context

Fig. 8 presents the transformation rules with Acceleo to generate a CQL file.

Fig. 8. M2T transformation with Acceleo to Generate a CQL code

7 Result

To validate our transformation rules, we conducted several tests.

Fig. 9. UML source model: Class diagram EMF model and Class diagram instance model

For example, we considered the class diagram composed by the classes Depart-
ment, Employee and City (see Fig. 9).

iJOE ‒ Vol. 15, No. 9, 2019 13

Paper—Toward Automatic Generation of Column-Oriented NoSQL Databases in Big Data Context

After applying the transformation on the UML source model, we generated the
column-oriented PSM target model (see Fig. 10).

Fig. 10 shows the result after applying the transformation rules M2M.

Fig. 10. Column-Oriented Cassandra PSM: Resource Set and their Properties

Fig. 11 illustrates the results of our M2T transformation. Our application generates
a CQL code for a department management database on Cassandra platform.

Fig. 11. CQL file generated

14 http://www.i-joe.org

Paper—Toward Automatic Generation of Column-Oriented NoSQL Databases in Big Data Context

8 Conclusion and Perspectives

In this paper, we have proposed an MDA approach to migrate UML class diagram
representing a relational database to a column-oriented database. The transformations
rules were developed using QVT to transform the class diagram into column-oriented
model and then the automatic code generation using Acceleo with the goal to acceler-
ate and makes easy the creation of NoSQL databases in Cassandra platform.

In the future, this work should be extended to allow the generation of other NoSQL
Solutions such as document-oriented and graph-oriented. Afterward we can consider
integrating other big data platforms like HBase, Redis, Neo4j and others.

9 References

[1] C. L. P. Chen, C. Zhang. (2014). Data-intensive applications, challenges, techniques and
technologies: A survey on Big Data. Inf. Sci., Vol. 275. pp. 314–347.
https://doi.org/10.1016/j.ins.2014.01.015

[2] R. Cattell (2011). Scalable SQL and NoSQL data stores. ACM SIGMOD Record, Vol.39,
No.4, pp.12–27. https://doi.org/10.1145/1978915.1978919

[3] D. Gwendal, S. Gerson, C. Jordi (2016). UMLtoGraphDB: Mapping Conceptual Schemas
to Graph Databases. In: The 35th International Conference on Conceptual Modeling (ER).

[4] A. Abello (2015), Big Data Design. In: Proc. of the ACM Eighteenth International Work-
shop on Data Warehousing and OLAP, Australia.
https://doi.org/10.1145/2811222.2811235

[5] Miller, J., Mukerji, J. (2003). MDA Guide Version 1.0.1, OMG, 2003.
[6] Abdelhedi Fatma, Ait Brahim Amal, Atigui Faten, Zurfluh Gilles (2017). MDA-based ap-

proach for NoSQL Databases Modelling, In: International Conference on Big Data Analyt-
ics and Knowledge Discovery (DaWaK 2017), Lyon, France, 28-31 August 2017.
https://doi.org/10.1007/978-3-319-64283-3_7

[7] M. Chevalier, M. El Malki, A. Kopliku, O. Teste, R. Tournier (2015). Implementing Mul-
tidimensional Data Warehouses into NoSQL, In: International Conference on Enterprise
Information Systems (ICEIS 2015), Barcelona, Spain, 2015.
https://doi.org/10.5220/0005379801720183

[8] Yan Li, Ping Gu, Chao Zhang (2014). Transforming UML Class Diagrams into HBase
Based on Meta-model. Information Science, Electronics and Electrical Engineering
(ISEEE). https://doi.org/10.1109/infoseee.2014.6947760

[9] T. Vajk, P. Feher, K. Fekete, H. Charaf (2013). Denormalizing data into schema-free data-
bases, In: 4th International Conference CogInfoCom. pp. 747–752.
https://doi.org/10.1109/coginfocom.2013.6719198

[10] Abdelhedi, F., Ait Brahim, A., Atigui, F., Zurfluh, G. (2016). Big Data and Knowledge
Management: How to implement conceptual models in NoSQL systems?, In: 8th Interna-
tional Conference on Knowledge Discovery, Knowledge Engineering and Knowledge
Management (IC3K 2016), Porto, Portugal, 9 -11 November 2016.
https://doi.org/10.5220/0006082302350240

[11] Abhinay B. Angadi, Akshata B. Angadi, Karuna C. Gull (2013). Growth of New Data-
bases & Analysis of NOSQL Datastores. International Journal of Advanced Research
in Computer Science and Software Engineering, Vol.3, Issue 6, June 2013.

[12] OMG, UML Infrastructure Final Adopted Specification, version 2.0, September 2003.
[13] OMG, Meta Object Facility (MOF), version 2.0, OMG, 2006.

iJOE ‒ Vol. 15, No. 9, 2019 15

https://doi.org/10.1016/j.ins.2014.01.015
https://doi.org/10.1016/j.ins.2014.01.015
https://doi.org/10.1145/1978915.1978919
https://doi.org/10.1145/1978915.1978919
https://doi.org/10.1145/2811222.2811235
https://doi.org/10.1145/2811222.2811235
https://doi.org/10.1007/978-3-319-64283-3_7
https://doi.org/10.1007/978-3-319-64283-3_7
https://doi.org/10.5220/0005379801720183
https://doi.org/10.5220/0005379801720183
https://doi.org/10.1109/infoseee.2014.6947760
https://doi.org/10.1109/infoseee.2014.6947760
https://doi.org/10.1109/coginfocom.2013.6719198
https://doi.org/10.1109/coginfocom.2013.6719198
https://doi.org/10.5220/0006082302350240
https://doi.org/10.5220/0006082302350240

Paper—Toward Automatic Generation of Column-Oriented NoSQL Databases in Big Data Context

[14] OMG, XML Metadata Interchange (XMI), version 2.1.1, OMG, 2007.
[15] Sara Gotti, Samir Mbarki (2019). IFVM Bridge: A Model Driven IFML Execution. Inter-

national Journal of Online and Biomedical Engineering (iJOE). Vol. 15 No. 4. pp 111-126.
https://doi.org/10.3991/ijoe.v15i04.9707

[16] P. Papajorgjin, P. M. Pardalos (2010).Towards a Model-Centric Approach for Developing
Enterprise Information Systems. Enterprise Information Systems and Implementing It In-
frastructures: Challenges and Issues. IGI Global; 1 edition. pp. 140-158.
https://doi.org/10.4018/978-1-61520-625-4.ch010

[17] Radoslava S.K., Velin S.K., Nina S., Petia K., Nadejda B. (2019). Design and Analysis of
a Relational Database for Behavioral Experiments Data Processing. International Journal
of Online and Biomedical Engineering (iJOE). Vol 14, No 02 (2018). pp 117-132.

[18] D. Abadi, P. Boncz, S. Harizopoulos (2012).The Design and Implementation of Modern
Column-Oriented Database Systems”, Foundations and Trends in Databases: Vol. 5: No. 3,
pp 197-280. https://doi.org/10.1561/1900000024

[19] Apache Cassandra, http://cassandra.apache.org/
[20] Apache HBase, https://hbase.apache.org/
[21] Oualid B., Saida F., Amine A., Mohamed B. (2018). Applying a Model Driven Architec-

ture Approach: Transforming CIM to PIM Using UML. International Journal of Online
and Biomedical Engineering (iJOE). Vol. 14, No. 9.pp 170-181. https://doi.org/10.3991/
ijoe.v14i09.9137

[22] Karim Arrhioui, Samir Mbarki, Mohammed Erramdani (2018). Applying CIM-to-PIM
Model Transformation for Development of Emotional Intelligence Tests Platform. Interna-
tional Journal of Online and Biomedical Engineering (iJOE). Vol. 14, No. 8. pp 160-168.
https://doi.org/10.3991/ijoe.v14i08.8747

[23] OMG, Meta Object Facility (MOF) 2.0 Query/View/Transformation, V1.1, 2011.
[24] Acceleo, http://www.eclipse.org/acceleo

10 Authors

Redouane Esbai teaches the concept of Information System at Mohammed 1 Uni-
versity. He got his thesis of national doctorate in 2012. He got a degree of an engineer
in Computer Sciences from the National School of Applied Sciences at Oujda. He
received his M.Sc. degree in New Information and Communication Technologies
from the faculty of sciences and Techniques at Sidi Mohamed Ben Abdellah Univer-
sity. His activities of research in the MASI Laboratory (Applied Mathematics and
Information System) focusing on MDA (Model Driven Architecture) integrating new
technologies XML, Spring, Struts, GWT, etc.

Fouad Elotmani is a PhD student from Mohammed First University (Nador, Mo-
rocco). His research interests at the MASI Laboratory (Applied Mathematics and
Information System) include model driven modernization, Software development,
modeling JEE Frameworks, and modeling architectures.

Fatima Zahra Belkadi PhD Student, she got her engineer Degree in software
quality from the National School of Applied Sciences at Oujda. She is a researcher on
studying the Big Data and their applications at MASI laboratory in Mohammed First
University, Morocco.

Article submitted 2019-03-08. Resubmitted 2019-04-15. Final acceptance 2019-04-24. Final version
published as submitted by the authors.

16 http://www.i-joe.org

https://doi.org/10.3991/ijoe.v15i04.9707
https://doi.org/10.3991/ijoe.v15i04.9707
https://doi.org/10.4018/978-1-61520-625-4.ch010
https://doi.org/10.4018/978-1-61520-625-4.ch010
https://www.online-journals.org/index.php/i-joe/issue/view/346
https://www.online-journals.org/index.php/i-joe/issue/view/346
https://doi.org/10.1561/1900000024
https://doi.org/10.1561/1900000024
https://doi.org/10.3991/�ijoe.v14i09.9137
https://doi.org/10.3991/�ijoe.v14i09.9137
https://doi.org/10.3991/ijoe.v14i08.8747
https://doi.org/10.3991/ijoe.v14i08.8747
http://www.eclipse.org/acceleo
http://www.eclipse.org/acceleo
http://www.eclipse.org/acceleo

