
Paper—A New Algorithm for Storing and Migrating Data Modelled by Graphs

A New Algorithm for Storing and Migrating Data
Modelled by Graphs

https://doi.org/10.3991/ijoe.v16i11.15545

Zakariyaa Ait El Mouden (*), Abdeslam Jakimi
Moulay Ismail University, Meknes, Morocco
mouden.zakariyaa@outlook.com

Abstract—NoSQL databases have moved from theoretical solutions to ex-
ceed relational databases limits to a practical and indisputable application for
storing and manipulation big data. In term of variety, NoSQL databases store
heterogeneous data without being obliged to respect a predefined schema such
as the case of relational and object-relational databases. Those solutions, also
surpass the traditional databases in storage capacity; we consider MongoDB for
example, which is a document-oriented database capable of storing unlimited
number of documents with a maximal size of 32TB depending on the machine
that runs the database and also the operating system. Also, in term of velocity,
many researches compared the execution time of different transactions and
proved that NoSQL databases are the perfect solution for real-time applications.
This paper presents an algorithm to store data modeled by graphs as NoSQL
documents, the purpose of this study is to exploit the high amount of data stored
in SQL databases and to make such data usable by recent clustering algorithms
and other data science tools. This study links relational data to document datas-
tores by defining an effective algorithm for reading relational data, modelling
those data as graphs and storing those data as NoSQL documents.

Keywords—Graph schema, NoSQL, Document database, Object-Relational
database, MongoDB

1 Introduction

XML (eXtensible Markup Language) is a powerful tool used to encode documents
in order to exploit their data with different database management systems, algorithms
and applications [1, 2]. XML is a sample language based on the use of tags and can be
easily readable by both human and machine.

Many frameworks and APIs (Application Programming Interfaces) use XML files
for mapping between their different components, we cite for example Struts, Hiber-
nate, EJB (Enterprise JavaBeans), JMX (Java Management Extensions) for Java web
applications and Ajax for JavaScript web applications. GEXF (Graph Exchange XML
Format) is an extension of XML which specifies the main parameters to describe
graphs and networks with a set of nodes and their positions in addition to the set of
edges and their type (directed or undirected) and many other parameters.

iJOE ‒ Vol. 16, No. 11, 2020 137

Paper—A New Algorithm for Storing and Migrating Data Modelled by Graphs

No one can deny that the world is currently dominated by SQL relational data-
bases, as they still take place in training programs for different computer science
branches, another reason of their popularity is the massive amount of disponible doc-
umentations for SQL databases as they’re existing since almost half a century. SQL
databases respects the ACID properties [3], where a transaction should be done com-
pletely or canceled at all (Atomicity), each transaction leads the system from a valid
state to another valid state without violating any constraints (Consistency), each
transaction is executed as if it is the only existing transaction in the system (Isolation)
and finally each transaction must be saved once executed (Durability).

Recently NoSQL (Not Only SQL) is making its own way to the top list of the most
popular databases, many reasons harried up the appearance of those solution as the
growing volume of data existing nowadays and their heterogeneity, the majority of
the collected data are non-structured and cannot be fit into a relational or object-
relational database [4] as those models use a predefined schema for each created
structure (table, view, ..) and each transaction in the language of data manipulation
(DML) firstly compares the data given in parameters with the existing schema of the
structure and generates errors in the case of a minimum mismatch. NoSQL rejects the
ACID properties and have no schemas to be respected and verified before each trans-
action.

The performance of relational databases decreases as the amount of data increases,
also high availability can’t be guaranteed as the relational databases are based on
consistency instead of availability [5]. Also, databases must be easily replicated as the
majority of recent systems are distributed, and if we take for example a relational
database in Oracle DB system, the replication needs an additional effort. Due to all
those limits of SQL, each high organization has developed its own database manage-
ment system that responds to its needs, those systems are classified as NoSQL data-
bases [5].

The purpose of this study is to define a new syntax in order to migrate graphs from
relational database to document database. This migration will make tasks easier for
developers who will no longer have to copy those data to the new NoSQL created
structures, it also will open the doors to exploit those data by recent algorithms. which
is the main objective of our research project. In this paper, we are interested in data
modelled by graphs, in order to apply graph clustering algorithms and especially spec-
tral clustering.

This paper is organized as follows. Section 2 describes the background of the work
and gives overview of the different NoSQL datastores and graph schemas. Section 3
details the syntax of the proposed algorithm to store graph schemas in document-
oriented MongoDB database. Section 4 gives a comparison between the experimental
results after storing graphs in both SQL and NoSQL databases. Section 5 closes the
paper with conclusions and perspectives.

138 http://www.i-joe.org

Paper—A New Algorithm for Storing and Migrating Data Modelled by Graphs

2 Background

2.1 Related work

The work presented in this paper is a part of a research project of knowledge ex-
traction from data modeled by graphs [6, 7] where the main objective is the classify a
set of individuals using graph approaches such as spectral clustering algorithms [8-
11].

Many algorithms and approaches were developed to convert between schemas,
models or databases. We cite for example the conversion between XML and object-
relational model [12], the conversion between UML and XML [13, 14], the conver-
sion between relational data and graph schemas [15] and recently the conversion of
SQL databases to NoSQL [16] such as the conversion from MySQL to Cassandra
which is a NoSQL column-oriented database [17].

In our context, no approaches were proposed to deal especially with data modeled
by graphs, where the input and the output are graph schemas. In [16] the authors pro-
posed a database migration from SQL to NoSQL database with MongoDB as a pro-
posed use case to compare the performances insertion, selection and update queries.

Also, in [18] the authors investigated NoSQL document datastores in order to
evaluate their suitability to replace relational databases in managing clinical data,
their experimental results proved that NoSQL and XML are the perfect choices in
term if speed, flexibility and scalability. Still in the field of health, another work [19]
presented a NoSQL database to store health data instead of relational solutions whose
proved their limits against volume and heterogeneity, the proposed model was based
on a distributed document DBs and was implemented in the cloud environment to
access the distributed properties, the experimental results proved that the NoSQL
model surpassed the existing relational model in writing queries, flexibility and exten-
sibility. We note that the authors in [19] compared their model to SQL Server and it
would be better if they compared their model to an object-oriented model in Oracle
databases for example, in order to validate their hypothesis.

Our contribution is a GEXF graph schema storage in MongoDB database, which
can be seen as a conversion from XML schema to MongoDB database and benefit
from the performances of MongoDB queries in terms of time, complexity and flexi-
bility [20]. Thereafter, we are going to focus on the document-oriented databases, also
called document stores. This category of databases is the nearest to the key value
model, where the key is a unique ID that can be automatically generated or manually
given, and the value is a document in JSON format in the case of MongoDB [5].
Document stores are a good solution for large data sets with changing states where no
schema definition is forced which gives the possibility to store variable data and up-
date the attributes of inserted documents dynamically.

2.2 NoSQL

Nowadays, data are provided from different sources, the amount of those data is
still in progress, the need of real-time processing, also the majority of data are un-

iJOE ‒ Vol. 16, No. 11, 2020 139

Paper—A New Algorithm for Storing and Migrating Data Modelled by Graphs

structured. All those factors prove that data in the future could not be processed by
traditional systems such as SQL databases. NoSQL has proved its performances
against the big data challenges such as volume, velocity and variety.

Recently, the big companies in information and communications technology (ICT)
started to develop their own systems that perform with their data, those systems are
classified as NoSQL database management systems. In general, we can regroup those
systems in four families; Key-value, document-oriented, column-oriented and graph-
oriented databases.

Key-value databases. In this model, data are stored as pair of keys and values,
where the key is a BLOB (Binary Large OBject). Key-value datastores use keys to
handle data, which is similar to the use of the object-oriented structures such as maps,
collections, or vectors. The basic structure of those databases gives them a high per-
formance in term of time, especially for read and write queries [21]. Among the bene-
fits of such datastores; the low time response and the ease of scalability. Redis and
Amazon DynamoDB are two of the most familiar key-value databases.

Column-oriented database. This model is the closest to relational databases ex-
cept that data are stored by columns rather than rows. Column datastores support high
scalability which make them more performant in data mining field as the values of a
single column are tend to have similar behaviors and can easily be classified in clus-
ters [22]. In addition to Apache HBase, Cassandra are widely used in social networks’
applications such as the case of Facebook. The strength of Cassandra is related to its
implantation of both DynamoDB key-value store and BigTable [23] column-oriented
store which adds a fastness data access and high storage capacity [3, 21].

Graph-oriented databases. Data are structured as graphs, where each data point is
a vertex with properties, and the edges represent the similarities between each pair of
data points having similar behaviors. This model is adapted to relational and object-
relational models, as they all focus on the coupling between the stored data [3].
Graphs are widely used in different fields which gives high value to graph datastores,
we cite for example the metabolic networks, protein-protein interaction networks,
chemical structure graphs, gene clusters and genetic maps, in addition to websites and
social networks in computer science. Neo4j is the most used graph database, it’s used
to store a high number of heterogeneous nodes liked with weighted edges, also it has
its own querying language called Cypher which is less complicated that SQL. The
experimental studies prove that Neo4j gives high performances in term of time for
nodes with string typed properties, in the other hand it takes more time to convert
strings to numeric values.

Document-oriented databases. Data are stored as semi structured documents such
as XML (eXtensible Markup Language) or JSON (JavaScript Object Notation) files.
Document datastores are flexible as they are schema-less and read/write queries does
not verify the data before each transaction, all those factors produce less execution
time compared to schema models such as relational or object-relational ones. Mon-
goDB [24] is one of the most popular document datastores, used to manipulate an
unlimited number of heterogeneous documents in a single database, with a high vol-
ume and low execution time. Thereafter, this work is going to focus in this category
of NoSQL datastores in comparison with an SQL object-relational database.

140 http://www.i-joe.org

Paper—A New Algorithm for Storing and Migrating Data Modelled by Graphs

2.3 Graph schema

Graphs as a structure are widely used in various fields; starting with computer sci-
ence, we cite for example websites and social networks. Applications of graphs are
also used outside the field of computer science, such as metabolic networks, chemical
structure graphs, gene clusters and genetic maps [3].

With the growth of graphs applications, the storage of those structures has become
a critical issue. Formerly, graphs were stored by their adjacency matrix or by their set
of nodes and edges. Recently, the graphs are used to model heterogeneous data where
nodes don’t share the same schema or parameters, also the links between the nodes
can carry information, the traditional storage solutions have become outdated and
other solutions started to see the light in order to deal with graphs in the big data con-
text. GEXF (Graph Exchange XML Format) is an open source document-oriented
format based on XML and used to describe and store graphs and complex networks.
Another recent solution for describing graphs and complex networks is Graph-
oriented databases such as Neo4j [7].

A graph in GEXF is described by its set of nodes and edges with additional param-
eters as the color of the node, the 3D position and the weight of the edges.

The main issue with databases nowadays is that the majority of small and medium
institutions still use SQL models, especially the Relational Databases and more pre-
cisely MySQL, which is a free Relational Database Management System (RDBMS)
in addition to Oracle DB for both relational and object-relational models. In other
hand, the recent algorithms for knowledge extraction and classification deal with
heterogeneous data, in other words those approaches are designed for NoSQL data-
bases [25]. In brief, the need is to develop a bridge between those two technologies to
convert the existing models without redoing the conception of information systems
and also migrate the existing data to NoSQL databases to get exploited by recent
techniques and approaches (Fig. 1).

The graph schema construction is generated using the algorithm of conversion be-
tween relational data and graph schema published in [15].

iJOE ‒ Vol. 16, No. 11, 2020 141

Paper—A New Algorithm for Storing and Migrating Data Modelled by Graphs

Fig. 1. Process overview.

3 Graph schema to MongoDB

3.1 Syntax

In graph schemas, a graph is defined by its description D, its set of vertices V and
its set of edges E. Then for a graph G its schema Ĝ is given by the following syntax
(1).

 Ĝ = D & {V; E} (1)

The symbol & is used to describe a concatenation of simple parameters and objects,
where D is a simple parameter or a set of simple parameters that are extracted from
inside the tag, while V and E are objects. The graph Description D is defined as fol-
lows (2).

 D = T & M (2)

T is the default edge type, which can take two possible values (3).

 T = DIRECTED | UNDIRECTED (3)

In GEXG, a graph mode (M) can be static or dynamic where the nodes move in the
3D space according to time. The symbol | denotes an alternative. In our case, we con-
sider the case where the graph is always static, so the Description in (2) is modified to
the syntax (4).

142 http://www.i-joe.org

Paper—A New Algorithm for Storing and Migrating Data Modelled by Graphs

 D = {T; STATIC} (4)

The set of nodes V in (1) is a list of the entire vertices of the graph G (5).

 V = { v1 , v2 , …. vn } (5)

Where n is the order of the graph (n = |V|) and each vertex vi (i ϵ [1, n]) is defined as
follows (6).

 vi = [n] & {id [; l; s; c; p]} (6)

The value of the parameter id is a textual unique value that identifies each node.
The parameter l describes the displayed label of the node, by default a node is labeled
by its id, but in several cases other parameters are preferred to label the nodes. The
parameter s is the visualization size, it’s a numeric value that refers to the importance
of the vertex in the graph. The parameter c is the color of the node in RGB encoding
given as an object (7).

 c = r & g & b. With r, g, b ϵ [0, 255] (7)

The last parameter p in (6) defines the position of the node in the 3D space, p is an
object (8).

 p = x & y [& z] (8)

x, y and z are real numeric values. z is an optional value, which is the case for all
the parameters between [] in (6).

We move now to the set of edges E which contains the entire edges of the graph to
link between the vertices of V.

 E = { e1 , e2 , …. ek } (9)

Where k is the size of the graph (k = |E|) and each edge ei (i ϵ [1, k]) is defined as
follows (10).

 ei = [k] & {id ; src; trg [; w]} (10)

id is the unique parameter that identifies each edge. src is the id of the source node
of the edge and trg is id of the target node. The parameter w is the weight of ne node
in the case where G is a weighted graph.

3.2 Conversion to MongoDB syntax

We consider the function Ϻdb that allows us to convert a graph schema to Mon-
goDB syntax. The function Ϻdb can take any type parameters. To convert the convert
the entire graph schema we divide the conversion to multiple processes (11). We add
that the function Ϻdb is divisible (12 and 13).

 Ϻdb (Ĝ) = Ϻdb (D , {V; E}) (11)

 Ϻdb (Ĝ) = Ϻdb (D) , Ϻdb ({V; E}) (12)

iJOE ‒ Vol. 16, No. 11, 2020 143

Paper—A New Algorithm for Storing and Migrating Data Modelled by Graphs

 Ϻdb (Ĝ) = Ϻdb (D) , Ϻdb (V) , Ϻdb (E) (13)

In MongoDB, the objects are separated with comas (,). We start with the conver-
sion of the description D (14 and 15).

 Ϻdb (D) = Ϻdb (T) , Ϻdb (M) (14)

 Ϻdb (T) = "defaultedgetype": "undi-
rected" | "directed"

(15)

As we already mentioned, we deal with static graphs, which means the value of
Ϻdb (M) is a constant (16).

 Ϻdb (M) = "mode": "static" (16)

Later on, we calculate the conversion of the set of vertices V (17). To do this, we
calculate separately the conversion of each vertex (18).

 Ϻdb (V) = {α & Ϻdb ({ v1 , v2 , .. vn }) & ζ } (17)

 Ϻdb (V) = {α & (Ϻdb (v1) , Ϻdb (v2), .. , Ϻdb (vn)) & ζ } (18)

As we deal with a list of objects, it’s important to respect the MongoDB syntax to
create a list of nodes (vertices) where each element is an object of type node, the list
opening is stored in the textual constant α (19) and the closing string is stored in the
constant ζ (20).

 α = "\"nodes\": {\"node\":[" (19)

 ζ = "]}" (20)

Now for the conversion of the vertices, each vertex is converted separately as fol-
lows (21). The number of nodes n is ignored by the conversion function as it can be
easily calculated (22 and 23).

 Ϻdb (vi) = Ϻdb ([n] & {id [; l; v; c; p]}) (21)

 Ϻdb (vi) = Ϻdb ({id [; l; s; c; p]}) (22)

 Ϻdb (vi) = {& Ϻdb (id) , Ϻdb (l) , Ϻdb (s) , Ϻdb (c) , Ϻdb (p) &} (23)

The parameters id and l are simple data whose stand for id and label, the conver-
sion of a simple data parameter is obtained with the following syntax (24).

 "parameter": "value" (24)

The parameter s is an object with one numeric value to describe the size of the
node. The conversion can be described as follows (25).

144 http://www.i-joe.org

Paper—A New Algorithm for Storing and Migrating Data Modelled by Graphs

 Ϻdb (s) = "vize-size":
{ "value": vize-size_value }

(25)

For the parameter c which is an object with three integer values, the conversion
can be obtained as follows (26).

 Ϻdb (c) = "vize-color":
{"r":r_value,"g":g_value,"b":b_value }

(26)

The last parameter for a vertex is its position, which is an object with three values
x, y and z as an optional value. In our case we deal only with 2D space (27).

 Ϻdb (p) = "vize-position":
{"x": x_value, "y": y_value }

(27)

Thereafter, for edges conversion and as an edge is an object with non-complex pa-
rameters, we can summarize the conversion as follows (28 and 29).

 Ϻdb (E) = {α' & Ϻdb ({ e1 , e2 , .. ek }z) & ζ } (28)

 Ϻdb (E) = {α' & Ϻdb (e1), Ϻdb (e2) , .. Ϻdb (ek) & ζ } (29)

With α' (30) and ζ (20) the opening and the closing constants successively.
 α' = "\"edges\": {\"edge\":[". (30)

Thereafter, for the conversion of the edges, each edged is converted separately as
follows (31). The number of edges k is ignored by the conversion function as it can be
easily calculated (32 and 33).

 Ϻdb (ei) = Ϻdb ([k] & {id; s; t; [w]}) (31)

 Ϻdb (ei) = Ϻdb ({id; s; t; [w]}) (32)

 Ϻdb (ei) ={& Ϻdb (id) , Ϻdb (s) , Ϻdb (t) , Ϻdb (w) &} (33)

The parameters id, s (source node), t (target node) and w (weight) are simple data
whose can be expressed with the syntax (24).

3.3 Conversion Algorithm

The functions presented in the previous subsection can be summarized in the fol-
lowing algorithm (Fig. 2).
graph_schema() is the function that allows us to build a graph schema from a

relational database. The graph schema is used generally to describe or visualize a set
of tuples stored in an SQL database such as MySQL or Oracle db, more details about
this function in [15]. The first part of the algorithm (from line 2 to line 7) takes a node
as a parameter, then generates its MongoDB syntax from the calculated graph schema

iJOE ‒ Vol. 16, No. 11, 2020 145

Paper—A New Algorithm for Storing and Migrating Data Modelled by Graphs

in line 1, this part summarizes the instructions from (17) to (27) detailed in the previ-
ous subsection. The second part of the algorithm (from line 8 to line 13) takes an edge
as a parameter and returns its MongoDB syntax using the instructions from (28) to
(33) detailed in the previous subsection.

The combination of the two parts of the algorithm generates a MongoDB document
to store the graph schema as document-oriented object which open doors to exploit
those objects in several fields such as data science, data mining, data visualization and
other big data branches.

Algorithm graph_storage

tmp : String
G : A graph schema in GEXF format
mdb : An empty MongoDB document
input rdb : Table in a relational database
1) G = graph_schema(rdb)
2) tmp = "nodes: { node: [" // init list of nodes
3) foreach node n in G.nodes do
4) tmp = tmp + { "id:" + id_value +

 ", viz-size:{ value:" + vize-size_value +
 "}, viz-color:{ r:" + r_value + ",g:" + g_value
 + ",b:" + b_value +

 "}, viz-position:{ x:" + x_value + ",y:" + y_value +"}}"
5) end foreach
6) tmp = tmp + "]}" // close list of nodes
7) add the content of tmp to mdb document
8) tmp = "edges : { edge: [" // init list of edges
9) foreach edge e in G.edges do
10) tmp = tmp + { "id:" + id_value +

 ", source" : source_value + ", target" : target_value +
 ", weight" : weight_value +"}"

11) end foreach
12) tmp = tmp + "]}" // close list of edges
13) add the content of tmp to mdb document

 output mdb : MongoDB document

Fig. 2. Conversion algorithm

4 Graph storage in SQL and NoSQL datastores

To highlight the difference between storing graph schemas in SQL and NoSQL,
we propose the use of Oracle object relational-database 11g [26] for SQL model and
MongoDB server 4.0 [20, 27] as NoSQL document-oriented database. The compara-
tive study will focus on three major axes; First we compare the ease of programming

146 http://www.i-joe.org

Paper—A New Algorithm for Storing and Migrating Data Modelled by Graphs

the query to store the same graph in both database models. Secondly, we compare the
execution time needed to execute both queries built in the first axis. The third axis is
the volume of the stored graph in the SQL and NoSQL databases.

4.1 Ease of programming and Variety

Oracle database uses SQL3 and later versions for object-relational programming.
In SQL3 each data type is defined with data definition language before executing the
insertion query which is a part of data manipulation language. The data definition
language requires the verification of each data manipulation query to the predefined
schema in data definition language which makes the query very sensible to any minor
error in the syntax.

In the other hand, and as the majority of NoSQL databases, MongoDB does not re-
quire any data definition which makes NoSQL queries more flexible and easier to
program, but the same SQL query (See Fig. 3) will be expressed with more characters
in MongoDB as it is obliged to redefine parameters name before their values (See Fig.
4).

INSERT INTO graphs VALUES (
 graph(
 ‘2nd Degree graph’, ‘undirected’,
 nodes(
 node(‘A112’, 20.0, color(130,0,130),
 position(145,-61,0)),
 node(‘B341’, 22.0, color(230,10,10),
 position(-212, 13,0))
),
 edges(
 edge(‘E0’, ‘A112’, ‘B341’, 0.27))
));

Fig. 3. SQL Object-Relational query.

Fig. 4 shows the insertion query of the same graph schema of Fig. 4, we mention
that an object in document-oriented model is called a document. As you can notice,
MongoDB queries are usually longer than SQL queries, but MongoDB syntax is easi-
er to explain as it is schema-less as we already mentioned.

iJOE ‒ Vol. 16, No. 11, 2020 147

Paper—A New Algorithm for Storing and Migrating Data Modelled by Graphs

db.graph.insert({
 "description": "2nd degree graph",
 "edgetype": "undirected",
 "nodes": {
 "node" : [
 {
 "label": "A112", "value": 20.0,
 "position": { "x": 145, "y": -61, "z": 0 },
 "color": { "r": 130, "g": 0, "b": 130 }
 },
 {
 "id": "B341", "value": 22.0,
 "color": [230, 10, 10]
 "position": { "x": -212, "y": 13 },
 }
]},
 "edges": {
 "edge": [
 {
 "id": "E0", "weight": 0.27,
 "source": "A112", "target": "B341"}
]}
 });

Fig. 4. NoSQL MongoDB query.

For example, in the first node document (A112), the position value contains the
three dimensions x, y and z, but in the second node document (B341) the parameter z
is absent. The object color is composed of three integers for green, red and blue
(RGB) which can be explained as a composed document in the node A112 or a table
of integers which is the case in the node B341. In MongoDB, the parameter doesn’t
have to be present with the same name in the set of documents, we cite for example
the parameter label and id in the nodes A112 and B341 respectively, but this differ-
ence must be taken in consideration in the manipulation queries. Also, an optional
parameter doesn’t have to be declared with NULL constraint and specify the value
NULL in each transaction, we only ignore it.

4.2 Velocity and Volume

In this part, we evaluate the performance of the studied database management sys-
tems in term of velocity and volume; to do this we consider five built graphs. Then,
foreach graph we measure the time needed to store the graph and also the volume of
the stored graph. Table 1 presents the five used graphs sorted by their order (number
of nodes) and their size (number of edges).

148 http://www.i-joe.org

Paper—A New Algorithm for Storing and Migrating Data Modelled by Graphs

Table 1. Set of graphs used for measurments.

Graph G1 G2 G3 G4 G5

Order |V| 10 20 40 80 80

Size |E| 10 40 100 200 400

The next two figures (Fig. 5 and Fig. 6) show the time needed to store the graph
and its size in the database respectively.

Fig. 5. Execution time to insert graphs in milliseconds (ms).

As MongoDB is schemaless, insertion queries don’t have to be compared to any
schema before insertion which makes the insertion faster than Oracle database or any
other SQL DBs. Also, the experiments show that SQL databases are more sensible to
data expansion in comparison to NoSQL databases that are created to store high vol-
umes of heterogeneous data.

Fig. 6. Graph sizes in bytes.

iJOE ‒ Vol. 16, No. 11, 2020 149

Paper—A New Algorithm for Storing and Migrating Data Modelled by Graphs

Due to data compression, the five graphs occupied less space in document datas-
tore in comparison to the object-relational database where the same storage size was
allocated to store data with different sizes.

5 Conclusions and Perspectives

We have presented an algorithm to store graph schemas in document-oriented da-
tabase. For the application, we have used MongoDB as a NoSQL database manage-
ment system and Oracle db as SQL database, we have also used other tools to test our
proposed process, such as XML for document representation of graph schemas, java
to code the different functions of the process and Gephi for data visualization.

The purpose of this contribution is to move from SQL to NoSQL datastores with-
out being obliged to redefine the structures and the constraints, neither being forced to
manually migrate data from a system to another. This algorithm is meant to be applied
after graph schema building from a relational database. As NoSQL models are differ-
ent and each organization choses the model depending on their data, future works are
needed to take us from an SQL model to any different NoSQL model and give each
organization the choice to continue with their preferred NoSQL product with data
preservation.

As perspectives, we plan to create the graph-oriented version of the algorithm and
to develop a system that links all the developed approaches from reading data from
SQL databases to graph schema creation and graph storage in different NoSQL mod-
els. The output of such algorithms is deployed by unsupervised clustering algorithms
to extract knowledge from data modeled by graphs.

6 References

[1] El-Seoud, S. A. and El-Sofany, H. (2009). Schema Design and Normalization Algorithm
for XML Databases Model. International Journal of Emerging Technologies in Learning
(iJET), 4: 11-21 https://doi.org/10.3991/ijet.v4i2.768

[2] Grout, I. A. and da Silva, A. C. R. (2009). Remote laboratory description language based
on xml. International Journal of Online Engineering (iJOE), 5: 25-34
https://doi.org/10.3991/ijoe.v5s1.1007

[3] Vicknair, C. et al. (2010). A comparison of a graph database and a relational database: a
data provenance perspective. Proceedings of the 48th annual Southeast regional confer-
ence, ACM, Atricle No. 42 https://doi.org/10.1145/1900008.1900067

[4] Parker, Z., Poe, S. and Vrbsky, S. V. (2013). Comparing nosql mongodb to an sql db. Pro-
ceedings of the 51st ACM Southeast Conference, ACM Artciel No. 5
https://doi.org/10.1145/2498328.2500047

[5] Hecht, R. and Jablonski, S. (2011). NoSQL evaluation: A use case oriented survey. 2011
International Conference on Cloud and Service Computing, 336-341
https://doi.org/10.1109/csc.2011.6138544

[6] El Mouden, Z. A., Jakimi, A. and Hajar, M. (2019). An application of spectral clustering
approach to detect communities in data modeled by graphs. Proceedings of the 2nd Inter-

150 http://www.i-joe.org

Paper—A New Algorithm for Storing and Migrating Data Modelled by Graphs

national Conference on Networking, Information Systems & Security, ACM, Article No. 4
https://doi.org/10.1145/3320326.3320330

[7] Ait El Mouden, Z., Taj, R. M., Jakimi, A. and Hajar, M. (2018). Towards for Using Spec-
tral Clustering in Graph Mining. International Conference on Big Data, Cloud and Appli-
cations. Communications in Computer and Information Science, 872: 144-159.
https://doi.org/10.1007/978-3-319-96292-4_12

[8] Schaeffer, S. E. (2007). Graph clustering, Computer science review, 1: 7-64
[9] White, S. and Smyth, P. (2005). A spectral clustering approach to finding communities in

graphs. in Proceedings of the 2005 SIAM international conference on data mining, 274-
285 https://doi.org/10.1137/1.9781611972757.25

[10] Zelnik-Manor, L. and Perona, P. (2005). Self-tuning spectral clustering. Advances in neu-
ral information processing systems, 17:1601-1608

[11] Von Luxburg, U. (2007). A tutorial on spectral clustering," Statistics and computing, 17:
395-416 https://doi.org/10.1007/s11222-007-9033-z

[12] Machkour, M., Afdel, K. and Khamlichi, Y. I. (2016). A reversible conversion methodolo-
gy: Between XML and object-relational models. in 2016 7th International Conference on
Information and Communication Systems (ICICS), 270-275 https://doi.org/10.1109/
iacs.2016.7476063

[13] Jensen, M. R., Møller, T. H. and Pedersen, T. B. (2003). Converting XML DTDs to UML
diagrams for conceptual data integration, Data & Knowledge Engineering, 44: 323-346
https://doi.org/10.1016/s0169-023x(02)00142-8

[14] Gasevic, D., Djuric, V., Devedzic, V. and Damjanovi, V. (2004). Converting UML to
OWL ontologies, in Proceedings of the 13th international World Wide Web conference on
Alternate track papers & posters, 488-489 https://doi.org/10.1145/1013367.1013539

[15] Ait El Mouden, Z. Jakimi, A. and Hajar, M. (2019). An Algorithm of Conversion Between
Relational Data and Graph Schema. in International Conference Europe Middle East &
North Africa Information Systems and Technologies to Support Learning, Smart Innova-
tion, Systems and Technologies, 111: 594-602, https://doi.org/10.1007/978-3-030-03577-
8_65

[16] Zhao, G., Lin, Q., Li, L. and Li, Z. (2014). Schema conversion model of SQL database to
NoSQL, 2014 Ninth International Conference on P2P, Parallel, Grid, Cloud and Internet
Computing, 355-362 https://doi.org/10.1109/3pgcic.2014.137

[17] Gopalan, M. G., Prasanna, C., Krishna, Y. S., Shanthini, B. and Arulkumar, A. (2017).
MYSQL to cassandra conversion engine," in 2017 Third International Conference on
Sensing, Signal Processing and Security (ICSSS), 503-508 https://doi.org/10.1109/
ssps.2017.8071648

[18] Lee, K. K.-Y., Tang, W.-C. and Choi, K.-S. (2013). Alternatives to relational database:
comparison of NoSQL and XML approaches for clinical data storage, Computer methods
and programs in biomedicine, 110: 99-109 https://doi.org/10.1016/j.cmpb.2012.10.018

[19] Goli-Malekabadi, Z., Sargolzaei-Javan, M. and Akbari, M. K. (2016). An effective model
for store and retrieve big health data in cloud computing. Computer methods and programs
in biomedicine, 132: 75-82 https://doi.org/10.1016/j.cmpb.2016.04.016

[20] Botoeva, E., Calvanese, D., Cogrel, B. and Xiao, G. (2018). Expressivity and complexity
of MongoDB queries. in 21st International Conference on Database Theory (ICDT 2018),
Article N. 9, 1-23

[21] Kamal, S. H, Elazhary, H. H. and Hassanein, E. E. (2019). A Qualitative Comparison of
NoSQL Data Stores. International Journal of Advanced Computer Science and Applica-
tions, 10(2): 330-338

iJOE ‒ Vol. 16, No. 11, 2020 151

Paper—A New Algorithm for Storing and Migrating Data Modelled by Graphs

[22] Esbai, R., Elotmani, F., and Belkadi, F. Z. (2019). Toward Automatic Generation of Col-
umn-Oriented NoSQL Databases in Big Data Context. International Journal of Online and
Biomedical Engineering (iJOE), 15: 4-16 https://doi.org/10.3991/ijoe.v15i09.10433

[23] Chang, F. et al. (2008). Bigtable: A distributed storage system for structured data. ACM
Transactions on Computer Systems (TOCS), 26, Article No. 4

[24] Chodorow, K. (2013). MongoDB: the definitive guide: powerful and scalable data storage.
O'Reilly Media, Inc

[25] Moniruzzaman, A. and Hossain, S. A. (2013). Nosql database: New era of databases for
big data analytics-classification, characteristics and comparison, arXiv preprint
arXiv:1307.0191

[26] Loney, K. (2008). Oracle database 11g the complete reference. McGraw-Hill, Inc.
[27] Chodorow, K. (2011). Scaling MongoDB: Sharding, Cluster Setup, and Administration: "

O'Reilly Media, Inc

7 Authors

Zakariyaa Ait El Mouden received his MSc in Computer Science and Distributed
Systems from Ibn Zohr University, Agadir, Morocco. He is currently working toward
his PhD in the Software Engineering & Information Systems Engineering research
team, Faculty of Sciences and Techniques of Erchidia, Moulay Ismail University,
Meknes, Morocco. His research interests include machine learning, graph analytics
and NoSQL systems. (mouden.zakariyaa@outlook.com)

Abdeslam Jakimi is a Professor in the Faculty of Sciences and Techniques of Er-
chidia, Moulay Ismail University, Meknes, Morocco. He received his PhD in Com-
puter Science and Telecommunications in 2009 from Mohamed V University, Rabat,
Morocco. His current research interests include requirements engineering, user inter-
face prototyping and design transformations, scenario engineering and big data.
(ajakimi@yahoo.fr)

Article submitted 2020-05-12. Resubmitted 2020-06-26. Final acceptance 2020-06-27. Final version
published as submitted by the authors.

152 http://www.i-joe.org

