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Abstract—Individuals with hearing hindrance utilize gesture-based commu-

nication to exchange their thoughts. Generally, hand movements are used by them 

to communicate among themselves. But there are certain limitations when they 

communicate with other people who cannot understand these hand movements. 

There is a need to have a mechanism that can act as a translator between these 

people to communicate. It would be easier for these people to interact if there 

exists direct infrastructure that is able to convert signs to text and voice messages. 

As of late, numerous such frameworks for gesture-based communication ac-

knowledgment have been developed. But most of them are made either for static 

gesture recognition or dynamic gesture recognition. As sentences are generated 

using combinations of static and dynamic gestures, it would be simpler for hear-

ing debilitated individuals if such computerized frameworks can detect both the 

static and dynamic motions together. We have proposed a design and architecture 

of American Sign Language (ASL) recognition with convolutional neural net-

works (CNN). This paper utilizes a pretrained VGG-16 architecture for static ges-

ture recognition and for dynamic gesture recognition, spatiotemporal features 

were learnt with the complex architecture, called deep learning. It contains a bi-

directional convolutional Long Short Term Memory network (ConvLSTM) and 

3D convolutional neural network (3DCNN) and this architecture is responsible 

to extract 2D spatio temporal features. 

Keywords—ASL, CNN, VGG-16, 3DCNN, ConvLSTM 

1 Introduction 

Gestures are of utmost importance in daily life of humans as a form of nonverbal 

language. They are also important in sign language recognition, virtual reality, Human 

Robot Interaction (HCI) and Human Computer Interaction (HCI) from an industrial 

point of view. In this paper, we aim to recognize hand gestures specifically for hearing 

impaired people as when they talk with normal people, they usually use hand gestures 

to communicate which normal people most of the time can't understand. It’s the need 

of the hour to have an aid for the hearing impaired to interact with normal people. 
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Background research states that there has been a lot of ground work to design the 

architecture of wearable devices which helps to recognize sign language. For example, 

hand gloves with a flex sensor or accelerometer sensors [1]. Further development in 

this direction is the use of webcam and a Kinect as an alternative to the wearable devices 

[2]. However, all the above-mentioned techniques are high in price and can’t be used 

by all people. The solution to this problem is a cost-effective solution which can be 

accessible to anyone and will help to reduce the gap between mute-deaf and other nor-

mal people. We have developed a system which recognizes and understands static and 

dynamic gestures of American sign language (ASL) in this paper. 

We have implemented an ASL recognition system which is a real time system capa-

ble of translating the real time video into audio and text. This enables dynamic commu-

nication. We had three objectives in mind as follows: 

1. Obtain a video of the user with actions which will serve as an input. 

2. Converting the frame in the video to a specific letter for static gesture recognition and 

classifying a couple of continuous frames to a word for dynamic gesture recognition 

based on classification score of neural network in both cases. 

3. Creating and displaying the entire sentence. 

This problem is a major challenge as there are certain assumption from computer 

vision perspective: 

● Environmental issues (position of camera, lighting sensitivity of background) 

● Detecting the boundary of a sign (the end of a sign is the beginning of the 

next sign) 

● Coarticulation (when preceding or succeeding sign affects the current sign). 

Although ASL letters recognition has been done by training Neural Networks in the 

past, many of them need a 3D capture feature that requires motion tracking gloves or a 

Microsoft Kinect. Such solutions are limited to scalability and are not so feasible be-

cause of the extra hardware requirements. 

Our system contains a video pipeline in which users sign a gesture for word/num-

ber/letter via a web application. For static gesture recognition, we extract individual 

video frames and generate probabilities of letters (letters a through y, except j and z as 

these gestures need to move hand) / numbers (numbers 0 through 9) for each frame with 

trained CNN. The letter/number with highest probability is given as prediction only if 

that letter/number has highest probability for at least 5 seconds. For dynamic gesture 

recognition, we capture 36 continuous frames and the frames serve as input to the 

trained model for prediction. 

2 Related Work 

Over the past few decades, lots of research is going on in gesture recognition as it 

can be used in various application domains like smart home applications, Human Com-

puter Interaction (HCI), gaming, medical systems, etc. Solutions proposed by different 

researchers are of two types: solutions based on Hardware and solutions based on Soft-

ware. 
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Solutions based on hardware include gesture recognition using gloves, wrist bands, 

etc. These hardware solutions contain sensors as they are necessary to track hand move-

ments. Google has developed wristbands which are able to recognize gestures by track-

ing hand movements and user is able to hear the recognized word/sentence through a 

mobile device as the mobile device is connected to the wristband [3]. Glove based so-

lutions are also developed in recent years. CyberGlove was unable to detect all fingers 

associated with ASL gestures because of the limited number of sensors. Because of the 

number of sensors, CyberGlove was not able to differentiate between some gestures in 

which wrist positions are almost similar e.g., R and U, G and H, etc. [4]. In another 

proposed method, data captured by gloves is sent to the neural network and is processed 

for classification [5]. InerTouchHand System is proposed for Human Machine Interac-

tion (HMI) and uses distributed inertial sensors, vibro-tactile simulators [14]. Glove 

based systems may give wrong results as time goes on depending on sensor quality. 

Software based solutions include gesture recognition using Support Vector Ma-

chines (SVM), Neural Networks (NN), Hidden Markov Models (HMMs), etc. Software 

based solutions require image processing before classifying gesture images. Amazon 

Alexa also is able to respond to sign language gestures [5]. But in this system, you have 

to capture yourself repeatedly performing each sign every time you launch the site in 

the browser and this is a very tedious task. Also, these systems are not affordable by all 

people. Histogram of Gradients (HOG) and Scale Invariant Feature Transform (SIFT) 

features are drawn out from the images of hand gestures and are fed to Support Vector 

Machines (SVM) for training which is then used to classify new hand gesture images 

[7]. They used a dataset containing images of different orientations for accurate classi-

fication. HOG along with Local Binary Pattern (LBP) features are used together to clas-

sify hand gestures and this system attained an accuracy of 92% [8]. However, this sys-

tem takes greater execution and detection time. HOG features along with Principal 

Component Analysis (PCA) is used to propose a solution to detect continuous Indian 

Sign Language [9]. This system extracts key frames from real-time continuous stream-

ing and classifies these key frames so as to reduce classifier request rate. HOG features 

are not robust against different lightning conditions and SIFT features are more useful 

in identification tasks rather than classification tasks. Thus, to deal with classification, 

research is done for hand gesture recognition using Convolutional Neural Networks 

(CNN). Faster-RCNN having five layers of neural network is proposed to classify hand 

gestures with an accuracy of 99.2% [9]. 3DCNN is used to classify continuous dynamic 

gestures and this system achieved 83.8% [11]. This system collected data using color, 

depth and stereo-IR sensors. Hidden Markov Models (HMMs) are useful to capture 

temporal-patterns. HMM with 3-D gloves that tracks hand gestures, are used by Starner 

and Pentland [12]. This HMM model is using time-series data to identify hand gestures 

and classifies them by recognizing hand position in recent frames. They achieved 99.2% 

accuracy on the test set. Vision-based solution using Raspberry Pi embedded platform 

is used to detect hand gestures of elder people [15]. This system is trained only on 

dynamic gestures instead of static gestures as some elderly people might not be able to 

keep their hands steady because of their physical problems (numbness or shaking 

hands). This system is able to classify only 6 hand gestures. A system for recognizing 

Arabic Sign Language has also been developed [16]. But this system is developed to 
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recognize static gestures for Arabic alphabets only. This is because there are variations 

in dynamic hand gestures in different Arabic-speaking Countries. 

3 Method 

In this section, we depict the training and architecture of our algorithm for static and 

dynamic gesture recognition. 

3.1 Architecture of VGG16 model 

 

Fig. 1. VGG16 Architecture 

VGG16 is made up of thirteen convolutional layers, five MaxPooling layers, two 

fully connected layers and one softmax layer for output. Visual Geometry Group (VGG) 

used VGG16 at Oxford University in the 2014 ILSVRC (ImageNet) competition. 

VGG16 architecture is shown in Figure 1. 

Specifications of the layers from which VGG16 network is made are as follows: 

• Convolution box-1: It has two convolutional layers with 64 filters each. Result 

shape: 224x224x64 

• Max pool-1: This layer is known as Max-pooling layer which yields:112x112x 64 

• Convolution box-2: It has two convolutional layers and has 128 filters each. Result 

shape is 112 x 112 x 128 

• Max pool-2: This is Max-pooling layer which yields: 64x64x128 
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• Convolution box-3: It has three convolutional layers and has 256 filters each. Result 

shape is 56 x 56 x 256 

• Max pool-3: This is also Max-pooling layer which yields: 28x28x256 

• Convolution box-4: It has three convolutional layers with 512 filters each. Result 

shape: 28x28x512 

• Max pool-4: Max-pooling layer which yields: 14x14x512 

• Convolution box-5: It has three convolutional layers with 512 filters each. Result 

shape: 14x14x512 

• Max pool-5: Max-pooling layer which yields: 7x7x512 

• Fully Connected Layer 1 (FC1): Result shape is 1x1x4096 

• Fully Connected Layer 2 (FC2): output shape is 1x1x4096 

• Output (predictions): output shape is 1x1x1000 (For ImageNet) 

3.2 Training VGG16 model for static gesture recognition 

In our approach, Convolutional Neural Networks (CNNs) are used for classification 

of ASL letters from A to Z (except J and Z as they are dynamic gestures) and digits 

from 0 to 9. 

For training a model for number recognition, we have used transfer-learning. Using 

transfer-learning, we can use a pretrained model and train it on more specific dataset to 

give specific results. We can do this by adjusting some of the weights of the pre-trained 

model and altering or reinitializing weights at bottom layers by training the model on a 

new dataset. By using this technique, we can train models in less time and also require 

less amount of data. However, disadvantage in transfer learning is due to the contrasts 

between the data that is originally trained and the new data which is being classified. 

When there are bigger differences in original data on which VGG16 model is trained 

and the new data which we want to classify, they often require to re-initialize or expand 

learning rates for more profound layers in the network. 

In Keras, each layer has a parameter called “trainable”. We can set this parameter to 

False to freeze the weights, indicating that this layer should not be trained. For training 

the new model on hand gestures for digits, we have frozen the weights of the first 3 

layers and added a new layer with 10 nodes as the last output layer for prediction. 

Transfer learning is useful for classification tasks where less amount of data is pre-

sent for training a model. Since adequate data of ASL gesture images was available, we 

have not used transfer-learning for training model on ASL gestures. Instead, we have 

trained the VGG16 model without freezing weights of all layers in the pre-trained 

model. 

3.3 Mathematical equation for transfer learning 

CNNs can learn features along with weights corresponding to each feature and thus, 

transfer learning is useful to work with. CNNs use loss functions to optimize parameter 

values. Here, softmax-based loss function is used: 
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 Loss=1

𝑁
∑ − log (

𝑒
𝑓𝑖,𝑦𝑖

∑ 𝑒𝑧𝑘𝐶
𝑘=1

)𝑁
𝑖=1  (1) 

 𝑓𝑖(𝑧)  =  
𝑒

𝑧𝑗

∑ 𝑒𝑧𝑘𝐶
𝑘=1

 (2) 

C = total number of classes 

N = total number of training examples 

Equation (2) is the softmax function. 

Input: Vector of features z for given training example. 

Output: Flattens values of vector z to a vector of [0,1] which ultimately adds to 1. 

Equation (1) calculates full softmax loss using mean loss for every training example 

𝑥𝑖. Utilizing a softmax-based classification head permits us to yield values similar to 

probabilities for every ASL letter. 

This varies from another well-known decision: the SVM loss. Using a SVM classi-

fication, head would bring about scores for every ASL letter that would not straightfor-

wardly guide to probabilities. These probabilities are provided by the softmax loss and 

thus we can use those probabilities to classify more accurately through trained models. 

3.4 3DCNN-LSTM model 

3DCNN-LSTM network: 3D ConvNets are a conspicuous decision for video classi-

fication since they intrinsically apply convolutions (and max poolings) in the 3D 

space, where the third measurement for our situation is time. Long Short-Term 

Memory systems – normally called "LSTMs" – are an extraordinary sort of RNN, fit 

for learning long-term dependencies. LSTMs are unequivocally intended to maintain a 

strategic distance from the long-term dependency issue. Recalling data for extensive 

stretches of time is realistically their default conduct. 

Short-term spatiotemporal features are learnt with the help of 3DCNN while long-

term spatiotemporal features are learnt with the help of bidirectional convolutional 

LSTM one after the other. Afterwards, depending on the learnt 2D long-term spatio-

temporal feature maps, higher level spatiotemporal features are learnt using 2DCNN 

for the final gesture recognition. 

We proposed to initially learn transient spatiotemporal features utilizing a shallow 

3DCNN, and afterward long-term spatiotemporal features are learnt further utilizing 

bidirectional convolutional LSTM, ultimately recognize gestures utilizing 2DCNN on 

the basis of learnt 2D spatio temporal feature maps. 

LSTM: Long Short-Term Memory (LSTM) systems are a sort of recurrent neural net-

work (RNN) and are able to learn long-term dependencies. They were presented by 

Hochreiter and Schmidhuber (1997), and were refined and publicized by a number of 

individuals in the accompanying work. 

LSTM mainly consists of three gates as shown in Figure 2: 

1. Input Gate 

2. Forget Gate 

3. Output Gate 
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Above mentioned gates are nothing but sigmoid activation functions. Thus, their 

output is between 0 or 1 and in the vast majority of the cases output value is either 0 or 

1. 

 

Graph 1. Sigmoid activation function 

Sigmoid functions are used for gates since we need a gate to give just positive values 

and this function should tell us clearly whether we have to keep a particular feature or 

we have to dispose that feature. 

“0” signifies the gates are blocking everything. 

“1” signifies gates are permitting everything to go through it. 

The equations for the gates in LSTM are: 

 𝑖𝑡 = 𝜎(𝑤𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (3) 

  𝑓𝑡 = 𝜎(𝑤𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (4) 

  𝑜𝑡 = 𝜎(𝑤𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (5) 

where, 

𝜎 = sigmoid function 

ℎ𝑡−1= output of the previous lstm block (at timestamp t-1) 

𝑤𝑥= weight for the respective gate(x) neurons 

𝑥𝑡= input at current timestamp 

𝑏𝑥= biases for the respective gates(x) 

𝑜𝑡= output gate 

𝑓𝑡= forget gate 

𝑖𝑡= input gate 
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Fig. 2. LSTM memory cell 

Equation (3): This equation is present at the input gate and it tells us about new data 

that we will be storing in the cell state. 

Equation (4): This equation is present at the forget gate and it tells us what data to 

discard from the cell state. 

Equation (5): Final output activation of the LSTM block at timestamp ‘t’ is provided 

by this equation. This equation is for the output gate. 

4 Dataset 

ASL consists of a set of 26 signs for letters from A to Z as shown in Figure 3. We 

have implemented ASL recognition and number recognition (numbers from 0 to 9) us-

ing a Web application. 

 

Fig. 3. American Sign Language (ASL) as appeared in Bahan, Benjamin [13] 
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For static gesture recognition, a dataset contains 26 classes and these classes include 

gestures for letters A to Y (excluding J and Z) in American Sign Language along with 

gestures for “space” and “del”. This dataset is downloaded from Kaggle. This dataset 

contains total of 78000 images where each class has 3000 images each. Also, the dataset 

for gestures of numbers from 0 to 9 consists of total 2050 images, where each class 

consists of 205 images. Dataset for number gestures is also downloaded from Kaggle. 

For dynamic gesture recognition we have created 240 videos of each gesture and 

each video is saved in the form of frames. Each video consists of 36 frames. Dataset 

consists of gestures for my, name, what, your, yes, no and nice to meet you. Dataset 

contains gestures performed by 4 different persons in different background conditions. 

5 Proposed System 

The system’s frontend consists solely of HTML and JavaScript and a flask app writ-

ten in python works as a server which is running in the background. Thus, the system's 

backend consists of a python script. Flask app containing a model for static gesture 

recognition is running continuously in the background at port 5000. Trained VGG16 

models on ASL letters as well as hand gestures of numbers are loaded inside the flask 

app which is running continuously at port 5000 and when an image is sent from webapp 

to the server, the label of gesture with highest probability is predicted to the user. 

Flask app containing a model for dynamic gesture recognition is also running con-

tinuously at port 8000 and a neural network consisting of 3DCNN and LSTM is loaded 

inside this flask app and when 36 continuous frames are sent from the webapp, the label 

of gesture with highest probability is predicted to the user.  Flask app contains Keras, 

TensorFlow, Matplotlib, OpenCV, Numpy libraries and some sub packages of these 

libraries. 

Following are the steps for sign language recognition: 

1. Capture hand gesture of user and preprocess image 

2. Feature Extraction and classification using trained model 

5.1 Capture hand gesture of user and preprocess image 

Webcam is used for capturing hand gestures. Webcam took color pictures, which 

were then converted into grayscale format. The main reason for sticking to grayscale 

was the extra amount of processing required to deal with color images. External systems 

like depth sensors are used by most gesture capturing softwares to detect the hand mo-

tion. However, these frameworks are more slow once in a while and space utilization 

can be more. To conquer this, we have made a rectangular space where the client needs 

to put his/her hand and perform signals. 

Webapp by default opens in static mode. If we want the prediction for the gesture of 

number, we have to switch to that mode by clicking on a button named number. Starting 

the web app enables the webcam to capture images in the intervals of 1 second in static 

mode. Image is sent to the server running at port 5000 for prediction and resized to 
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224x224. Image is converted to a numpy array before passing it to the trained VGG16 

model. 

If we want the output of a dynamic gesture, then we will have to switch to dynamic 

mode in the webapp and click on the Start button to start the real time streaming. When 

36 continuous frames are captured, they are sent to the web server running at port 8000 

and converted to a numpy array. These frames are resized and fed to the joint 3DCNN 

and LSTM model. 

5.2 Feature extraction and classification using trained model 

a) Static gesture recognition: In this phase, the big problem was image capture rate. 

We overcame this by balancing network computation speeds with the speed with 

which images are sent to the network. Captured frames are sent to VGG16 fine-tuned 

model and the label with highest probability is temporarily set as an output. If the 

predicted label of the gesture is the same for 5 continuous frames then only the label 

is sent to the user as a prediction. The predicted label text is then converted into the 

system's voice. All single labels are cached into a temporary word variable continu-

ously. When the user does the gesture for “space” then, the cached word is given to 

the user as an output and word variable is reinitialized to empty string for next word. 

The system flow for static gesture recognition is shown in Figure 4. 

In case of hand gesture recognition for digits also, the gesture label is predicted only 

if that label occurs with the highest probability for 5 continuous frames. 

 

Fig. 4. Block diagram for static gesture recognition 
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b) Dynamic gesture recognition: 36 continuous frames are resized and fed to the joint 

3DCNN and LSTM model. The label of gesture with highest prediction probability 

is sent to the user and converted to the system’s voice. Predicted labels are written 

inside of a text area on a webapp. The system flow for dynamic gesture recognition 

is shown in Figure 5. 

 

Fig. 5. Block diagram for dynamic gesture recognition 

6 Results 

6.1 Performance of the 3DCNN-LSTM model 

Loss during training and accuracy of the model are as follows: 

  

Graph 2. Loss curve Graph 3. Accuracy curve 
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This model gives an accuracy of 98.81% on validation data. 

Confusion Matrix of 3DCNN-LSTM model trained on 7 dynamic gestures is shown 

in Figure 6. 

 

Fig. 6. Confusion matrix of 3DCNN-LSTM model trained on 7 dynamic gestures 

6.2 Performance of VGG16 model trained on ASL letters from A to Y (except 

J and Z) and gestures for “delete” and “space” 

Confusion matrix for this model is shown in Figure 7. 

 

Fig. 7. Confusion matrix of VGG16 model trained on ASL gestures 
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The VGG16 model trained on ASL letters attains accuracy of 98.75% on test sam-

ples. 

6.3 Performance of VGG16 model trained on digits from 0 to 9 

Confusion matrix for this model is shown in Figure 8. 

 

Fig. 8. Confusion matrix of VGG16 model trained on numbers gestures from 0 to 9 

The VGG16 model trained on digits attains accuracy of 99.5% on test samples. 

7 Output 

7.1 Output of ASL letter gesture 

 

Fig. 9. Static gesture for RIYA 
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Fig. 10.  Output for static gestures in figure 9 

7.2 Output of number gestures 

 

Fig. 11.  Static gesture for Numbers - 0,1,2,3 

 

Fig. 12.  Output for static gestures in figure 11 
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7.3 Output of dynamic gesture 

 

Fig. 13.  Dynamic gesture sequence for word “nice to meet you” 

 

Fig. 14.  Output of dynamic gesture sequence in figure 13 

Output is given both in text and voice format. 

8 Conclusion 

For American Sign Language (ASL), we proposed a web-based sign language recog-

nition system. It makes an interpretation of the gesture-based communication into text 

and predicts the labels using the pictures captured from the web camera. We proposed 

a novel 3DCNN-LSTM classifier for dynamic gesture recognition. Accuracy on the test 

dataset of ASL letters is 97.50% and 99.5% on test dataset of digits. On the validation 

dataset of dynamic gestures, the model attains accuracy of 98.81%. Accuracy tested 

against hand gestures for ASL letters captured by webcam in real time appears to be 

90%. Precision of the framework can be improved by appropriate enlightenment. It 

differs with intricate backgrounds. 
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