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Abstract—Routine electroencephalogram (EEG) examinations uses intermit-

tent photic stimulation (IPS) for investigation of the visual cortex EEG responses 

during resting time. This study aimed to discover brain dynamics effects of IPS 

in 28 generalized epilepsy patients and 28 healthy subjects. Signal processing 

techniques were used in feature extraction by Fast Fourier transform (FFT), fea-

ture dimension reduction by t-test (significant, p<0.05) and classification by near-

est neighbor (k-NN) and support vector machine (SVM). The epilepsy group had 

higher level of amplitude in Theta waves compared to the healthy group. The 

Alpha waves in the resting time and for all IPS frequencies were observed with 

lower level of amplitude in healthy subjects compared to the epilepsy group. The 

k-NN (85.7% accuracy) classifier had the best discrimination of epilepsy from 

healthy group for resting time versus during IPS at 18 Hz IPS. However, using 

SVM (75.0% accuracy), IPS at 25 Hz yielded the best discrimination between 

resting time versus IPS in epilepsy where the healthy group responded similarly 

in all IPS frequencies. This study shows that IPS at 18 Hz and 25 Hz are suitable 

IPS frequencies for k-NN and SVM, respectively, to discriminate non-photosen-

sitive generalized epilepsy from normal subjects during interictal.  

Keywords—intermittent photic stimulation (IPS), electroencephalography 

(EEG), epilepsy; support vector machine (SVM), k nearest neighbor (k-NN) 

1 Introduction 

Epilepsy is a chronic disorder inducing subject to experience seizure due to impair-

ment of excitatory and inhibitory pathway in neural activities. People with epilepsy face 

cognitive challenges, medical and psychiatric comorbidities, and social stigmatization 

and in some cases, lower annual incomes and physical limitations leading to poor qual-

ity-of-life (QOL) [1]. A recent study reported the prevalence of lifetime epilepsy is 7.8 

per 1000 persons in Malaysia in 2021 [2]. The progress in brain cognition, epilepsy 

management and control can be achieved via anti-seizure medication (ASM) as part of 
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the treatment strategies. Epilepsy diagnosis most of the time is investigated during in-

terictal in the absence of seizure usually by clinical neurologists via visual inspection 

on the EEG waveforms. Normal EEG does not rule out epilepsy and the visual EEG 

evaluation has high false negative result from routine EEG analysis. Hence a more sen-

sitive method shall be adopted to increase the sensitivity of epileptic detection using 

advanced software/algorithm. 

Intermittent photic stimulation (IPS) is a form of visual stimulation accompanied by 

changes in neuronal activity by triggering specific visual stimuli [3]. Although the re-

sponses of IPS in each subject is varied [4], various investigations have been done in 

different studies such as epilepsy and generalized anxiety disorder and etc. [5]. Elec-

troencephalography (EEG) is a non-invasive technique that can explore the responses 

of visual stimuli by measuring the electrical potentials on the head surface resulted by 

neural activities.  

In epilepsy, visual stimuli are the stimulus which can provoke seizure, evoke parox-

ysmal discharges as spikes in particular brain regions or exhibit a normal phase-locked 

responses [6]. Although a variety of diagnostic methods are available, EEG as a non-

invasive routine technique vastly used in diagnosis and visual stimulation as a diagnos-

tic intervention that plays a valuable role in this journey specifically during interictal 

[7], [8]. The responses to visual stimulation are varied depending on the specifications 

of stimuli itself in the aspect of factors such as intensity, duration, distance from the 

source, background illumination, type of pattern, background illumination, contrast, 

and color [9]. Furthermore, it is demonstrated that subjects’ biodiversity in the aspect 

of types of sensitivity; photo-induced seizure, photoparoxysmal response (PPR), pho-

tosensitivity and photomyoclonic response effects the responses [6]. 

In most of epilepsy studies evaluating the effect of visual stimulation, the subjects 

had photosensitivity. In [10], twelve photosensitive epilepsy patients were examined in 

front of different colors of photic stimulation; white, red, blue, green and yellow light 

respecting to the evaluation of intensity of EEG activity. The achievement of study was 

benefitted in designing more appropriate sunglasses respecting seizure prevention. 

Rhythmic visual stimulation leads to a neural entrainment originated from synchroni-

zation of neural activity with the periodic properties of the stimuli [11]–[14]. The hy-

pothesis was supported in [14] by presenting this importance that the exact synchroni-

zation of cerebral rhythms leading to a certain type of seizures which were out of step 

previously. Resting time and 14 Hz IPS focused on estimating power spectrum density 

and coherence profiles using autoregressive parametric model (AR) was investigated 

in [15] photosensitive idiopathic generalized epilepsy. The study resulted a signifi-

cantly larger number of coherence peaks in the Gamma band in patients with respect to 

controls where in IPS coherent Gamma activity is mainly presented as IPS frequency 

harmonics. Alpha activity peaks appeared in controls but not in patients in confront of 

IPS. In [16], while simultaneous recordings of EEG and functional MRI (EEG-fMRI) 

were applied on photosensitive idiopathic generalized epilepsy patients revealing the 

activation of spike-wave discharges in thalamus and deactivation in frontoparietal ar-

eas. The result showed a significant activation in the visual cortex confronting IPS. 

Furthermore, while early regressor showed photo PPR in the parietal cortex and in the 

premotor cortex, standard regressor presented deactivation in early activated areas in 
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all subjects and thalamic activation in one subject. Respecting to the hypothesis that the 

reduce of inhibitory effect of Alpha oscillations may be associated with PPR [17] in-

vestigated on photosensitive subjects. Linear and non-linear spectral characteristics of 

Alpha rhythms were studied during visual stimulation. Despite a desynchronization of 

Alpha power persistence over occipital region in both case and control groups, the ac-

tivity appeared in central lobe for only case group. The study resulted a reduced bi-

coherence of the central Alpha frequency band in case group against the claim attributed 

by hypothesis.  

In this study, the EEG from two groups; 28 normal and 28 patients with generalized 

epilepsy with no report of PPR, were investigated. The objective of the study was to 

discover the brain dynamics in the aspect of power of frequency band during resting 

time and visual stimulation. In this regard, IPS under nine continuous frequencies; 8, 

10, 12, 14, 16, 18, 20, 25 and 30 Hz, were elicited to the groups. Brain signal processing 

concentrated on feature extraction, feature selection and classification were applied on 

the signals obtained from one channel from the visual cortex. The study is summarized 

in two approaches: 1) Discovering the differences between case and control groups in 

each experimental condition, 2) Figuring out the differentiations between resting time 

and each IPS within an individual group.  

This study contains three main sections after introduction, brain signal processing 

techniques and the two well-known machine learning classifiers via k nearest neighbor 

(k-NN) and support vector machine (SVM) as described in the method section. Next, 

the focus of our study categorized in EEG dataset, feature extraction, feature selection 

and classification, will be explained. The study constitutes two approaches which are 

explained in each sub-branch of the methodology sections. The study will be concluded 

after discussing about the results of both approaches. The references will be indicated 

at the end of the paper. 

2 Materials and methods 

2.1 Brain signal processing 

With the focus on EEG, brain signal processing is a technique that provides the con-

dition to describe brain dynamics by analyzing the signals on the scalp recorded by 

EEG. The signals are electrical potential differences resulted by neuronal activity in 

intracranial in time series data between two electrodes placement on the scalp according 

to 10-10 or 10-20 systems [18]. In total, brain signal processing is summarized in three 

main steps after the acquisition; feature extraction for extracting the attributions from 

the signal, feature dimensionally reduction and classification [19]. EEG signals can be 

analyzed in time and frequency domain. Figure 1 shows a general overview of brain 

signal processing steps. Research shows that brain emits specific range of frequency 

bandwidths in certain times such as Delta (0.5-4 Hz); during deep and dreamless sleep, 

Theta (4-8 Hz); during relaxation and meditation, Alpha (8-12 Hz); in awake and calm-
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ness, Beta (12-30 Hz); lower beta where the subject is awake and higher beta confront-

ing anxious, and Gamma (over 30 Hz); during hyper brain activity [20], [21]. Figure 2 

presents various frequency bandwidths of the brain signals.  

In a study by Najafi and et al, the role of brain signal processing is described in an 

epilepsy study [22]. The study reported that the technique was mainly performed well 

in detection with the focus on 1) epilepsy status; by extracting the features being able 

to classify various statuses of epilepsy such as interictal vs ictal, 2) epilepsy type; by 

finding the differentiation between various types of epilepsy based on the seizure type 

such as generalized vs focal, 3) epilepsy marker; by detecting the abnormalities in the 

epileptic signals and 4) surface localization; with a concentration on the standard of 

EEG electrode placements to discover the level of potential activities and the possibility 

of reporting seizure onset zone (SOZ). In addition, it has resulted that the analysis can 

be done in prediction towards notifying the seizure by processing the long-term EEG 

signals. In this study FFT in feature extraction step, t-test was applied for feature selec-

tion and the classifiers; SVM and k-NN, were utilized in the classification step. 

 

Fig. 1. An overview of brain signal processing steps 

 

Fig. 2. Various brain frequency bandwidths 

Support vector machine (SVM). The performance of the SVM classifier relies on 

the choice of the regularization parameter C or the box constraint and the kernel param-

eter or the scaling factor leading to a hyperplane parameter [23].  

Mathematically, SVM refers to solving a quadratic problem (Q.P) with minimizing 

equation (1).  

𝑄. 𝑃: 𝑚𝑖𝑛 
1

𝑛
𝛼𝑇𝐻𝛼 + 𝑓𝑇𝛼 ,    ℎ𝑖𝑗 = 𝑦𝑖𝑦𝑗 𝑥𝑖

𝑇𝑥 ,    →    𝐻[ℎ𝑖𝑗]𝑛×𝑛 ,    𝑓𝑖 = −1 , (1) 

Where 𝐻 represents inputs and 𝑓 considered as internal parameter equals to −1 and 

𝛼 which is multiplied to H in order to find the positive and negative lines that must be 

found. After finding 𝛼 by solving Q.P, the biases of the SVM lines are needed to be 

found. Considering the equations (2) and (3) and the amounts of 𝜔 and 𝑆, the value of 

bias will be found based on equation (4). 

 𝜔 = ∑ 𝛼𝑖𝑖 𝑦𝑖𝑥𝑖  , (2) 

 𝑆 = {𝑖 | 0 < 𝛼𝑖 < 𝑐} , (3) 

Aquisition Pre-processing Feature extraction
Feature dimension 

reduction
Classification
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 𝑏 =
1

|𝑆|
∑ (𝑦𝑖𝑖𝜖𝑆 − 𝜔𝑇𝑥𝑖) , (4) 

K-nearest neighbor (k-NN). The k-NN algorithm is a non-parametric learning 

method used to classify objects based on their closest training examples in the feature 

space. An object is classified by a majority vote of its neighbors [24]. The Euclidean 

distance metrics 𝑑(𝑥, 𝑦) between two points 𝑥 and 𝑦 is calculated using the equation 

(5). Where 𝑁  is the number of features 𝑥 = {𝑥1, 𝑥2, 𝑥3 … 𝑥𝑁}  and 𝑦  =
 {𝑦1 , 𝑦2, 𝑦3 … 𝑦𝑁}. The number of neighbors used to classify the new test vector was 

varied in the range of 1 to 10, and its effects on the classification performance is deter-

mined in the form of classification accuracy considering to the standard deviation [23].  

 𝑑(𝑥, 𝑦) =  ∑ √𝑥𝑖
2 + 𝑦𝑖

2𝑁
𝑖=1  (5) 

2.2 Brain dynamics in response to IPS in epilepsy 

In this study, IPS as the visual stimulation was elicited to provide a comparative 

condition for analyzing EEG signals between case and control groups. The analysis 

covered by brain signal processing techniques was concentrated on FFT for extracting 

features, t-test for significant feature selection; and k-NN and SVM for classification. 

The algorithms of each step were implemented on MATLAB R2020a which in detail, 

BrainStorm V.2021 and ClassificationLearner toolbox were employed in data acquisi-

tion and classification steps, respectively. The hardware system for this analysis was 

considered an Intel® Core™ i7 desktop with 2.20 GHz processor and 8 GB of RAM. 

In the next sections, the detail of brain signal processing techniques used in this study 

will be described.  

EEG dataset. In this study, the retrospective data were collected from 56 subjects; 

28 healthy subjects and 28 generalized epilepsy patients, who visited the Neuro Clinic 

of Hospital Canselor Tuanku Muhriz (HCTM), Universiti Kebangsaan Malaysia 

(UKM) in 2020. Age of the subjects recruited in this study was between 21-60 years 

for both case and control groups. Categorization of case and control groups was based 

on the EEG reports indicating epilepsy (evidenced by diffuse generalized cerebral dis-

turbance) and normal EEG, respectively. Pregnant ladies, patients with retardation or 

having previous brain injuries were excluded. This study received ethics approval from 

the UKM Research Ethics Committee (UKM PPI/111/8/JEP-2021-177). EEG data 

were recorded during interictal. None of the subjects in both the healthy and epilepsy 

groups were reported having PPR. The subjects diagnosed as epilepsy were of category 

generalized epilepsy and no reports of the presence of epileptiforms in the recorded 

EEG. 

EEG recordings were performed in the neurology laboratory where each subject was 

placed in a low lighted room at normal room temperature. Nicolet-One EEG device was 

utilized to record EEG signals at 500 Hz sample rate based on the 10-20 system in the 

conditions of resting time and variable IPS frequencies. To prevent signal distortions, 

impedances at each electrode contact with the scalp was kept below 5 kohm. Intermit-

tent photic stimulation specified by white light is divided in a set of 12 series of fre-

quencies: 1 Hz, 3 Hz, 6 Hz, 8 Hz, 10 Hz, 12 Hz, 14 Hz, 16 Hz, 18 Hz, 20 Hz, 25 Hz 
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and 30 Hz. The IPS signal radiated from a strobe light located in front of the subjects’ 

face with the distance between 20 to 30 cm. The potential difference between electrode 

O1 (located in left occipital lobe) and the reference; placed on the right fronto-central 

region, was recorded in 10 seconds for each event. For the resting time, 10 seconds 

signal before the first IPS was considered the zero frequency and baseline signal. In 

this study, due to the condition of flickering response-coverage by a maximum of 250 

milliseconds, nine IPSs (between 8 Hz to 30 Hz) are studied [25]. As 1 Hz IPS is in-

duced once in a second whereas the response of IPS is; by maximum, 250 milliseconds 

equal to ¼ of second, the whole one second will be contained IPS responses (¼ second) 

and non-IPS responses (¾ second) as the rest. The response by inducing 3 Hz IPS with 

three stimuli in a second, passes the threshold as well. In order to eliminate analyzing 

the mixture of responses, the IPS with low frequencies were ignored.  Although, 6 Hz 

IPS by inducing six stimuli in a second can cover the whole one second full of IPS 

response, regarding more confidence in analysis, the investigation was started since the 

8 Hz frequency of IPS. Figure 3 depicts the detail of EEG recording of left occipital 

lobe where the shaded areas are presented as the study experimental events; first 10 

seconds with no stimulation represents resting time (R.T) and 90 seconds for IPSs (8 

Hz to 30 Hz). 

 

Fig. 3. Detail of EEG recording during resting time (R.T) and various IPS frequencies 

Feature extraction was concentrated on frequency domain analysis to explore the 

amplitude of each brain frequency bandwidth. Although, the effect of IPS is not merely 

related to the occipital lobe in epilepsy [6], the channel O1 in primary visual cortex (the 

main region for processing visual information) was chosen to be analyzed using brain 

signal processing techniques. FFT was applied on EEG signal of each subject for the 

events separately and the average of magnitude referred to each bandwidth is computed 

to produce the average of amplitudes. By applying FFT for all EEG recordings, the 

waves with different range of frequency that compose the original signal are discov-

ered. Considering the range of each frequency bandwidth; e.g., 8 to 12 Hz for Alpha 

waves, the average of amplitudes observed in all subjects are calculated. Figure 4 illus-

trates the detail of feature extraction step starting with signal acquisition from O1 in 10 

seconds of recording for each experimental event. Therefore, the features were ex-

tracted from all subjects in both groups for each experimental event. In the next step, 

the features supplying the significant meaning between groups were selected.  
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Fig. 4. Feature extraction step for each subject 

Feature selection. Statistical test by independent samples t-test of p<0.05 (targeting 

95% of hypothesis confirmation) presented a significant meaning to differentiate case 

and control groups in particular events were selected for the first approach. The events 

were summarized in resting time and 8 Hz to 30 Hz IPS where case and control groups 

were compared in each event separately. Analysis between two group mean differences 

were conducted in two approaches in this study. Figure 5a shows the detail of feature 

selection step for the first approach that compares the case and control subjects. Further, 

in the second approach, the features in resting time (R.T) were compared to the features 

in each IPS frequency within the individual group. Figure 5b shows the detail of feature 

selection step for the second approach. 

  

                    (a)    (b) 

Fig. 5. Feature selection step regarding to the first approach (a) and the second approach (b) 

Classification. Towards completing the first approach, besides finding the differ-

ences between groups in each IPS, a sub-question was introduced: which IPS will be 

the most efficient event among all IPSs? Based on the results from the first approach, 

the amplitude of Theta frequency was considered as the feature that can provide mean-

ingful differences between case and control groups for all IPSs. In this study, SVM and 

k-NN were chosen to answer the mentioned question using internal kernels assisted by 

k-fold cross validation (k=10). In brief, 28 normalized amplitudes of selected frequency 

band for each group and IPS were assigned to the classifier, separately. The second 

approach aim at analysis of comparison for the normalized amplitude of selected fre-

quency bands between the resting time and each IPS within each of the study groups. 

This step is important as it will determine the right classifiers for each of the SVM and 

k-NN. 
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3 Results 

3.1 Feature extraction and feature selection 

The research was concentrated on EEG analyzing on two groups of subjects with 

generalized epilepsy and normal EEG reports, which was considered as the case and 

control groups, respectively. In this regard, IPS as a visual stimulus with the focus on 

stimulation in a set of continuous frequencies (9 IPSs; 8 to 30 Hz) was applied. FFT 

was applied on the signals for both groups to recognize the average amplitude of brain 

frequency bandwidths in Delta, Theta, Alpha and Beta as the signal features. In this 

study, statistical t-test was applied on the feature selection process to discover the fea-

ture(s) of significant difference between the groups of subjects to discriminate the case 

from control group.  

Feature selection for the first approach. Table 1 presents t-test significant differ-

ence for two approaches of study in feature selection step., The symbol “” represents 

no difference whereas “” represents there is significant difference. In the main first 

column, none of the features could exhibit significant discrimination between case and 

control groups. However, the brain frequency features could present meaningful dis-

criminations for majority of the IPS frequencies. Furthermore, it is observed that Theta 

frequency has significant differentiations between case and control groups for all IPSs. 

This provides a comparative common information on the best IPS frequency for dis-

crimination feature. Figure 6 (a and b) presents how Theta frequency band behaves in 

the subjects of each group. A brief comparison between Figure 6a and Figure 6b shows 

that a higher level of Theta frequency band in the case group compared to the control 

group in spite of significant different behaviors in some subjects.  

Feature selection for the second approach. The main second column of Table 1 

illustrates the t-test significant difference for comparing R.T versus IPS for the normal 

and epilepsy groups. Only Alpha frequency band was the feature with the significant 

difference between groups for all IPS (except 8 Hz) for both study groups. Figure 7 (a 

and b) presents how Alpha frequency band behaves in the subjects of each group. The 

comparison between Figure 7a and Figure 7b results a sharp difference in confronting 

IPSs in the aspect of Alpha frequency band in the control group which is higher than 

the case group. Although the comparison between two groups in resting time is not 

reliable (according to the result of t-test reported in first approach column of Table 1 

(p>0.05)), the comparison can be done between the responses of IPS revealing lower 

values in control group comparing to case group.  
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Table 1.  Result of t-test for two approaches (First: normal vs epilepsy; Second: R.T vs IPSs in 

each group) in feature selection step 

 

First approach Second approach 

Normal vs Epilepsy 
Normal (R.T) vs Normal 

(IPS) 

Epilepsy (R.T) vs Epilepsy 

(IPS) 

 Delta Theta Alpha Beta Delta Theta Alpha Beta Delta Theta Alpha Beta 

R.T     - - - - - - - - 

8 Hz             

10 Hz             

12 Hz             

14 Hz             

16 Hz             

18 Hz             

20 Hz             

25 Hz             

30 Hz             

  

            (a)     (b) 

Fig. 6. Distribution of Theta frequency band in normal (a) and epilepsy (b) subjects for differ-

ent IPS frequencies (8 to 30 Hz) 

  

             (a)      (b) 

Fig. 7. Distribution of Alpha frequency band in normal (a) and epilepsy (b) subjects during 

resting time (R.T) and different IPS frequencies (10 to 30 Hz) 

3.2 Classification 

Classification for the first approach. How Theta frequency band can discriminate 

the groups for each IPS frequency and which IPS frequency causes the most difference? 

The amplitudes of Theta frequency for both the case and control groups for all IPS 

frequencies were delivered to SVM and k-NN. Table 2 shows the accuracy of discrim-

inations achieved by each classifier. The table shows that among all IPSs, 18 Hz pro-
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duced the best accuracy of discrimination between groups with 85.7% accuracy esti-

mated by k-NN whereas SVM produced the best at 16 Hz IPS with 75% accuracy (10% 

lower than k-NN). However, both classifiers claim that case and control groups behaved 

more uniquely at middle range of IPS frequencies (16 Hz and 18 Hz). The difference 

of results was due to the differences between algorithms of classifiers and their internal 

parameters. SVM performed constant parameters in bordering the classes under soft 

margin condition (C and scaling factor equal to 1). Whereas, k-NN used cubic kernel 

to find the neighbors in classification. In general, one of the purposes of study was to 

select the trustable classifier tool with the best result; here k-NN with 85.7% of accu-

racy, 84.6% of sensitivity and 80.0% of specificity have been chosen for the 18 Hz IPS 

as the one leading these differences between normal and epilepsy groups. Figure 8 il-

lustrates the normalized amplitudes of Theta frequency band for 18 Hz IPS for all sub-

jects for the normal and epilepsy groups.   

Table 2.  Accuracy of discriminations between epilepsy and normal groups by SVM and k-NN 

for all IPS frequencies 

Classifier 8 Hz 10 Hz 12 Hz 14 Hz 16 Hz 18 Hz 20 Hz 25 Hz 30 Hz 

SVM 55% 69.6% 71.4% 73.2% 75% 70.1% 67.9% 67.9% 69.6% 

k-NN 71.4% 70% 63% 55.6% 75% 85.7% 67.9% 67.9% 62% 

 

Fig. 8. Distribution of Theta frequency band in 18 Hz IPS for normal and epilepsy subjects 

Classification for the second approach. Which IPS causes the most difference for 

the groups in the aspect of Alpha frequency band? The k-NN and SVM were applied, 

and the results show that 25 Hz IPS using SVM presented a better discrimination with 

the best performance (75% accuracy) in epilepsy group where this difference in normal 

group for all IPSs were fairly similar. Hence, the differences for both groups at 25 Hz 

IPS were evaluated. Table 3 shows the results of SVM for the control group where x-

axis is the IPS frequencies between 10 Hz to 30 Hz; and y-axis shows the accuracy 

between 55% to 100%. A brief glance resulted that epilepsy group in total in this ap-

proach, exhibited a higher percentage of differentiation rather than normal group for 

the majority of IPSs. It is demonstrated that the lowest and the highest differentiations 

belong to the IPSs frequencies of 10 and 25 Hz with the accuracy of 64.3% and 75%, 

respectively. Whilst discriminations in normal is behaving approximately consistent, 

the epilepsy group resulted a slightly increase by rising the IPS frequency. Furthermore, 

for IPSs of 14, 16, 18 and 20 Hz, both groups behaved approximately similar with the 

accuracies between 66.1% to 69.6% (with very small difference by 3.5%). The results 

of k-NN represents an instability of changes between resting time and each IPS in the 

iJOE ‒ Vol. 18, No. 05, 2022 89



Paper—Brain Dynamics in Response to Intermittent Photic Stimulation in Epilepsy 

normal control group. The table claims that the behavior of normal group in front of 

different IPS frequencies is not predictable whereas the same paradigm is slightly stable 

in the epilepsy group. Referring to SVM respecting to a stability for both groups, it can 

be concluded that IPS with 25 Hz of frequency may lead to the best discrimination for 

comparison of IPS and resting time for the epilepsy group.   

Figure 9 demonstrates normalized amplitude of Alpha frequency band in the normal 

group (Figure 9a) and epilepsy group (Figure 9b) for all subjects during resting time 

and at 25 Hz IPS. In separate comparisons between responses of different IPS frequen-

cies and the resting time in each group show a slightly more distance in the case group 

compared to the control group. The similarity between groups is a higher level of Alpha 

in both groups during the resting time comparing to the same paradigm in 25 Hz IPS. 

Furthermore, comparison between IPS responses in both groups shows a higher Alpha 

wave during the IPS condition in the case group compared to the control group.  

Table 3.  Accuracy of discriminations between epilepsy and normal groups by SVM and k-NN 

for all IPS frequencies 

Classifier Groups 10 Hz 12 Hz 14 Hz 16 Hz 18 Hz 20 Hz 25 Hz 30 Hz 

SVM 
Normal 69.3% 65.9% 66.1% 66.1% 69.6% 69.0% 66.0% 69.6% 

Epilepsy 64.3% 70.0% 66.1% 69.5% 69.6% 70.2% 75.0% 70.3% 

k-NN 
Normal 68.0% 55.0% 67.0% 66.9% 66.7% 71.8% 55.0% 60.0% 

Epilepsy 60.0% 68.0% 63.4% 67.2% 67.0% 66.9% 70.0% 72.0% 

  

  (a)     (b) 

Fig. 9. Distribution of Alpha frequency during resting time (R.T) and 25 Hz IPS for normal (a) 

and epilepsy (b) subjects 

4 Discussion 

In this study, the EEG records of two groups; 28 normal and 28 generalized epilepsy 

with no report of PPR, during resting time and elicited by intermittent photic stimula-

tion (IPS) were evaluated. The photic stimulation as a standard procedure during rou-

tine EEG recording was expected to produce the changes in frequency in the visual 

cortex. The  analysis of the changes was performed on power of frequency analysis on 

the occipital lobe [26]. In this study, two approaches were conducted to determine: 1) 

first approach; the comparison between normal and epilepsy in all experimental condi-

tions and 2) second approach; the efficacy of IPS in each group separately comparing 

IPS responses to the resting time.  
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The result indicated a nonsignificant difference comparison in resting time between 

the normal versus epilepsy group. However, it was found a significant difference based 

on different frequencies of IPS where the Theta frequency band had the best differen-

tiation between case and control groups for 18 Hz IPS. It was observed a higher power 

of Theta frequency in epilepsy compared to the normal group. Due to inadequate re-

search evidence on non-photosensitive epilepsy subjects, this study is focused on the 

efficacy of visual stimulation on normal subjects compared to previous studies done by 

other researchers. The reduction of Theta frequency in normal subjects in confronting 

photic stimulation and in occipital lobe was confirmed by [27]. In their study, 15 normal 

subjects were monitored by 16-channel EEG during resting time and 10 sec continuous 

light or tone stimuli. With the focus of visual stimulation, the changes of topographical 

cortical were evaluated according to the power of frequency bands of the left hemi-

sphere. After the statistical analysis they reported a reduction of Theta and Alpha fre-

quency band in front of stimulations in occipital region. In [28], the responses to long-

term audio-visual stimulation (AVS) in normal subjects were assessed on six normal 

participants during 25 AVS program sessions, each of 20-min length. Visual stimula-

tion was provided by rectangular red-light pulses with different frequencies. Although 

they did not detect a rise of lower frequencies in parieto-occipital region, they reported 

a significant decreased in total power, frequency band powers, spectral edge frequency 

and spectral entropy in parieto-occipital region of cortex (from approximately 22.5 to 

19 Hz). Their significant observation referred to a rather shifted frequency range (4-10 

Hz) merging the Theta-1, Theta-2 and Alpha-1 ranges. The reason why 18 Hz IPS re-

sulted the best discrimination from this study must be further investigated in vitro.  

Our result showed that the power of Alpha frequency in normal group is reduced for 

all IPS frequencies compared to the resting time. The result is in line with [29] where 

it was reported a persistence of EEG Alpha frequency entrainment under steady-state 

visually evoked potentials (SSVEP) in normal subjects. The visual stimulation con-

sisted of a sinusoid light which are terminated at one of four different phases eliciting 

on 19s healthy study participants. The result was reported in parieto-occipital region 

measured by low-resolution electromagnetic tomography analysis (LORETA) in dis-

covering the source localization of neuronal activity. The majority of hypotheses agree 

that induced and ongoing Alpha frequency band in EEG oscillations represent a general 

inhibitory mechanism revealing a perceptual and cognitive processes in brain [30]–

[33]. In addition, photic stimulation can induce relaxation [34] and the increase of lower 

frequency bands may be correlated with the physiological findings during resting time 

of meditation which leads to an internal positive emotions and internalized attention 

[35]. Theta might deal with integrative cognition and association functions whilst alpha 

rhythm might be functionally correlated to several sorts of cognitive, sensory, and mo-

tor behaviors [36].  

According to the present research, it seems that patients suffering from epilepsy with 

generalized epilepsy do not follow the same experiences as the normal subjects’ re-

sponses to visual stimulation. Nevertheless, a greater number of subjects and more sig-

nal features; specially in the time domain, can be conducted for a better condition in 

making the result more reliable and comprehensive. For the next step, it is suggested to 

iJOE ‒ Vol. 18, No. 05, 2022 91



Paper—Brain Dynamics in Response to Intermittent Photic Stimulation in Epilepsy 

focus on neurophysiological aspects and discovering the probability of synaptic plas-

ticity manner under neuronal membrane modeling during resting time as baseline and 

in front of specific frequency of visual stimulation which impacts on visual pathways. 

In this regard, designing a model of correspond to intracranial components and imple-

menting functional networks in the accordance of anatomical connectomes based on 

atlas; after decoding, lead to valuable achievements in epilepsy and brain recognition. 

Hence, brain signal processing was used to extract the features of EEG oscillations un-

der visual stimulation accompanied by the data from MRI; representing regional activ-

ities, can assist to simulate and model the system. 

The major questions: what the epilepsy is and why the seizure occurs, are still un-

dergoing investigation and need more comprehensive research. The study suggests 

deep investigations on the possible reasons how visual stimulation conducts EEG os-

cillations in diagnostic procedure between healthy control group and epilepsy group. 

For the next investigations in the aspect of neurophysiology and the manner of synaptic 

plasticity, it seems that designing a model of corresponded intracranial components and 

implementing functional networks in the accordance of anatomical connectomes based 

on atlas may lead to valuable achievements in epilepsy and brain recognition. In this 

regard, brain signal processing was adopted to extract reliable features of EEG oscilla-

tions under visual stimulation as well as MRI data representing regional activities can 

assist to model the system.  

5 Conclusion  

This study investigated how intermittent photic stimulations (IPS) influence the EEG 

signals of normal subjects and generalized epilepsy patients during interictal. Despite 

individual-based responses to IPS, we have performed two experiments based on 

groups of subjects and within groups evaluation via significant difference between 

groups feature analysis. EEG signals from the visual cortex were obtained and analyzed 

based on brain signal processing techniques. The results showed the most differences 

between normal and epilepsy groups were for IPS at 18 Hz with higher Theta frequency 

in the case group compared to the control group. In addition, the significant difference 

between resting time and IPS was belonged to IPS with 25 Hz with higher Alpha in the 

epilepsy group where the control group responded similarly for all IPS frequencies. In 

this study, the limitation in EEG dataset was retrospective data where all recordings 

were performed during early morning after waking up. In general, considering the con-

cept of Theta that is originated from calmness, it seems that epilepsy group feels more 

calmness confronting to the IPS compared to the normal subjects. Furthermore, the 

consistent level of Alpha frequency in healthy control group was observed for all IPS 

frequency shows a homogeneous awareness and consideration lower than resting time 

where in epilepsy group, the paradigm in resting time is observed approximately similar 

for all IPS with the highest discrimination at 25 Hz IPS. Therefore, the presence of 

waves with low frequency bandwidth was unavoidable. In conclusion, it seems that IPS 

causes more composure in normal group comparing to the base line resting time. Nev-

ertheless, in epilepsy the consideration is similar to the resting time.  
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