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Abstract—One of the most crucial stages in the building of a Machine 
Learning (ML) model is the evaluation and analysis of classifier model perfor-
mance. The agricultural sector is the economic backbone of India and needs ex-
tensions to provide solutions to the problems faced by the farmers. This paper 
presents agriculture soil health analysis using Machine Learning approaches for 
best model and tool selection and also bibliometric analysis to identify different 
sources and author’s keywords for finding the area of focus for proposed work. 
Models are built on SK-Learn, KNIME, WEKA and Rapid Miner tools using 
different ML algorithms. Nave Bayes, Random Forest (RF), Decision Tree 
(DT), Ensemble learning (EL), and k-Nearest Neighbor (KNN) are used to ana-
lyze soil data on these tools. Results show that Decision Tree model outper-
forms other algorithms, followed by RF algorithm which is a set of multiple 
Decision tree algorithms and SK-Learn tool gives better accuracy followed by 
WEKA tool then KNIME tool. Maximum accuracy obtained by Decision Tree 
algorithm is 98.40% using SK-Learn followed by KNIME tool with 73.07%, 
Maximum accuracy obtained by Naïve Bayes algorithm is 69.50% using SK-
Learn followed by KNIME tool with 68.14%, maximum accuracy obtained by 
Random Forest algorithm is 85.00% using SK-Learn followed by 73.06% using 
WEKA tool, maximum accuracy obtained by Ensemble algorithm is 89.00% 
using SK-Learn followed by 73.06% using WEKA tool and for KNN it is 
95.50% using SK-Learn followed by 71.85% using WEKA tool. 

Keywords—classifier, model performance, analytical tools, machine learning, 
soil data analysis, bibliometric analysis 

1 Introduction 

1.1 Machine learning 

One of the functions of machine learning algorithms is discovering previously un-
revealed interesting-patterns [1] and techniques for classifying samples. Data Mining 
and ML Techniques are applied to derive an unusual data pattern from the dataset. 
These techniques play an important function in the agriculture sector also for data 
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analysis. In the agriculture sector, data mining can provide guidance to farmers to 
gain profit and country development [2]. Different Data mining algorithms are identi-
fied that are used in the agriculture sector to provide solutions to the farmer’s prob-
lems. For accurate predictions, the Prediction process performs inference on the cur-
rent data [1]. 

1.2 Soil attributes  

Nitrogen (N): Plants absorb nitrogen in the form of ammonium or nitrate ions. In-
dian soils are almost universally deficient in N. It should be present in the right pro-
portion in the soil for the growth of the plants. The optimum N concentration is 2-10 
ppm. Phosphorous (P): Phosphorus has been called the Master key to agriculture. It 
is essential in plant growth, fruit growth, cell division and early ripening. The opti-
mum P concentration is 30-50 ppm. Potassium (K): Potassium is an essential micro-
nutrient and is associated with water movement, nutrients and carbohydrates present 
in the plant tissue. The optimum K concentration is 20K ppm. Soil pH: It is an indica-
tor of the alkalinity and acidity in the soils. The range of pH values: 0–14 (Neutral 
value: 7, Acidic: <7, Alkaline: >7, Optimal: 6.5 to 7.5). 

2 Literature survey 

2.1 Related research work 

The research efforts carried out in the related systems are discussed in this portion 
of the article. Most of the documents are referred from IEEE transactions. The IEEE 
document count analysis referred to in this survey is shown in Table 1.  

Table 1.  IEEE document count analysis 

Publication Year IEEE Conference  IEEE Journal Other journals 
2021 4 2 2 
2020 5 3 6 
2019 1 0 1 
2018 3 0 1 
2017 5 1 0 
2016 6 0 1 
2015 3 0 1 
2000 to 2014 3 0 3 
Total Count 30 6 15 

 
In a research carried out by Gholap, Ingole, et al. [21], an automated system for 

soil classification based on its fertility was proposed. Under this, various classification 
algorithms like NBTree, SimpleCart, J48 have been studied, with the conclusion that 
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the J48 decision tree algorithm works best with the soil dataset, showing an accuracy 
of 91.90%. 

Hot and Popović-Bugarin analyzes the agriculture problem for clustering of soil 
contents, and also for visualizing the analyzed output using visualization techniques 
[22]. 

P. Vinciya, et al. [10] used model of multiple regression for analyzing Agriculture 
problems for data mining enabled - High Tech farming for next generation. 

Abhishek B. et al. [11] used classification data mining techniques for forecasting of 
Rainfall status accurately and required Water for Crops using these Techniques. 

Authors of papers [18, 19, 23] represented surveys of different analytical tools and 
techniques for soil health analysis and for student performance analysis. 

Table 2 shows summary of recent work done by different authors from IEEE trans-
action sources. 

Table 2.  Summary of recent work from IEEE transaction source 

Ref 
No. Research area focus Dataset Objective Results Description/ 

Accuracy 

Publi-
cation 
Year 

[27] 

Classification of the 
plant images into Crop 
and weed, Deep Learn-

ing 

Weed and 
Crop image 

dataset 

To minimize the 
usage of the herbicide 

A maximum efficiency of 
96.3% 2020 

[28] 

Multi-Label Classifica-
tion, Remote sensing - 
Maximum Likelihood, 
Minimum Distance, k-

NN, Support vector 
machines. 

Land cover 
dataset 

Classifier analysis of 
land cover  

Better results with the 
Multi-Label method 

classifier  
2017 

[29] 
Local Transylvanian 

areas. 
Soil classification.  

Soil dataset 
To improve satellite 

image training dataset 
quality  

Viable dataset with elimi-
nated noise  2020 

[30] Extraction of Pattern  Soil character-
istics 

To determine the 
soil's susceptibility to 
the presence of Pan-

ama disease  

Biological suppression of 
plant pathogens 2018 

[31] 
Naïve bays. 

Decision tree. 
SVM 

N, P, K Soil 
dataset 

To suggest the opti-
mal crop based on the 
soil's NPK concentra-

tion. 

Decision tree gives higher 
accuracy. To provide 

solutions to the farmer's 
questions in order to boost 

profit margins. 

2021 

[32] 

IOT, Soil sensors, 
Image classification, 

Local binary threshold-
ing 

Soil sensors, 
water quality 
sensors, tem-

perature 
sensors, Image 

dataset 

To utilize a robotic 
arm to harvest the 

crop autonomously, 
to maintain crop 

health and quality 

Image recognition will be 
used to identify the crop, 

and the batch will be 
placed in the proper basket 
for the farmer to consider 

for examination. 

2021 

[33] 
Support Vector Ma-

chine. Gabor Wavelet. 
Soil type classification. 

Soil dataset 

To work with soil 
images in order to 
create a high-level 
soil classification 

scheme 

Framework achieved a 
97.12% accuracy rate with 

a low error rate. 
2021 
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[34] Decision tree J48 
algorithm, sensors Soil dataset 

To make recommen-
dations on the crop, 

fertility of soil, Level 
of toxicity, and water 

supply. 

Calculates the soil’s 
toxicity level  2018 

[35] C4.5 algorithm 

Climatic 
parameters, 

crops dataset 
of Madhya 

Pradesh 

To develop `Crop 
Advisor' 

Determine which climate 
factor has the greatest 
impact on crop yields 

2014 

[36] PID control. 
Type-2 fuzzy logic. 

External 
Camera shake 

To investigate the 
active control and 

stabilization of cam-
era  

Active control has been 
established, and vibration 

has been reduced. 
2020 

[37] Wavelet Technique in 
Image Fusion  Image dataset 

In image fusion, the 
Wavelet Technique is 

used. 

An early detection system 
to stop plant pests from 
spreading further in the 
Philippines' agriculture 

sector 

2018 

[38] 
Electrical sensing, 

optical imaging, Classi-
fication 

Synchronized 
optical images, 

Electrical 
signal 

To categorize pollen 
grains moving 

through a device of 
micro fluidic at 150 

grains per second rate 
using a combination 
of electrical sensing 
and optical imaging. 

Electrical classifier accu-
racy: 82.8, Optical classi-

fier accuracy: 84.1%, 
Multimodal classifier 

accuracy: 88.3 % 

2021 

[39] Deep learning Survey Agriculture 
Dataset 

To look into the 
benefits of employing 

deep learning in 
agricultural applica-

tions. 

Bibliography analysis in 
the different categories. 2020 

[40] 

Cloud based and sensor 
based irrigation and an 
automated agricultural 

monitoring system 

Soil parame-
ters tempera-

ture, moisture, 
fertility 

To make the most 
efficient use of labor 
and land, maximize 
output of crop, and 

reduce energy waste 

various characteristics 
remotely sensed and 

monitored 
2016 

[41] Multitemporal deep 
learning model 

Ppixel-based, 
time series 

dataset with 16 
crops 

To generate the 
dataset 

The dataset's construction 
is discussed, as well as 

Deep learning methods for 
crop type mapping are 

compared. 

2021 

[42] 
Neural Network, 

KMeans, SVM, PCA, 
image processing 

Agriculture 
image dataset 

Study of many do-
mains related to 

agricultural image 
processing 

Plant disease classification 
and recognition 2015 

[43] 
Naive Byes,  

SVM, K-NN,  
LDA and QDA 

Activity 
dataset 

The goal was to 
create a smart-shirt 

for farmers. 

Provide with an uncertain 
evidence of reported 

activities, a priori infor-
mation related with the 

crop protocol to recognize 
the principal activity 

2015 
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[44] 
Unmanned aerial 

vehicle (UAV), FCN-
AlexNet, 

Image dataset 

Yield prediction  
Assessment of crop 

growth, fertilizer 
management  

SegNet outperformed 
FCN-AlexNet. The seman-

tic picture segmentation 
model has an average 

inference speed of 0.7s and 
an 89 percent segmenta-

tion identification accura-
cy. 

2020 

[45] 
Artificial neural net-

works. 
Image processing 

Soil image 
dataset 

To determine the pH 
and soil nutrients  

Soil nutrients and pH level 
were determined to be 

accurate. 
2017 

[46] Deep learning (DL) 
network 

Loamy types 
of soil. 

silt clay da-
taset 

For spectroradiometer 
data, determine the 

quantity of urea 
fertilizer mixed soils. 

R 2 for urea and silt clay 
soil mixed samples = 

0.945 and  
For urea-mixed loamy soil, 

R 2 = 0.954.  

2020 

[47] 

The Improved Ma-
halanobis Taguchi 
System. Multiclass 

model 

26 crop culti-
vation input 

factors  

Classify 3 crops: 
paddy, sugarcane, and 

groundnut. 

The classifier is perfect in 
terms of accuracy (100%), 
recall, precision, and error 

rate (0%) . 

2020 

[48] Data mining, Machine 
learning Soil data 

To analyze and 
classify soil data and 
to increase the effec-

tiveness of each 
model by combining 

different models. 

Analyze fertility of soil, 
improve efficiency 2020 

[49] 

Knowledge-based 
classification 

non-parametric classi-
fiers such as decision 

tree classifiers or 
neural networks  

Agriculture Survey of existing 
work 

Appropriate use of the 
large number of features in 
remotely sensed data and 

selection of the best classi-
fier 

2020 

[50] 
Classification algo-
rithm of K nearest 

neighbor 

Soil and crop 
dataset 

Soil quality analysis 
of to suggest crops 

It maps soil and crop data 
that are suited for the soil, 
as well as information on 
nutrients that are insuffi-
cient in the soil for the 

specific crop. 

2020 

[51] 

Hadoop, Map Reduce, 
neural network, the 

grey wolf optimization 
(GWO) 

Harmonized 
World Soil 
Database 

Apply method for 
classifying soils that 

is effective. 

A NN-GWO accura-
cy=90.46%.  

CNN accuracy= 75.3846% 
and KNN accuracy= 

75.38% 

2020 

[52] 

Optical spectroscopy 
sensors, Least-Square 
ANN, Random Forest, 
, Naïve Bayes, SVM, 

Decision Tree 

Soils nutrients 
dataset of 
Slovenia 

To improve the 
precision with which 

soil properties are 
predicted 

The impact of the nutri-
tional characterization, 
category chosen was 
explored, and it was 

discovered that using a 
multi-component tech-

nique resulted in superior 
prediction. 

2021 

[53] Machine Learning, 
Deep Learning Soil dataset 

Survey of ML and DL 
application in Agri-

culture 

Identified limitations in 
existing work 2021 
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Survey shows that descriptive and predictive analytical methods of ML are the 
backbone of any decision support system in different areas such as Medical, Agricul-
ture, and Transport and so on. These techniques plays important roles to solve prob-
lems easily and so present work mainly focuses on soil data analysis using these tech-
niques on different analytical tools for best model and tool selection for providing 
solution to the problem. 

2.2 Scopus bibliography analysis 

This work discusses the bibliometric analysis of Soil Health Analysis research ac-
tivities from the Scopus database for analyzing the research in this area. Year 2013 to 
September 2021 are considered for this bibliography analysis work. It is found that 
for a given query total 602 documents are retrieved and agriculture research activities 
for soil data analysis using Machine learning are gradually increased from year 2013 
to 2021 and maximum work is done in the year 2021. Computers and Electronics in 
Agriculture journal is leading among all sources. United States followed by China 
then India are top 3 countries leading in these research activities. Agricultural and 
Biological Sciences is leading in subject area analysis [24].  

Data collection. Following search query is executed to retrieved Scopus docu-
ments for analysis. This search query includes following primary keywords: Soil, 
Data, Analysis, Machine and Learning. 

soil  AND data  AND analysis  AND machine  AND learning
   AND  PUBYEAR > 2013 AND PUBYEAR<2021  AND  ( LIMIT-
TO ( SUBJAREA ,  "AGRI" )  OR  LIMIT-
TO ( SUBJAREA ,  "ENGI" )  OR  LIMIT-
TO ( SUBJAREA ,  "COMP" ) ) 

It is found in the Figure 1 that, for a given query total 602 documents are retrieved 
and agriculture research activities for soil data analysis using Machine learning are 
gradually increased from year 2013 to 2021 and maximum work is done in the year 
2021. 

 
Fig. 1. Soil health Analysis using ML -Documents by year. Source: http://www.scopus.com 

(September 2021) 
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Analysis based on document type. As shown in the Figure 2 most of the work on 
Soil data analysis research has been published in Article papers followed by confer-
ence papers then in review papers, book chapters, etc. 69.8% work is published as 
articles followed by 19.9 % in conference papers. 

 
Fig. 2. Documents by Paper type. Source: http://www.scopus.com (September 2021) 

Subject-based analysis. Scopus database survey in the figure 3 shows, most of the 
research activities are carried out in Agricultural and Biological Sciences (23%), 
Engineering (18%) and Computer Science (17%). 

 
Fig. 3. Documents by Subject area 

Sources-based analysis. Figure 4 depicts the document analysis by source. "Com-
puters and Electronics in Agriculture" reported the majority of the research findings. 
Computers and Electronics in Agriculture journal is leading among all sources. 
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Fig. 4. Documents by year and top 10 sources, Source: http://www.scopus.com (September 

2021) 

Analysis based on Authors work. In the Figure 5, author’s survey shows Mi-
nasny B et al. leading among all authors works. 

 
Fig. 5. Documents by Top 15 Authors, Source: http://www.scopus.com (September 2021) 

Analysis by affiliations. Figure 6 shows Chinese Academy of Sciences is leading 
among all sources. 
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Fig. 6. Documents by top 15 affiliations, Source: http://www.scopus.com (September 2021) 

Geographical region analysis. As shown in Figure 7, United States followed by 
China then India are top 3 countries leading in these research activities. 

 
Fig. 7. Documents by top 15 countries, Source: http://www.scopus.com (September 2021) 

As shown in the Figure 8 for the network analysis for cluster of co-occurrence of 
author keywords, most of the research work used “Machine Learning” keyword in 
their research activities. Second highest word is “Random Forest” followed by “Digi-
tal Soil Mapping and Deep Learning”. Proposed work keywords can be identified 
where less work has been done. 
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Fig. 8. Network map of Author’s Keywords based on bibliographic data 

3 Classifier model for soil data analysis 

3.1 Classifier model 

The Classification Model includes the following components for classification of 
new samples. 

a) Input training and testing data in suitable format 
b) Classifier learner to train model 
c) Classifier predictor to predict class of new sample 
d) Output Visualization 
e) Performance scorer for model evaluation 

Figure 9 shows the classifier model for Naïve Bayes classifier and designed using 
KNIME tool. In Naïve Bayes classifier model’s design, two file readers are used; 
represented by Node1 and Node2. One file reader used for providing training dataset 
to the Naïve Bayes learner and second for providing testing dataset to the Naïve 
Bayes Predictor. The NB learner is used to train the model, and the predictor is used 
to predict class labels in the testing dataset. There are two inputs for predictor one is 
output of NB learner and second input is from file reader (Node2) for testing dataset. 
With the help of NB learner, predictor predicts the class labels of testing dataset. 
Interactive table is used to visualize the output of the predictor. In KNIME tool scor-
ing nodes are available to measure the accuracy of different models [26]. There are 3 
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types of scorer available. Scorer for classifier with categorical outputs: Confusion 
Matrix, Accuracy, F-Score etc.; Numeric scorer for numerical outputs: R2, MSE etc.; 
Entropy scorer for clustering output. 

Following classification models are implemented in the work using SK-Learn, 
KNIME, WEKA and Rapid miner tools. 

a) Decision Tree Soil health classifier  
b) Naïve Bayes Soil health classifier  
c) Random Forest Soil health classifier  
d) Ensemble Soil health classifier   
e) KNN Soil health classifier  

 
Fig. 9. Naive Bayes classifier model using KNIME tool 

3.2 Mathematical model for Naive Bayes classifier 

Naive Bayes falls under Supervised Classifier, where we provide a training dataset 
with the correct answers. Training samples are used to develop a model for predicting 
correct answers of new queries [1]. The Naive Bayes Classifier classifies the most 
likely class label by given attribute values a1, a2, ........, an. Naive Bayes is a condi-
tional probability model. This results in the equation (1) given below: 

 p (Ck | a1,…., an) (1) 

System representation  
S2= {Is, Es, I, O, Fu} 

Where,  
Is = Initial State: Input samples for classification  
Es = End State: Classified samples with decision  
I = Input to the Learner in formats such as ARFF, CSV, XLS. 
O = Output from predictor: Classified samples.  
Fu = NaïveBayesLearner_function(), NaïveBayesPredictor_function( ), NBScorer(). 
Equation (2) shows a formula for the Naïve Bayes conditional probability model. 

 𝑝𝑝(𝐶𝐶𝑘𝑘 |𝑎𝑎) =  𝑝𝑝(𝐶𝐶𝐶𝐶) 𝑝𝑝(𝑎𝑎 |𝐶𝐶𝐶𝐶)
𝑝𝑝(𝑎𝑎)

 (2) 
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3.3 Mathematical model for Decision Tree classifier 

The Decision_Tree_learner in KNIME produces a decision tree for making deci-
sions [1]. Decision Tree classifier is based on below 3 main equations: 

• Amount of information - I(p,n)  
• Entropy- ET 
• Information Gain- IG 

Consider,  

• Dataset contains S set of examples,  
• Assume C and D is the two classes.  
• c denotes C class elements and d denotes D class elements 

As a result, the amount of information I(c, d) is given by equation (3).  

 𝐼𝐼(𝑐𝑐,𝑑𝑑) =  − 𝑐𝑐
𝑐𝑐+𝑑𝑑

𝑙𝑙𝑙𝑙𝑙𝑙2 𝑐𝑐
𝑐𝑐+𝑑𝑑

− 𝑑𝑑
𝑐𝑐+𝑑𝑑

𝑙𝑙𝑙𝑙𝑙𝑙2 𝑑𝑑
𝑐𝑐+𝑑𝑑

 (3) 

Equation (4) represents formula for calculating Entropy ET for attribute A and for 
set of partitions w. 

 𝐸𝐸𝐸𝐸(𝐴𝐴) =  ∑ 𝑝𝑝𝑝𝑝+𝑛𝑛𝑛𝑛
𝑝𝑝+𝑛𝑛

𝐼𝐼(𝑝𝑝𝑖𝑖 + 𝑛𝑛𝑛𝑛)𝑤𝑤
𝑖𝑖=1  (4) 

Formula for calculating Information Gain (IG) is given in the equation (5). 

 𝐼𝐼𝐼𝐼(𝐴𝐴) = 𝐼𝐼(𝑝𝑝,𝑛𝑛) − 𝐸𝐸𝐸𝐸(𝐴𝐴) (5) 

System representation 
S2= {Is, Es, I, O, Fu} 

Where,  
Is = Initial State: Input samples for generating Decision Tree  
Es = End State: Classified samples with decision  
I = Input to the Learner in formats such as ARFF, CSV, XLS. 
O = Output from predictor: Decision Tree for taking decisions, classified samples.  
Fu = DecisionTreeLearner_function(), DecisionTreePredictor_function(), DTScor-

er(). 

3.4 Ensemble learning and random forest classifiers 

Ensemble learning is a generic machine learning approach that aims to improve 
prediction performance by combining predictions from a group of models. Figure 10 
shows basic ensemble model architecture, Where M= Models, P= Predictions. Archi-
tecture includes cluster of n models M1, M2…. Mn and Predictions from each model 
P1, P2…Pn. Voting algorithm is applied to generate final prediction. Random forest is 
an ensemble learning-based supervised machine learning technique, which consists of 
cluster of decision trees to generate final prediction. 
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Fig. 10. Basic ensemble model architecture 

3.5 Mathematics for KNN classifier 

KNN is a straightforward method that maintains all available examples and catego-
rizes new ones using a similarity metric (e.g., distance functions). Here k indicates 
number of neighbors. An object is classed by a majority of its neighbors, with the 
object being allocated to the class with the most members among its k closest neigh-
bors [12]. KNN has the following basic steps:  

1. Calculate distance using one of the Distance measure (Euclidean or Manhattan)  
2. Locate the K nearest neighbours 
3. Labels are up for a vote. 

Equation (6) shows formula for Euclidean Distance measure for calculating dis-
tance between objects P and Q. 

 𝐸𝐸𝐸𝐸(𝑃𝑃,𝑄𝑄) = �∑ (𝑃𝑃𝑃𝑃 − 𝑄𝑄𝑄𝑄)2𝑘𝑘
𝑖𝑖=1  (6) 

Equation (7) shows formula for Manhattan Distance measure. 
 

 𝐸𝐸𝐸𝐸(𝑃𝑃,𝑄𝑄) = ∑ | 𝑃𝑃𝑃𝑃 − 𝑄𝑄𝑄𝑄 |𝑘𝑘
𝑖𝑖=1  (7) 

4 Dataset and result discussion 

The dataset has the following soil parameters with Class label as a Soil quality as 
shown in Table 6. Dataset is collected from following sources: 

• Agriculture office Pune 
• Agro-assistant (Khed sub-district) 
• www.soilhealth.dac.gov.in 

Final 
Prediction Input 

M2 

M1 

M3 

Mn 

P2 

P1 

P3 

Pn 

Voting 
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Total 2718 training data samples are used for developing models and testing re-
sults. Preprocessing is done for feature selection and converting the dataset into suita-
ble format. Table 3 shows a sample training dataset. 

Table 3.  Sample training dataset 

Sr. No N P K label 
0 919.8 13.6 332.69 1 
1 693 13.6 509.07 4 
2 617.4 13.16 829.29 0 
3 667.8 13.6 734.37 0 
4 7.56 13.38 318.96 2 
5 756 13.38 318.96 1 
6 894.6 13.38 268.26 1 
… … .. … … 

 
Table 4 shows training data accuracy obtained by SK-Learn, KNIME, WEKA and 

Rapid miner tools for different ML algorithms. 

Table 4.  Algorithmic analysis using analytical tools 

Classifier Tool DT NB RF EL KNN 
Correctly Classified Instances KNIME 1986 1852 1840 1795 1952 
Incorrect Classified Instances KNIME 732 866 878 923 766 

Accuracy (%) 

KNIME 73.07 68.14 67.70 66.04 71.81 
WEKA 72.87 68.05 73.05 73.06 71.84 

Rapid Miner 70.05 67.07 71.34 68.05 69.86 
SK-Learn 98.40 69.50 85.00 89.00 95.50 

 
Figure 11 shows accuracy obtained using KNIME tools for different classifiers 

such as KNN, Decision Tree, Ensemble Learning Random Forest and Naïve Bayes. 
Here Decision tree out performs followed by KNN, Naïve Bayes and so on. 

 
Fig. 11.  Accuracy analysis using KNIME tool 
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Figure 12 shows analysis of classified instances by the different classifiers using 
KNIME tool. 

 
Fig. 12.  Classified instance analysis using KNIME tool 

Figure 13 shows accuracy obtained using WEKA tool for different classifiers. Here 
Random Forest out performs followed by Decision Tree, then KNN and so on. Figure 
14 shows accuracy obtained using Rapid Miner tool for different classifiers. Here also 
Random Forest out performs followed by Decision tree and so on. Figure 15 shows 
analysis of classified instances by the different classifiers using Sci-Kit Learn. 

   

Fig. 13.  Accuracy analysis using WEKA Fig. 14.  Accuracy analysis using Rapid Miner 
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Fig. 15.  Accuracy analysis using SK-Learn library 

Figure 16 shows comparative analysis of accuracy obtained using SK-Learn, 
WEKA, Rapid Miner and KNIME tools for different classifiers such as Decision 
Tree, KNN, Ensemble Learning, Random Forest and Naïve Bayes, together. 

Decision Tree algorithm's accuracy in forecasting soil quality is highest as com-
pared to all classifiers followed by Random Forest. Results shows, overall accuracy of 
algorithms is better in SK-Learn followed by WEKA tool as compared to KNIME and 
Rapid Miner so SK-Learn and WEKA tool can be selected for proposed work on soil 
data. Maximum accuracy obtained by Decision Tree algorithm is 98.40% using SK-
Learn followed by KNIME tool with 73.07% accuracy, Maximum accuracy obtained 
by Naïve Bayes algorithm is 69.50% using SK-Learn followed by KNIME tool with 
68.14% accuracy, maximum accuracy obtained by Random Forest algorithm is 
85.00% using SK-Learn followed by 73.06% using WEKA tool, maximum accuracy 
obtained by Ensemble algorithm is 89.00% using SK-Learn followed by 73.06% 
using WEKA tool and for KNN it is 95.50% using SK-Learn followed by 71.85% 
using WEKA tool. 

 
Fig. 16.  Tool’s accuracy comparative analysis 
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5 Conclusion 

In this paper Agriculture Soil data Analysis for Soil health prediction has been 
done using KNN, Naïve Bayes, Decision Tree, Random Forest and Ensemble Learn-
ing algorithms on SK-Learn, WEKA, Rapid Miner and KNIME tools. Also, paper 
represents bibliometric analysis for research data retrieved from Scopus database. 
Results show that Decision Tree model outperforms other algorithms, followed by 
Random Forest algorithm and SK-Learn gives better accuracy followed by WEKA 
than Rapid Miner and KNIME tools. The work is limited to only four analytical tools 
and limited 5 machine learning algorithms. Analysis of soil dataset can be further 
tested on different tools such as R language, Orange etc. and also model can be built 
and can be tested for different machine learning algorithms such as associative classi-
fier, deep learning etc. to find the more accurate solution to the agriculture problem 
using Artificial Intelligence technology. 
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