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Abstract—This paper investigates the usefulness of Google search patterns 
with Artificial Intelligence (AI) techniques for timely influenza-like illness (ILI) 
forecasting for each of the nine South African provinces. Traditional surveillance 
methods are limited by delay in reporting. Existing digital disease surveillance 
studies that employ alternative online data have scarcely explored sub-Saharan 
African countries. In South Africa, Google search data has only been recently 
studied for ILI surveillance at the national level. Meanwhile, the differences in 
socio-economic and technological conditions across provinces call for finer spa-
tial investigation. We perform correlation analysis between Google trends (GT) 
data for 21 ILI-related terms and real-life ILI surveillance data for each province. 
Next, we develop models to assess the predictive performance of these GT data 
for forecasting ILI rates, using time series, machine learning, and deep learning 
methods. We observe sufficient correlation for only two of the nine provinces: 
Gauteng and Western Cape. Thus, GT data could only be used to forecast ILI in 
these two provinces. Interestingly, these two provinces are regarded as the most 
economically developed. In the other seven provinces, LSTM, a deep learning 
technique, gives more accurate predictions than a baseline autoregressive model 
when only past ILI data are used for forecasting future ILI trends. The results 
reveal that, for provinces for which GT data is sufficiently available, it is not only 
free and fast, but is an effective predictor on its own as well as when added to 
past ILI data for forecasting future ILI infection rates. The correlation analysis 
suggests an association between provincial socio-economic development and the 
use of digital platforms for disease surveillance. Overall, the study established 
the need for finer scale ILI forecasting which will inform targeted planning for 
disease surveillance and interventions.  

Keywords—influenza forecasting, regional ILI surveillance, artificial intelli-
gence, deep learning, machine learning, Google trends, digital epidemiology, 
infodemiology, infoveillance 
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1 Introduction 

Influenza (flu), a severe respiratory illness, remains a public health burden world-
wide. Every year, it is responsible for millions of deaths and/or hospitalizations globally 
[1]. In South Africa, it causes more than 10 000 deaths annually [2], [3]. Accurate and 
timely predictions of disease incidence at national and regional scales can reduce the 
impact of outbreaks and facilitate targeted and effective public health responses and 
interventions. Efforts are on the increase by health care systems around the world to-
wards collecting large amounts of quality disease incidence data. For example, the Cen-
ters for Disease Control (CDC) in the United States records ILI surveillance and pub-
licly makes available datasets at different geographic scales [4]. In South Africa, the 
Department of Health set viable surveillance as a basic goal of the national influenza 
policy and strategic plan put in place for 2017 to 2021. The surveillance presently uti-
lizes reports from hospitals and general practitioners and is anchored by the National 
Institute for Communicable Diseases (NICD). However, these systems are costly and 
plagued by a delay of up to two weeks before the surveillance reports are available. 

This limitation of delay, together with the increased availability of personal health 
information shared/collected online in today’s age of big data, has given rise to a new 
research area termed digital epidemiology. Salathe [5] defined digital epidemiology as 
“epidemiology that uses data generated outside the public health system for disease 
surveillance”. Some of the Internet-based data streams that have been explored in past 
studies include search engine [6]–[10] and Twitter data [11]–[14], news alerts [15]–
[17], Wikipedia [18]–[20] and health-related blogs and websites [21]. Google trends 
(GT) is a commonly used search queries data source, which gives the relative amount 
of Google searches for particular queries in a given location. Several studies have 
demonstrated the usefulness and advantages of these online data for improved surveil-
lance of different diseases such as ILI [22]–[24], tuberculosis, hepatitis [25], [26], Type 
2 diabetes [27], zika [28], Ebola [29], AIDS [30], cancer [31], Lyme disease [32], de-
mentia [33] , and the recent COVID-19 pandemic [34]–[36].  

Previous studies in the digital epidemiology field have made use of artificial intelli-
gence (AI) methods such as statistical ARIMA/ARIMAX time series models [37]–[40], 
conventional machine learning techniques including support vector machines (SVM), 
random forests, linear regression, elastic net [41]–[44], and recently, deep learning 
models [45]–[48] due to their competitive performance. However, it was noted in [49] 
that due to differences in economic, technological, and cultural dispositions, the results 
across countries cannot be generalized. This claim is corroborated by the works of Cer-
vellin et al. [50] and Bilge et al. [51] who found no significant correlation between 
Google search data and the real-world disease records. Meanwhile, 56% of studies re-
viewed by Abad et al. [52] originated from the US alone. Only a few studies have fo-
cused on African countries [41], [53].  

For South Africa, a few studies have emerged in the last year. One recent study in-
vestigated and established significant correlation between Google search volume for 
some ILI-related terms and real-world ILI incidence data [54]. A more recent study 
demonstrated the performance of Google search data for predicting ILI incidence in 
South Africa [10]. However, these studies have only focused on monitoring ILI at the 
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national level. The predictive performance of Google search data for ILI surveillance 
at the provincial level remains unstudied. National level forecasts provide a high-level 
overview of disease incidence across the country, offering value to national public 
health officials but giving only broad information to health officials at the provincial 
level [55]. Disease surveillance at finer geographic scales presents a potential for tar-
geted interventions and population-specific decision-making that aligns with public 
health infrastructure available at such levels [55]. This work aims to address this gap.  

2 Materials and methods  

2.1 Data 

The real-world ILI data for each of the nine provinces of South Africa was provided 
by the National Institute for Communicable Diseases’ (NICD) viral watch influenza 
surveillance program [56]. The case definition of ILI includes a fever (temperature ≥ 
38℃) and cough or sore throat with symptoms starting within the last 10 days. The 
anonymized ILI data are the weekly numbers of patients who meet such case definition 
from week 1 in 2010 to week 43 in 2018 (459 weeks) in each province. 

Over the same study period (week 1 in 2010 to week 43 in 2018), we downloaded 
the weekly search index for 21 influenza-related terms from Google trends (GT). These 
21 terms are the terms that showed significant correlation with the actual national ILI 
records [54]. GT is a web tool that is freely accessible and returns anonymized, aggre-
gated, and normalized search volume (NSV) for user queries from a particular location 
or region. If the search amount for a term is too low for a specified time period, GT 
returns 0 as the NSV [57].  

2.2 Provincial correlation analysis 

Using the 21 ILI-related terms, we performed Pearson’s correlation analysis to test 
for the association between the weekly Google search data of each of these terms and 
the weekly provincial records of ILI over each of the epidemiological years (from 2010 
to 2018) as defined in [54]. We excluded all rows with missing values from the ILI 
records of each province before performing the correlation analysis. Furthermore, there 
were no ILI records for KwaZulu Natal province from 2015 to 2018, so these years 
were left out of the province’s correlation analysis. The analysis was done using the 
cor.test function from the R stats package and we set significance at p < 0.05.  

2.3 Data preparation for the models 

Due to the presence of missing instances and outliers in the ILI data for each prov-
ince, we performed some cleaning on the training and test data in order to enhance the 
forecasting capabilities of the models. Missing instances and outliers in the training 
data were replaced using the tsclean from the R forecast package [58], while missing 
values in the test set were estimated using na.interp also from the forecast package.  
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2.4 Algorithms  

We used a range of statistical, machine learning, and deep learning algorithms that 
have been previously applied for influenza forecasting [10], [41], [43], [44], [46], [47] 
such as seasonal ARIMA (SARIMA), multiple linear regression (MLR), elastic net 
(EN), support vector machine regression (SVM), feedforward neural network (FNN), 
and long short-term memory (LSTM).  

The SARIMA technique [59] is an extension of the commonly used ARIMA time 
series forecasting method. It allows the modeling of the seasonal component of the 
input data. When external regressors are included, then it is referred to as SARIMAX. 
The R auto.arima function was used to implement the SARIMA models [58]. 

Multiple linear regression predicts a target response variable using several explana-
tory variables. The lm function in R was used for the implementation of the MLR mod-
els in this study.  

Elastic net regression involves a combination of the penalties of both the Least Ab-
solute Shrinkage and Selection Operator (LASSO) and ridge methods [60]. The R 
cv.glmnet function [61], [62] was used for the implementation of the elastic net models.  

The SVM regression technique relies on kernel functions to map the explanatory 
variables into higher dimensional spaces, making the data linearly solvable [63]. These 
models were implemented using the svm function in R (e1071 package) [64]. 

Feedforward neural networks comprise nodes arranged into the input, hidden and 
output layers. It is termed feedforward because the connections between the nodes do 
not form a cycle [65].  

The LSTM network was designed to mitigate the problem of short-term memory that 
is encountered with the basic recurrent neural networks (RNNs) [66]. It is a special type 
of RNN architecture that has cyclic connections linking the nodes, which makes im-
portant information to persist LSTMs are found in time series data processing because 
their architecture is naturally suited to process sequences and lists. We used the Keras 
library with Tensorflow backend in Python to implement the FNN and LSTM methods. 

2.5 Experimental model(s) per province  

We describe the models that were deployed for forecasting future influenza trends 
for each province in this section. These models stem from the AI algorithms outlined 
in the previous section and the important input features for each province. For easy 
referencing and comparison, we maintain the same naming convention for the various 
provincial models as in the South African national ILI forecasting study [10]. For ex-
ample, GT-MLR is a MLR model fitted to GT data only, while ILI-SARIMA is a 
SARIMA model based on past ILI data only. The provincial models fall under three 
categories and are described as follows: 

ILI Trends as a Function of GT data only (Gauteng and Western Cape Prov-
inces). These set of models apply only to the Gauteng and Western Cape provinces. 
The other seven provinces were excluded due to the sparsity of Google search data and 
the consequent low correlation with the real-world ILI records. For these models, we 
supplied only the provincial Google search volume of the 21 ILI-related terms as inputs 

98 http://www.i-joe.org



Paper—Leveraging Google Search Data and Artificial Intelligence Methods for Provincial-level… 

(independent variables) in order to predict the ILI incidence rates (dependent variable) 
for zero to two weeks ahead. This is important for the evaluation of Google search data 
alone for influenza surveillance at the provincial level in South Africa in the case of 
lack of the real ILI records. The models were trained on 367 instances (80%) of the data 
while their performances were evaluated on the remaining 20%. We maintained the 
same number of training samples for the one and two weeks-ahead forecast models and 
reduced the test data by 1 and 2 instances respectively. Similar to Ref [10], the four sets 
of models under this category include GT-EN, GT-FNN, GT-MLR, and GT-SVM. The 
specific parameters tuning for the GT-FNN models for each of the two provinces con-
cerned are outlined below: 

Gauteng: The GT-FNN models for Gauteng have 21 nodes in the input layer which 
depict the Google search volume of the 21 ILI-related terms. In contrast, the output 
layer has just one node which is the predicted ILI incidence rate. The optimal hidden 
layer parameters for the nowcast models (zero week ahead forecasts) were fixed exper-
imentally. Four hidden layers with 1024, 512, 512, and 256 units were selected, each 
with the relu activation function and a dropout rate of 0.2 used after each layer to avoid 
model overfitting, Similarly, four hidden layers with 512, 512, 256 and 128 units were 
fixed for the one week ahead models, all with a dropout rate of 0.2 following each layer. 
The parameter settings for the two weeks ahead forecast models were the same as in 
the one week ahead models except that the last hidden layer did not require a dropout 
technique. Sigmoid activation function was used in the output layer of all the GT-FNN 
models while the adam optimizer was used for compilation. The Gauteng models were 
trained for 100 epochs. 

Western Cape: Like the Gauteng GT-FNN models, the Western Cape models also 
have 21 input nodes. The nowcast models (zero week ahead prediction models) have 
512, 256, 256, and 128 nodes in the four hidden layers respectively. All the hidden 
layers had the relu activation function but with no dropout layer at all. There are also 
four hidden layers in the one week ahead forecast models, with 512, 256, 256, and 128 
units from the first to the last layer. No dropout technique was applied here as well. The 
two weeks ahead prediction models have the same parameters as the one week ahead 
forecasts. All the models have the relu activation function in the hidden layers and the 
adam optimizer for compilation. The zero and one week ahead forecast models were 
trained for 50 epochs while the two-weeks ahead prediction model learned for 40 
epochs. 

Future ILI Trends as a Function of Past ILI Data Only (Al Provinces). The ILI-
data only models for each of the nine provinces take the historical ILI incidence rates 
as input and forecast the future ILI incidence rates as output. Like in Ref. [10], the two-
time series modelling techniques that were studied are the ILI-SARIMA and ILI-LSTM 
models. The ILI-SARIMA models are centered on the ARIMA algorithm (SARIMA) 
and we maintained the 80/20% training/evaluation set size as in the GT-data only mod-
els. For the ILI-LSTM models, the input data for each province was reshaped as 4 time-
steps (4 weeks) for predicting the ILI incidence rate for the following week (the next 
time-step). The output layer has 1 node representing the predicted ILI rate. The ILI-
LSTM models have the same training/evaluation split size as in the ILI-SARIMA 
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model and the optimal model parameters for each province were determined experi-
mentally by evaluating the effect on the models’ forecasting performance. All the mod-
els used the adam optimizer for compilation. The specific ILI-LSTM model settings for 
each province are given below:  

Eastern Cape: The Eastern Cape model is a simple LSTM layer of 200 units with a 
dropout technique (rate = 0.2). Due to the wide range of the input data, we performed 
min-max normalization to rescale the data to the range [0,1], and the model learned for 
50 epochs.  

Free State: The ILI-LSTM model for the Free State province is a stack of two LSTM 
layers, each with 100 units and a dropout technique with a rate of 0.1 following each 
LSTM layer. For this model, no input data scale normalization was necessary, and the 
model learned for 200 epochs.  

Gauteng: The Gauteng ILI-LSTM model is also a stack of 2 LSTM layers. Each 
layer has 200 units, and a dropout technique (rate = 0.2) followed each layer. Min-max 
rescaling of the input data was done, and the model learned for 100 epochs. 

Kwazulu-Natal: A single LSTM layer with 200 units was used with a dropout rate 
of 0.2 following the layer. No input data rescaling was done, and the model learned for 
50 epochs. 

Limpopo: A stack of two LSTM layers with 100 units each was used, and a dropout 
technique (rate = 0.1) followed each LSTM layer. No data rescaling was necessary, and 
the model learned for 200 epochs. 

Mpumalanga: A stack of two LSTM layers with 100 units each was also used for 
the Mpumalanga province, with a dropout (rate = 0.2) following each layer. Like the 
Limpopo ILI-LSTM model, the model was trained for 200 epochs. 

Northern Cape: The model parameter settings for Northern Cape province is the 
same with the Limpopo province. 

North West: The Limpopo model parameters also apply to the North West province 
but here, the model was trained for 150 epochs. 

Western Cape: For the Western Cape ILI-LSTM model, a single layer of LSTM 
(200 units) was used, and a dropout technique (rate = 0.2) followed the layer. The model 
learned for 100 epochs. 

ILI Trends as a Function of GT and Past ILI Data (Gauteng and Western Cape 
Provinces). These models apply to the Gauteng and Western Cape provinces only be-
cause of the scantiness of GT data in the other seven provinces. The input here is a 
combination of the historical ILI incidence rates and the Google search volume of the 
21 terms. The training/evaluation data sizes remained the same as in the ILI-SARIMA 
model. Similar to [10], the models under this category include ILI-GT-EN, ILI-GT-
FNN, ILI-GT-MLR, ILI-GT-LSTM and ILI-GT-SARIMAX. They are grouped into two 
classes: the first four models (ILI-GT-EN, ILI-GT-FNN, ILI-GT-MLR, and ILI-GT-
SVM) belong to the class of machine learning/deep learning regression models that add 
ILI data from the past one or two weeks as part of the explanatory features, while the last 
two models (ILI-GT-LSTM and ILI-GT-SARIMAX) belong to another class of statisti-
cal/deep learning time series techniques that extend the ILI data with GT data. The suita-
ble parameter settings for the models were selected experimentally. The implementation 
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details of the ILI-GT-FNN and ILI-GT-LSTM models for the two provinces are de-
scribed below: 

Gauteng ILI-GT-FNN: The optimal parameters for the model that includes the ILI 
data of the past one week are: four hidden layers with 26, 59, 59, and 160 units, each 
layer with a relu activation function and a dropout technique (rate = 0.2) except the last 
hidden layer. Likewise, the model incorporating the ILI data of the past two weeks has 
four hidden layers with 29, 58, 58 and 168 units respectively. Each hidden layer except 
the last one also has a dropout layer (rate = 0.2) following it. The two Gauteng ILI-GT-
FNN models used the adam optimizer for compilation and were trained for 100 epochs. 

Western Cape ILI-GT-FNN: For the Western Cape province, the model incorporat-
ing the past one-week ILI data has four hidden layers with 29, 58, 58, and 136 nodes 
respectively. All the hidden layers had the relu activation function and no dropout layer 
was applied. Similarly, the model including the past two weeks ILI data has four hidden 
layers with 26, 58, 58, and 136 units respectively. No dropout technique was applied to 
this model as well. Both models also used the adam optimizer for compilation and were 
trained for 40 epochs.  

Gauteng ILI-GT-LSTM: This model comprises two LSTM layers with 300 and 200 
units respectively. The input data was reshaped as in the ILI-LSTM models. A dropout 
technique (rate = 0.1) was applied after each LSTM layer, and the model used the adam 
optimizer for compilation and learned for 50 epochs.  

Western Cape ILI-GT-LSTM: The Western Cape model also has two stacked 
LSTM layers with 50 units each. A dropout method (rate = 0.1) followed the first LSTM 
layer, while no dropout layer was used after the second LSTM layer. The model was 
trained for 40 epochs. 

2.6 Evaluation metrics 

For the correlation analysis per province, the higher the Pearson’s correlation coef-
ficient (PCC), the stronger or better the association between the GT data of a particular 
term and the true ILI data. 

The forecasting performances of the different models were compared using a few 
other popular evaluation metrics determined on the evaluation data. This includes the 
root mean squared error (RMSE) and mean absolute error (MAE) of the forecasted and 
the real ILI occurrence. Lower RMSE and MAE values, and higher PCC values depict 
better model performance. The capability of the models to accurately predict the peak 
week of ILI occurrence, and the magnitude of the peak was also evaluated. As in Ref. 
[10], “peak week difference (PWD) is calculated as the difference between the fore-
casted and real peak week”, while the “peak magnitude difference (PMD) is the differ-
ence between the estimated and the true ILI peak height”. Lower values of these two 
metrics indicate better model performance. 
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3 Results  

3.1 Correlation coefficients per province 

The coefficients of the correlation between GT data of each of the ILI-related terms, 
and the ILI records of each province can be visualized in the heatmaps presented in 
Figure 1. The darker the colour of the heatmap cells, the higher the correlation coeffi-
cient. We interpret correlation coefficient r = 0.5 < 0.7 as moderate correlation and r ≥ 
0.7 as strong correlation. The heatmaps show that the correlation coefficients are sig-
nificantly higher in Gauteng and Western Cape provinces but are low and sparse in the 
other seven provinces. There are also many missing values in the results of the correla-
tion analysis across the years in these seven provinces. Due to this, Google search data 
was excluded from the ILI forecasting models for those provinces. 

Gauteng: The highest correlation coefficient (r = 0.83; p < 0.05) recorded was for 
term influenza (sub-category: Disease, Category: Health) in 2011, followed closely by 
the terms: influenza (Disease, All, 0.82) also in 2011, and flu (Search term, All, 0.80) in 
2013.  

Western Cape: For Western Cape, the highest correlation coefficient (r = 0.68; p < 
0.05) was obtained for a similar term influenza (Disease, All) in 2011, followed by cough 
(Search Term, Health, 0.67) in 2017, influenza (Disease, Health) in 2015, flu (Search 
Term, Health, 0.66), and flu (Search Term, All, 0.65) both in 2017. 
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Fig. 1. The Correlation between 21 ILI-related search terms and ILI incidence rates (per year 

from 2010 – 2018) for each province. The darker the colour of the heatmap sells, the 
higher the correlation coefficient 

3.2 Performance of the GT-Data only models (Gauteng and Western Cape 
Provinces) 

In this section, we present the performance of the models that incorporate GT data 
only for Gauteng and Western Cape provinces.  

RMSE and MAE 
Gauteng: The RMSE values for the Gauteng GT-data only models ranged from 

10.32 to 13.30, with SVM and the elastic net (EN) techniques showing the best and 
worst performance respectively. Similar to the national study [10], the forecast error 
grows as the forecast horizon increases. The mean absolute error (MAE) values for the 
Gauteng models ranged from 7.84 (GT-SVM) to 11.27 (GT-EN). The deep learning 
model (GT-FNN) had comparable performance with the SVM-based counterpart.  

Western Cape: The range of RMSE values for Western Cape is from 6.93 to 8.18 
for the nowcasting scenario. Similar to the Gauteng models, GT-SVM models per-
formed the best while GT-EN models had the poorest performance. GT-SVM (4.85) 
had the lowest MAE value for the Western Cape province, followed by GT-FNN (5.74) 
and GT-MLR (5.97), while the highest value is from GT-EN (6.34).  

A visualization of the RMSE and MAE values for the nowcasting scenario for both 
provinces can be seen in Figures 2 and 3 respectively. 

PCC. For both provinces, the Pearson’s correlation coefficient values reduced as the 
forecast horizon increases. In Gauteng, GT-SVM had the highest value of 0.8050 for 
the same week predictions, followed by GT-EN (0.8005), GT-FNN (0.7565) and GT-
MLR (0.7266) respectively. However, for one and two weeks ahead forecasting, the 
GT-EN models gave the best values.  

For the Western Cape province, the EN-based models had the highest values 
(0.7567) for same week predictions, with GT-SVM having a comparable value of 
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0.7246. At the one and two weeks ahead onwards, the GT-SVM model had the highest 
PCC values. 

PWD and PMD. For Gauteng, the GT-MLR model estimated the week of the two 
peak influenza seasons in the evaluation period accurately. The GT-EN and GT-SVM 
model had similar predictions for the first peak week (5 weeks earlier) while the second 
peak week was estimated correctly by all the models. 

For Western Cape, the nowcast models all had accurate predictions for the first peak 
week except the GT-SVM model. The second peak week was predicted as two and 
three weeks after the real peak week by the GT-MLR and GT-EN models respectively. 
On the other hand, GT-SVM and GT-FNN estimated the second peak week as two 
weeks prior to the real peak week. For the one-week onward estimates, GT-SVM and 
GT-FNN forecasted the first flu peak week accurately while GT-MLR and GT-EN pre-
dicted it as one week later. For the second peak week, all the models forecasted it as 
one week sooner. Only GT-SVM and GT-FNN predicted the two peaks correctly at the 
two weeks onwards estimates.  

Similar to the national study [10], GT-MLR performed the best in estimating the size 
of the two peaks at all the forecast horizons, while the GT-EN showed the worst per-
formance.  

Figure 4 is a visualization of the true versus predicted ILI rates over the test period 
for Gauteng while Figure 5 is the visualization for the Western Cape province.  

 

Fig. 2. RMSE of the GT-EN, GT-FNN, GT-MLR, and GT-SVM models for Gauteng and 
Western Cape provinces 
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Fig. 3. MAE of the GT-EN, GT-FNN, GT-MLR, and GT-SVM models for Gauteng and West-

ern Cape provinces 
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Fig. 4. True versus estimated weekly rates of ILI occurrence produced by the GT-EN, GT-
FNN, GT-MLR, and GT-SVM models for Gauteng nowcasts (first column), one week 
onward (second column) and two weeks onward (third column) over the evaluation pe-

riod 
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Fig. 5. True versus forecasted weekly ILI incidence rates produced by the GT-EN, GT-FNN, 

GT-MLR, and GT-SVM models for Western Cape nowcasts (first column), one week 
onward (second column) and two weeks onward (third column) over the evaluation pe-

riod 

3.3 Performance of the ILI-data only models (All provinces) 

This section describes the performances of the models that incorporated past ILI data 
only for all the nine provinces. These are the ILI-SARIMA and ILI-LSTM models. We 
evaluate the performance of the models using the same metrics as in the GT-data mod-
els. Figures 6 and 7 gives a visualization of the RMSE and MAE values for all the 
provinces, while Figures 8 and 9 shows the real versus the predicted ILI incidence rates 
over the test period (indicating the models’ performance in predicting the peak week 
and magnitude) for all the provinces. The figures reveal that ILI-LSTM, the deep learn-
ing times series model performs significantly better than the statistical ARIMA coun-
terpart on all metrics.  

 
Fig. 6. RMSE values of the ILI-LSTM and ILI-SARIMA models for all provinces 
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Fig. 7. MAE values of the ILI-LSTM and ILI-SARIMA models for all provinces 
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Fig. 8. True versus estimated weekly rates of ILI incidence from the ILI-SARIMA and ILI-
LSTM models for Eastern Cape, Free State, Gauteng, and KwaZulu Natal provinces 

over the evaluation period 
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Fig. 9. True versus forecasted weekly rates of ILI incidence from the ILI-SARIMA and ILI-
LSTM models for Limpopo, Mpumalanga, Northern Cape, North West, and Western 

Cape provinces over the evaluation period 

3.4 Performance of the ILI-GT-data models (Gauteng and Western Cape 
provinces) 

Here, we present the performances of the two classes of models that include both ILI 
and GT data. The first class is the regression models (ILI-GT-EN, ILI-GT-FNN, ILI-
GT-MLR, and ILI-GT-SVM) while the second class is the statistical/deep learning time 
series techniques (ILI-GT-LSTM and ILI-GT-SARIMAX). The RMSE and MAE of 
the first class of models for Gauteng and Western Cape provinces can be visualized in 
Figures 10 and 11 respectively. Similarly, Figures 12 and 13 show the RMSE and MAE 
bar plots for the second class of models for both provinces. 

RMSE and MAE 
Gauteng: As can be seen in Figure 10, the performance of the regression models is 

comparable in terms of RMSE, with ILI-GT-SVM having the lowest value of 6.94 and 
ILI-GT-MLR having the highest value of 7.23 when ILI data of the prior week was 
incorporated. The values were slightly higher when ILI data of the previous two weeks 
were used. For the time series models (Figure 12), the ILI-GT-SARIMAX nowcast 
model had RMSE value of 10.21, comparable to 10.32 obtained from the GT-SVM 
nowcast model. The ILI-GT-LSTM model had RMSE value of 7.04. From Figure 11, 
the smallest MAE value of 4.82 was obtained from the ILI-GT-FNN model, while the 
highest value of 5.45 was obtained from ILI-GT-EN model when ILI data from the 
prior week was added as part of the features. The other two models in the regression 
models class (ILI-GT-MLR and ILI-GT-SVM) had similar MAE values of 4.91 and 
4.95 respectively. From the second class (Figure 13), the ILI-GT-LSTM model had 
MAE value of 5.17 while ILI-GT-SARIMAX had a value of 7.17 when the ILI data 
was extended by GT data of the same week. 

Western cape: Similarly for Western Cape province, the regression models per-
formed comparably in terms of RMSE. The ILI-GT-FNN had the lowest RMSE value 
of 4.65 and ILI-GT-EN had the highest value of 4.97 when ILI data of the past one 
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week was added. The time series counterparts had values ranging from 4.96 (ILI-GT-
LSTM) to 6.66 (ILI-GT-SARIMAX) when GT data of the same week was added as an 
extension to the ILI data.  

For the MAE values, there were similar performances, with the ILI-GT-FNN having 
the smallest value of 3.34 (when the previous one-week ILI data was used), while the 
ILI-GT-SARIMAX had the highest value of 4.20 (Figure 13).  

PCC. For Gauteng, the ILI-GT-LSTM deep learning method had the biggest PCC 
value of 0.9064, followed closely by ILI-GT-SVM (0.9063). Similarly for Western 
Cape, ILI-GT-FN had the biggest PCC value of 0.8746. The lowest PCC values are 
from the ILI-GT-SARIMAX time-series models.  

PWD and PMD 
Gauteng: All the regression models (the first class of models) estimated the first 

peak to be two weeks in advance of the real peak week, except the ILI-GT-FNN model 
that predicted the peak accurately when the ILI data of the previous week were added 
as a feature. The peak week estimation of the ILI-GT-LSTM model was one week late, 
while all the ILI-GT-SARIMAX models were less accurate at predicting the peak 
weeks, with all of them predicting the first peak week as five weeks earlier. The ILI-
GT-MLR models gave the smallest peak magnitude difference for Gauteng. 

Western cape: When we added the ILI data of the previous week, the peak estima-
tion of all the regression models was one week late. However, they were all accurate in 
the estimation of the second peak week. The ILI-GT-LSTM predicted both peaks as 
one week later than the true peak weeks. The ILI-GT-MLR/ILI-GT-SVM models gave 
the lowest PMD values for the Western Cape province. 

Figures 14 and 16 show the predicted versus true ILI incidence rates for Gauteng 
while Figures 15 and 17 show the same for Western Cape province. These figures re-
veal the performance of the models in terms of peak week difference and peak magni-
tude difference. 

 

Fig. 10.  RMSE of the regression models (ILI-GT-EN, ILI-GT-FNN, ILI-GT-MLR, and ILI-
GT-SVM) for Gauteng and Western Cape provinces 
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Fig. 11.  MAE of the regression models (ILI-GT-EN, ILI-GT-FNN, ILI-GT-MLR, and ILI-GT-

SVM) for Gauteng and Western Cape provinces 

 
Fig. 12.  RMSE of the time series (ILI-GT-LSTM and ILI-GT-SARIMAX) models for Gauteng 

and Western Cape provinces 

 
Fig. 13.  MAE of the time series (ILI-GT-LSTM and ILI-GT-SARIMAX) models for Gauteng 

and Western Cape provinces 
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4 Discussion  

In this paper, we first studied the correlation between 21 influenza-related terms and 
the ILI records in each province. This step is crucial as it shows which province(s) can 
employ the Google search volume of queries as a valid substitute for influenza fore-
casting.  

The correlation analysis was organized per epidemiological year [54] in order to 
reveal any correlation trends over the years. The heatmaps (Figure 1) reveal that the GT 
data of the 21 ILI-related terms are only significantly correlated with provincial ILI 
records in Gauteng and Western Cape provinces. This may be explained by the fact that 
Internet access are highest in these two provinces as confirmed by the latest general 
household survey publications from Statistics South Africa (stats SA) [67], [68]. An-
other report from stats SA [69] shows that Gauteng and Western Cape are the top two 
provinces in terms of gross domestic product (GDP) per capita. The same report con-
firms Gauteng as South Africa’s economic powerhouse, contributing 34% to the na-
tional economy in 2017. This suggests a relationship between a province’s socio-eco-
nomic profile and the use of digital platforms for disease surveillance in such a prov-
ince. 

The presence of many light-colored cells in the heatmaps for the other seven prov-
inces show sparsity of Google searches for ILI-related terms in those provinces. The 
high number of missing values in the ILI records of these provinces (which were ex-
cluded in the analysis) may also have contributed to the low correlation values. This 
suggests the need for quality ILI data reporting by the public health authorities in all 
provinces and not just in the developed ones. 

The performance of the GT-data-only models (over different metrics) for Gauteng 
and Western Cape as shown in Figures 2, 3, 4, and 5 show that the free and real-time 
Google search data can be used alone as a proxy to estimate ILI rates in those provinces 
with precision close to that of the best ILI-data only model. The lowest RMSE from 
GT-SVM is even slightly better than the ILI-only SARIMA model. Similar perfor-
mance was reported in the national-scale study of [10].  

Figures 6, 7, 8, and 9 show the behavior of models that used only historical ILI data 
to forecast future ILI incidence rates. These models were developed for all nine prov-
inces, and we compare the performance of the statistical time series ILI-SARIMA 
model to the deep learning ILI-LSTM counterpart. One major issue with the provincial 
ILI data in those seven provinces excluded from the GT data models is the large number 
of missing values. Eastern Cape ILI test data also contains outlier We estimated the 
missing values but did not remove the outlier(s) in the test data, in order to reflect the 
scenario in real life in which future ILI rates cannot be predetermined. Figures 8 and 9 
show that ILI-LSTM performed significantly better than the ILI-SARIMA models, 
even with the poor quality of the ILI data. For instance, ILI-LSTM was able to predict 
the future trend of ILI rates in Eastern Cape in the presence of the outlier. This demon-
strates the strengths of advanced AI techniques for accurately forecasting ILI rates in 
the provinces where the complementary GT data is sparse. 
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In addition, visualizations of the performance of the ILI-GT-data models for Gaut-
eng and Western Cape provinces in Figures 10 – 17 show that integrating ILI with GT 
data yields better model performances, confirming previous findings in [10].  

We also observe that the machine learning SVM-based models performed compara-
bly to the deep learning FNN-based models. The SVM-based models performed 
slightly better than the FNN models in some cases, while the reverse is the case in some 
other instances. This validates the effectiveness of the SVM technique for the purpose. 
SVM also has the advantage of easier parameter tuning. 

5 Conclusion  

This study assessed the use of Google Trends data for predicting influenza rates at 
the provincial level in South Africa. First, we determined the relationship between dig-
ital Google search data and the true ILI records in each province by performing corre-
lation analysis. The correlation study shows which province can employ Google search 
volumes as substitute for influenza surveillance. The outcomes of the analysis show 
that only the two most developed provinces (Gauteng and Western Cape) had signifi-
cant correlation, suggesting an association between provincial socio-economic devel-
opment and the use of digital platforms for disease surveillance. We therefore exclude 
GT data from the ILI forecasting models of the other seven provinces. For Gauteng and 
Western Cape, GT data was used as a standalone predictor as well as an enhancing 
predictor to predict ILI rates. The results for these two provinces show that Google 
search volume can be employed to successfully tackle the problems of delay and cost 
associated with the traditional surveillance systems. The potential of online search data 
for ILI surveillance is expected to increase further as Internet penetration continues to 
grow in each province. We also show the benefits of advanced AI time series methods 
(LSTM) in forecasting ILI accurately (even with low-quality data) as compared to tra-
ditional ARIMA methods. This is useful in the seven provinces where Google search 
data is sparse.  

Overall, the study established the need for finer scale ILI forecasting which will in-
form targeted planning for disease surveillance and interventions. Although recent stud-
ies show the “predictive utility of Google search data for ILI forecasting” at the national 
level, this study reveals that Google search data can only be used effectively in the two 
most developed provinces of South Africa. The study also points to the need for quality 
reporting of ILI incidence in each province as this significantly impacts forecasting 
models developed for each province. Provinces with sparse digital surveillance data can 
harness advanced AI techniques to obtain accurate future ILI rates. All of these allow 
for better pandemic preparedness and aims to achieve the goal of sustainable surveil-
lance set by the South African Department of Health. 
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Fig. 14.  True versus estimated weekly rates of ILI incidence produced by the regression models 
(ILI-GT-EN, ILI-GT-FNN, ILI-GT-MLR, and ILI-GT-SVM) for Gauteng. First col-

umn: ILI forecasts for current week were produced from Google search volume of same 
week and ILI data of previous week. Second column: ILI forecasts for current week 

were produced from Google search volume of same week and ILI data of the previous 
two weeks 
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Fig. 15.  True versus forecasted weekly rates of ILI incidence produced by the regression mod-
els (ILI-GT-EN, ILI-GT-FNN, ILI-GT-MLR, and ILI-GT-SVM) for Western Cape. 

First column: ILI forecasts for current week were produced from Google search volume 
of same week and ILI data of the previous week. Second column: ILI forecasts for cur-
rent week were produced from Google search volume of same week and ILI data of the 

previous two weeks 
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Fig. 16.  True versus estimated weekly rates of ILI incidence by the time series models (ILI-GT-
LSTM and ILI-GT-SARIMAX) for Gauteng (adding Google search volume of the 

same week) 

 

 
Fig. 17.  True versus forecasted weekly rates of ILI incidence by the time series models (ILI-

GT-LSTM and ILI-GT-SARIMAX) for Western Cape (adding Google search volume 
of the same week) 
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