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Abstract—In this work, an attempt has been made to quantify the treatment 
response due to Neoadjuvant Chemotherapy (NACT) on the publicly available 
QIN-Breast of TCIA database (N = 25) using Gabor filter derived radiomic fea-
tures. The Gabor filter bank is constructed using 5 scales and 7 orientations. Dif-
ferent radiomic features were extracted from Gabor filtered Dynamic Contrast 
Enhanced Magnetic Resonance images (DCE-MRI) of patients having 3 differ-
ent visits (Visit 1: before, Visit 2: after 1st cycle, and Visit 3: the last cycle of 
NACT). The extracted radiomic features were analyzed statistically and Area 
Under Receiver Operating Characteristic (AUROC) has been calculated. Results 
show that the Gabor derived radiomic features could differentiate the pathologi-
cal differences among all three visits. Energy has shown a significant difference 
between all the three orientations particularly between Visits 2 & 3. However, 
Entropy from λ = 2 and θ = 30° between Visit 2 & 3, Skewness from λ = 2 and 
θ = 120° between Visit 1 & 3 could differentiate the treatment response with high 
statistical significance of p = 0.006 and 0.001 respectively. From the ROC analy-
sis, the better predictors were Short Run Emphasis (SRE), Short Zone Emphasis 
(SZE), and Energy between Visit 1 & 3 by achieving an AUROC of 76.38%, 
75.16%, and 71.10% respectively. Further, the results suggest that the radiomic 
features are capable of quantitatively comparing the breast NACT prognosis that 
varies across multi-oriented Gabor filters.

Keywords—breast cancer, DCE-MRI, Gabor filter bank, Neoadjuvant 
Chemotherapy, radiomic features, treatment response

1	 Introduction

Breast cancer is a widespread malignant disease found in women worldwide [1]. 
Breast cancer patients may have a better chance of surviving if they are properly 
screened and diagnosed early during NACT treatment. In treating locally advanced 
breast cancers, NACT is frequently used as a protective barrier administered before 
the surgery, which can reduce the tumor size and metastasis and enhance surgical 
choices. The optimum response of NACT is perhaps the absence of residual cancer 
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burden within the invasive breast tumor cells also known as Pathological Complete 
Response (PCR), which substantially predicts a better prognosis than patients who have 
an inadequate response (non-PCR) [2].

Various imaging methods have been utilized to assess the pathological response in 
patients with breast cancer to NACT, including ultrasonography, mammography, breast 
magnetic resonance imaging (MRI), and positron emission tomography/computed 
tomography (PET/CT) [3]. MRI is particularly useful for identifying the severity 
in the breast, and it is frequently used in the NACT to assess the treatment, predict, 
and prognose the tumor response. This modality was found to be more accurate than 
conventional imaging techniques in predicting the presence of cancer burden after 
NACT treatment [4]. This technique has high sensitivity besides its specificity, due 
to the reason that it fails to screen the dense breast tissues. A T1 weighted acquisition 
protocol, DCE-MRI with Contrast Agent administration, is frequently used to image 
dense breasts. DCE-MRI can image the full breast volume in comparison to conven-
tional methods along with kinetic curve analysis which makes it an ideal supplementary 
imaging tool for breast treatment. When DCE-MRI is combined with NACT, it can be 
used to enhance the functional tumor properties in addition to the structural properties 
of the tumor that acts as a potential indicator for the treatment response. However, the 
approaches to compute DCE-MRI metrics, whether semi quantitative or quantitative, 
cannot capture the spatial heterogeneity of the tumor functions, and therefore, valuable 
information could be missed during therapeutic response evaluation [5–7].

More acceptable quantitative approaches for assessing the tumor response to 
NACT treatment were developed as a result of insufficient size-based quantifying 
methods [8]. Texture-based image features have been widely used in recent years for 
quantifying tumor heterogeneity and predicting the therapy response of breast cancer 
patients [9–11]. Radiomics, which can extract the quantitative features from the medi-
cal images that characterize the spatial relationship in the tumor regions, is used among 
various types of cancers and scanning techniques. The integration of radiomic features 
with the significant tumor properties, clinical, and genomic data could be identified, 
allowing for more accuracy in clinical practice [12]. There are four main texture analysis 
techniques (i) statistical (ii) structural (iii) model-based and (iv) transform-based. 
The  spatial distribution of image pixels can be calculated by statistical method, the 
structural method depends on the geometrical attributes of the image, model-based uti-
lizes stochastic models, and transform-based analysis depends on temporal filtering 
techniques [13]. This research focuses on transformed-based techniques, particularly a 
Gabor filtering technique that can quantitatively evaluate the texture at various scales 
and orientations. In addition, radiomic features are extracted to analyze the perfor-
mance of predicting breast cancer treatment response and to assess the classification 
accuracy of individual scale and orientation pairs.

Dennis Gabor first invented Gabor filters in 1946, and 42 years later J. Daugman 
developed a 2-Dimensional Gabor filter that achieves a coordinated optimal resolution 
in the spatial and frequency spaces [14]. Several computer vision experts contend 
that the scale and orientation of Gabor filters are analogous to human vision. In the 
last few decades, these filters have been used in image analysis, image compression, 
segmentation, edge detection, fingerprint, face recognition, and texture analysis.  
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The configuration of Gabor filter bank parameters is a typical problem in these 
applications [15–17]. A simple Gabor filter may detect texture patterns with a single 
scale and orientation, but to define complicated texture patterns, multiple orientations 
and scales must be created and acquired. Previous studies often use the same parame-
ters because they consistently produce satisfactory results [18,19]. The Gabor filter for 
classifying the texture of satellite images yielded results up to 70% and when used the 
GLCM features along with the Gabor filter provided the best accuracy of classification 
with 80%. Likewise, Gabor filters can enhance absoluteness when multiple orienta-
tions and scales are considered. These aspects explain that the texture is depending on 
frequency and orientation that has to be properly handled in the evolving radiomic field.

A few breast cancer studies for the classification and prediction of NACT treatment 
response using Gabor filters have been implemented. Different feature sets such as 
texture features which include Haralick, Co-occurrence of Local Anisotropic Gradient 
Orientations (CoLlAGe) features, Law features and Gabor features from intra- and 
peri-tumoral regions of breast DCE-MRI data and evaluated the ability of extracted 
features to predict PCR to NACT. Among the ten prominent radiomic features with 
discriminating capability, three Gabor features are also reported in the intratumoral 
areas [20]. Similarly, the performance of radiomic analysis for pretreatment prediction 
of NACT response is carried out by extracting morphological, first order, Gabor, and 
Law features from multiparametric MRI data. Only Gabor and Law’s features are 
selected for the final radiomic analysis of the treatment. That may be because these 
high-dimensional descriptors acquired more precise tumor textural information, making 
them better for the prediction of treatment response [21].

In this work, Gabor filter derived radiomic features are used to analyze the 
quantitative study of breast cancer NACT response on DCE-MR images. Radiomic 
features from each scale orientation are calculated and individual treatment visits are 
compared concerning NACT treatment response. Further, the ROC analysis is carried 
out to assess the predictive performance ability of the significant radiomic features.

2	 Materials and methods

2.1	 Patient and protocol information

The data used in this work is obtained from the Quantitative Imaging Network 
(QIN) Breast of The Cancer Imaging Archive (TCIA) [22], which is maintained by a 
US university center. The dataset contains DCE-MRI, DWI-MRI, and PET/CT from 
68 patients, in which DCE-MRI data of 25 patients with three visit data are considered 
for this study. The analysis is based on baseline evaluations of 11 PCR and 14 non-pCR 
subjects. Images were acquired at three time points (i) prior to the start of the treatment 
(Visit 1), (ii) after the first cycle of treatment (Visit 2), and (iii) after completion of all 
treatments (prior to surgery) (Visit 3). Table 1 summarizes the dataset breakdown by 
pathological response status of the study population.
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Table 1. Dataset breakdown by pathological response status

PCR non-PCR

No. of Subjects 11 14

Age 43 ± 6.37 (mean ± SD) 48.57 ± 9.43 (mean ± SD)

Weight 48.57 ± 9.43 72.4 ± 16.53

Estrogen Receptor

Positive 1 7

Negative 9 7

Progesterone

Positive 1 7

Negative 9 7

HER2

Positive 4 5

Negative 6 9

Tumor Grade

I – 2

II 2 4

III 9 8

Note: SD-Standard Deviation.

The MRI data examination was performed on Philips 3T Achieva MR scanner 
(Philips Healthcare, Best, The Netherlands) using 16 channel bilateral breast coil. The 
acquisition parameters of this data include flip angle of 20°, Repetition time (TR) of 
7.9 ms, Echo time (TE) of 4.6 ms, acquisition matrix of 192×192×20, sagittal Field of 
view (FOV) of 22×22 cm2, and slice thickness of 5 mm as reported elsewhere [23]. For 
this study, 25 dynamic scans are acquired at the temporal resolution of 16 sec. After the 
baseline scans, the contrast agent gadopentetate dimeglumine (Gd-DTPA) was placed 
within an antecubital vein delivered at 0.1 mmol/kg (9–15 mL, depending on patient 
weight) at 2 mL/sec via a power injector.

2.2	 Gabor filter design

A basic Gabor filter is defined as a product of a complex sinusoidal wave multiplied 
by a Gaussian kernel [24]. A two-dimensional Gabor filter is given as,
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Where x' = (xcosθ + ysinθ); y' = (–xsinθ + ycosθ)
λ-spatial frequency (scale), θ-Orientation of the Gabor filter, φ-phase offset of the 

harmonic factor and σx, σy are standard deviations along x and y directions.
In this analysis, for designing the Gabor filter bank five scales and seven ori-

entations are selected. The scale is chosen as a multiple of 2 and the orientation 
is within the range of (0,2π) degrees [24]. Hence five scales λ = (2,4,8,16,32) and 
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θ = (0°,30°,60°,90°,120°,135°,150°) are considered for this study. However, the tumor 
areas of different subjects vary with respect to the severity of the breast cancer, thus 
a smaller scale value is required to extract more detailed textures from the images. 
Similarly, the orientations are selected from 0 to π degrees, as π-2π degrees replicate 
the same information as from 0-π. So, λ = 2 and θ = 0°, 30°, 60°, 90°, 120°, 135°, and 
150° are considered for this study resulting in seven filters in a Gabor filter bank. The 
design of scale and orientation frequently vary depending on the applications. A recent 
study has demonstrated that Gabor features of two different combinations of scale and 
orientation are shown to predominant discrimination in predicting the response in intra-
tumoral regions [20]. Since the two combinations λ = 2, θ = 30°, and λ = 2, θ = 135° are 
used for prediction, this can be useful to observe the individual treatment responses of 
Visit 1, Visit 2, and Visit 3 of NAC treatment.

The stated Gabor filter bank is used on the DCE-MRI exams of 25 breast cancer 
patients over three visits. The time-point selection of the DCE procedure is much more 
important, which will expect rich texture information after the peak enhancement. This 
hypothesis is tested by calculating the mean intensity of the subjects at every 25 time 
points of the data by using MATLAB software. The maximum mean intensity time 
point is selected for applying a Gabor filter bank. The application of Gabor bank on 
DCE-MRI time point of maximum intensity results in three scale-orientation image 
sets. Different orientations indicate varying texture features, whereas, the scale param-
eter (λ = 2) will provide finer texture details.

2.3	 Radiomic feature extraction

Radiomic features are extracted from each scale-oriented Gabor filtered image to 
assess the stability of every radiomic feature with respect to the associated features 
after the response of every treatment visit. All radiomic features are calculated for the 
3-dimensional volume of Gabor filtered image of three different scale-orientations [25]. 
A total of 38 radiomic features from each Gabor filtered image include: (i) 3 global 
features which calculate the distribution of image intensities, (ii) 9 Gray Level 
Co-occurrence Matrix (GLCM) features that describe the image properties associated 
with second-order statistics, (iii) 13 Gray Level Run Length Matrix (GLRLM) related 
to the distribution of gray-levels of runs and (iv) 13 Gray Level Size Zone Matrix 
(GLSZM) that uses size zone of the observed area.

2.4	 Statistical analysis

The student’s t-test was used to all radiomic features at different scale and orientation 
filtered images to uncover the potential difference between the two visits in a univar-
iate way [26]. The two visits may be between Visit 1 & 2, Visit 2 & 3, and Visit 1 & 
3. A significance level of less than or equal to 5% is considered statistically signifi-
cant. Receiver Operating Characteristics (ROC) analysis is performed on significant 
radiomic features to assess the discriminatory power quantitatively by AUROC, F1max, 
sensitivity, and specificity. MedCalc software is used for all the analyses in this study.
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3	 Results

The T1-weighted sagittal MR images considered in this study are from the openly 
available database from TCIA. Twenty-five patients of stage II/III before, after the first 
cycle, and end of the NACT treatment, are used for this study. The average age of the 
subjects is 46.12 ± 8.55 years with a range of 33 to 67 years.

The representative set of DCE-MR images of three visits for PCR subjects is shown 
in Figure 1 (a–h) followed by mean intensity curves. From Figure 1 (a–c) it is observed 
that the heterogeneously enhanced circumscribed shaped mass of smooth margins in 
the Visit 1 of 46 years old female patient is altered in the shape such as thinning the 
size of the tumor after the first cycle of NACT treatment (Visit 2) and then completely 
responding at the end of NACT (Visit 3). This might be owing to suppression of the 
tumor due to NACT and low perfusion of the tumor. Similarly, Figure 1 (e–g) represents 
a rim-enhanced tumor with an irregular shape that invades the surrounding tissues. The 
necrotic component inside the tumor region is observed to be reduced after NACT 
treatment as a result of increased apoptosis. Figure 1 (d, h) represents the corresponding 
mean intensity curves at all three visits of a patient.

Fig. 1. (a–h) DCE-MR images of two PCR patients represented in each row at Visit 1 
(column 1), Visit 2 (column 2), Visit 3 (column 3), and corresponding time points  

versus mean intensity curves (column 4)

In the same way, Figure 2 (a–h) represents a typical set of images of non-PCR sub-
jects at three visits with mean intensity curves in the last column. From Figure 2 (a–c), 
a heterogeneous internal enhanced irregular shaped tumor with spiculated margins can 
be observed in all the visits. There is no distinguishable change in the tumor is observed 
during the NACT treatment. Likewise in Figure 2 (e–g), an aggressive tumor with dark 
internal septation present is reduced after the first cycle of the treatment through the end 
of NACT, but no acceptable change in the shape of the tumor can be observed. So, the 
response study of the NACT treatment poses challenges in identifying the usefulness of 
radiomics and alters the treatment planning.
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Fig. 2. (a-h) DCE-MR images of two non-PCR patients represented in each row at Visit 1 
(column 1), Visit 2 (column 2), Visit 3 (column 3), and corresponding time points versus mean 

intensity curves (column 4)

Based on the mean intensity calculated at each time point of three visits, the time 
point with maximum mean intensity is used for applying the Gabor filter. The Gabor 
filter bank with λ = 2 and θ = (0°,30°,60°,90°,120°,135°,150°) are applied on the max-
imum mean intensity time point volume. The filtered image set for all the selected 
parameter combinations is shown in Figure 3. From the statistical Analysis 35 radiomic 
features stemming from three different comparisons between Visit 1 & 2, Visit 2 & 3, 
and Visit 1 & 3 were having a statistical difference with a p-value ≤ 0.05. Specifically, 
14 features from λ = 2 and θ = 30° and 10 features from λ = 2 and θ = 120°, and 11 fea-
tures from λ = 2 and θ = 135° exhibit a significant difference. Each feature is calculated 
in three different visits, Visit 1, Visit 2, and Visit 3 separately.

Fig. 3. Gabor filtered DCE-MR image illustrated for λ = 2  
and θ = (0°,30°,60°,90°,120°,135°,150°)

The significant Gabor derived radiomic features at λ = 2 and θ = 30°,135°,120° 
are presented in Table 2. The Variance between Visits 1 & 3 has shown a significance 
with P ≤ 0.05 but there is no noticeable difference between Visit 1 to 2 and Visit 2 to 
3. Low significance invariance represents the pixel intensities are closer to the mean 
of the image set. The subtle difference in the tumor region is observed to be less when 
compared to Visit 1 Vs 3. The GLCM features energy, entropy, SumAverage and auto-
correlation have shown a significant difference between Visit 2 & 3 with p-values of 
0.01134, 0.0061, 0.0418, and 0.0348 respectively. Similarly, these features have shown 
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a difference between Visits 1 & 3 except for the energy and entropy with p values 
0.0252 and 0.0214. The change in tumor heterogeneity for treatment response analysis 
is also confirmed by GLRLM and GLSZM features, a prevailing technique for quanti-
fying the texture homogeneity or heterogeneity.

Table 2. Comparative analysis of significant radiomic features at Gabor filter settings λ = 2  
and θ = 30°,135°,120°

Feature
List

GF_λ = 2_θ = 30°
(P-Value)

GF_λ = 2_θ = 135°
(P-Value)

GF_λ = 2_θ = 120°
(P-Value)

V1&V2 V2&V3 V1&V3 V1&V2 V2&V3 V1&V3 V1&V2 V2&V3 V1&V3

Variance 0.1204 0.4658 0.0572 0.4269 0.4723 0.4155 0.4225 0.032 0.0261

Skewness 0.4647 0.2546 0.1146 0.3765 0.2516 0.1964 0.1007 0.0667 0.0019

Kurtosis 0.3691 0.1895 0.1034 0.3819 0.2995 0.2286 0.0588 0.1477 0.0056

Energy 0.1578 0.0113 0.3045 0.2664 0.0533 0.0319 0.4844 0.0155 0.0186

Entropy 0.2179 0.0061 0.0689 0.4045 0.0438 0.04 0.1636 0.1636 0.1724

SumAverage 0.3165 0.0418 0.0252 0.4792 0.0535 0.0676 0.1631 0.1666 0.0642

Auto Correl 0.3317 0.0348 0.0215 0.4993 0.0443 0.0723 0.1595 0.4849 0.0665

SRE 0.3752 0.0884 0.0432 0.4841 0.0316 0.0554 0.2746 0.1723 0.1064

GLN 0.1636 0.0256 0.1636 0.1737 0.0128 0.1054 0.2235 0.0576 0.2118

LGRE 0.1876 0.2588 0.4193 0.3665 0.1318 0.2375 0.3803 0.0677 0.0543

SRLGE 0.1636 0.0863 0.1636 0.4145 0.0512 0.0429 0.0988 0.0763 0.0042

HGRE 0.2688 0.0489 0.3105 0.4932 0.0817 0.1343 0.4935 0.1264 0.1543

LRHGE 0.2479 0.0336 0.1846 0.4723 0.0433 0.0952 0.4925 0.0604 0.0972

SZE 0.3963 0.0885 0.0489 0.4841 0.1114 0.1256 0.2746 0.1723 0.1062

GLN 0.2298 0.0256 0.1052 0.1737 0.0187 0.1336 0.2235 0.0576 0.2118

LGZE 0.4942 0.1181 0.1706 0.3665 0.1039 0.1261 0.3803 0.0677 0.0543

HGZE 0.4822 0.0489 0.0664 0.4932 0.0861 0.1467 0.4935 0.1264 0.1543

SZLGE 0.3460 0.0863 0.0483 0.4145 0.0579 0.0483 0.0988 0.0763 0.0042

LZHGE 0.3674 0.0336 0.0264 0.4723 0.0477 0.1054 0.4925 0.0604 0.0972

Gray Level Non-uniformity in both GLRLM and GLSZM has reported a better sig-
nificant difference with a p-value of 0.0256 among other significant features. Thus, by 
comparing all the radiomic features from the filtered image, entropy between Visit 2 & 
3 have been observed to have a high quantifiable difference compared to the other two 
combinations with a p-value of 0.00605.

The features from the Gabor filter bank of λ = 2 and θ = 135° have shown a differ-
ence from Visit 2 to 3 and very few parameters from Visit1 to Visit 3. The Non-unifor-
mity feature from Run length and size zone feature classes has been shown a significant 
difference with a p-value of 0.0128. Similarly, the Gabor filter with λ = 2 and θ = 120° 
have reported a highly significant difference between Visit 2 to Visit 3 and Visit 1 to 3. 
Most of the features have shown a difference from Visit 1 to 3 than Visit 2 to 3. Skew-
ness and kurtosis features from Vist 1 to 3 have shown highly significant p-values of 
0.001 and 0.005 respectively.
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Fig. 4. Box-plot representation of radiomic features comparing three NAC treatment visits 
observed at θ = 30°, 120°, 135° of (a) Energy (b) Entropy (c) Kurtosis and (d) Skewness

The box-plot representation of a few Gabor derived radiomic features that could 
discriminate the pathological changes in NACT treatment visits at λ = 2 and θ = 30°, 
120°, and 135° are shown in Figure 4 (a–d). It is observed from Figure 4 (a) that mean 
values of Energy remained similar in Visit 2 & 3 when compared to Visit 1 in both 30° 
and 120° orientations. But there is a change in Energy from Visit 1, Vist 2 to Visit 3 in 
θ = 135°. This illustrates that an Energy of Gabor filter at λ = 2 and θ = 135° settings 
can be used for NACT treatment response analysis between different visits. The radio-
mic features extracted from the 120° orientation are observed to have the most sig-
nificant difference between the visits compared to the other two orientations (30° and 
135°). Similarly, Entropy from Figure 4 (b) has shown a difference from Visit2 to Visit3 
more compared to Visit1 to Visit 3. The response from Visits 1 to 2 did not provide an 
acceptable difference in all the orientations. Kurtosis and skewness in Figure 4 (c & d), 
show an adequate difference between Visit 1 & 3 in all the orientations with decreased 
heterogeneity and protruding better NACT response.
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Table 3. ROC analysis of the most significant radiomic features

Feature Name Feature 
Class

Significant 
Visits AUROC Sensitivity Specificity F1max

Asymptotic 
Probability

GF_λ = 2
_30deg_SRE

GLRLM V1&V3 76.38 68.2 82.1 71.4 0.0014

GF_λ = 2
_30deg_SZE

GLSZM V1&V3 75.16 50 96.4 68.3 0.0024

GF_λ = 2
_135deg_Energy1

GLCM V1&V3 71.10 77.3 60.7 68 0.011

GF_λ = 2
_135deg_Energy

GLCM V2&V3 69.15 86.4 50 69.1 0.0211

GF_λ = 2
_135deg_SRE1

GLRLM V1&V3 67.04 45.5 89.3 65.5 0.0401

GF_λ = 2
_135deg_GLN1

GLSZM V2&V3 65.74 81.8 50 66.7 0.0579

GF_λ = 2
_30deg_GLN

GLRLM V2&V3 65.26 77.3 57.1 66.7 0.0661

GF_λ = 2
_30deg_GLN1

GLSZM V2&V3 65.26 77.3 57.1 66.7 0.0661

Table 3 demonstrates the ROC analysis of the most significant radiomic features that 
attain the highest AUROC to assess the discriminative power of the radiomic feature in 
treatment response. The sensitivity, specificity, F1max, and asymptotic probabilities are 
listed accordingly. It is observed that SRE of λ = 2 and θ = 30° from Visit 1 uncovered a 
better predictive performance in Visit 3 with an AUROC value of 76.38%, the sensitiv-
ity of 68.2%, sensitivity of 82.1%, F1max of 71.4%, and probability of P ≤ 0.001. Simi-
larly, SZE from 30° and Energy from 120° between Visit 1 & 3 exhibited an AUROC 
values of 75.16% and 71.10%, sensitivity of 50% and 77.3%, specificity of 96.4% and 
60.7%, F1max of 68.3% and 68% with p-values 0.002 and 0.01 respectively. The ROC 
curve for the three highest AUROC is plotted as shown in Figure 5.
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Fig. 5. ROC curve of radiomic features SRE at λ = 2 and θ = 30°, SZE at λ = 2 and θ = 30° 
and Energy1 at λ = 2 and θ = 135°

4	 Discussion

In this current study, the Gabor derived radiomic features are extracted from 
DCE-MR images to assess the NACT treatment response between the visits. A total 
of 25 QIN-Breast dataset are considered for this study at three different time points 
prior to start of the treatment (Visit 1), after the first cycle of treatment (Visit 2), and 
at the end of the NACT treatment (Visit 3). Three different comparisons are exam-
ined between Visit 1 & 2, Visit 2 & 3, Visit 1 & 3. Thirty-eight radiomic features are 
extracted from all three visits of treatment using different Gabor filter parameter com-
binations of scale λ = 2 and θ = (0°,30°,60°,90°,120°,135°,150°). A radiomic analysis 
context from 4 different feature types Global, GLCM, GLRLM, and GLSZM were 
calculated for each visit of data.

The vascular changes in the tumor due to NACT treatment are observed to be sen-
sitive. Subsequently, the prediction and classification of treatment response become 
consistently challenging because of the homogeneous nature of the tumors. Hence three 
Gabor parameter settings are used to compare the individual visits in terms of radiomic 
analysis. Reports of radiomic analysis have shown importance in determining therapy 
response during NACT. Several studies used this radiomic analysis in the classification 
and prediction of treatment response with different settings based on the nature of the 
dataset and the performance calculations [9,27–30].

Limited studies are reported and conducted for Gabor filter-based NACT treatment 
response using radiomics. The response of the treatment in those studies is carried out 
at two time points i.e., before and after the treatment. The performance of this study is 
carried out by comparing three different treatment visits using the same QIN BREAST 
dataset from TCIA.
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Braman et al., [20] used radiomic feature analysis for intratumor and peritumoral 
regions of the breast tumors to predict the pre-treatment response to NACT. PCR 
prediction is performed among all corners and by separation of receptor type. The 
Gabor features median, skewness in initial phase, and kurtosis at the peak phase are 
reported as some of the prominent radiomic features in the prediction of pre-treatment 
response to NACT. However, it has been stated that the selection of molecular subtype 
subjects within Triple Negative (TN)/Human Epidermal Growth Receptor (HER2+) 
leads to loss of tumor information due to inter-observer variability and has the draw-
back of its performance in prediction of response. Another study produced by Manikis 
et al., [31] could predict breast cancer therapy response using Gabor filtered radiomic 
analysis. The performance of this study is implemented by extracting four different 
feature classes from multi-scale and orientation filtered images and validated with gra-
dient boosting classifiers. This method of prediction is performed between the baseline 
and end of the NACT treatment, rather it could be studied with every treatment cycle 
for the patient’s response.

The results indicate that the NACT treatment response can be assessed either in 
three comparisons of treatments Visit 1 (pre-treatment), Visit 2 (first cycle of NACT) 
and Visit 3 (end of NACT/prior to surgery). The Gabor settings of λ = 2 and θ = 30°, 
120°, 135° are used to compare the individual visits. Energy from all the orientations 
has shown a distinguishable change between Visits 2 & 3. The energy which mea-
sures the degree of randomness in the intensity values exhibited consistent tumor image 
intensities from Visit 2 to 3. The critical characteristic of the tumor is abnormal energy 
metabolism. The vascularity changes in the malignant tumors are observed to have 
a difference in energy due to their microvascular structure. The subtle difference in 
the tumor region is observed to be less when compared to Visit 1 Vs 3. Variance is 
more for the cancer cells as the contrast leakage will change abruptly with respect to 
time. This caused a noticeable change between the first cycle of the tumor area and 
at the end of the scans which can quantify the irregularity of the lesions. Entropy is 
related to the heterogeneity and complexity of lesion texture. The texture feature is 
presumably associated with a smooth margin, homogeneous, and lower enhancements 
of a benign lesion in comparison with an irregular margin, heterogeneous, and higher 
enhancements of a malignant lesion.

Gray Level Non-uniformity has shown a quantifiable difference in the visits as the 
gray level outliers at Visit2 & 3 differ from Visit 1 that results in a significant change 
between the visits. The group of voxels in the tumor that have the same gray level in 
the first cycle of NACT (Visit 2) changes slightly during Visit 3 due to a change in the 
flow rate of the contrast medium. This shows the tumor is rendered in the tumor region 
due to a decrease in affected tissue vascularity. Skewness and kurtosis from Vist 1 to 3 
have shown a significant difference at λ = 2 and θ = 120°. Asymmetry and flatness of 
intensities in the tumor region replicate the tumor spatial heterogeneity. The significant 
skewness and kurtosis indicate that the position and distribution patterns after the first 
cycle of NACT become more positive compared to the previous visits. This change 
in value is correlated to the characteristics of contrast enhanced tumors that include 
heterogeneity of angiogenesis, and microvasculature.

It is observed that the treatment response is significant from Visit 2 to Visit 3 and from 
Visit 1 to 3. The biological characteristics of the lesion from pre-treatment screening 
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to the first cycle of NACT are observed to have no change as the median time of 14 
days with a range of 7 to 29 days is reported. Thus, no significant change between the 
visits is noticed in any scale-orientation Gabor analysis. The change in micro-vessel 
density, lesion angiogenesis, and structural disorders can be observed from the early 
treatment to the end of the NACT treatment. So, the change in tumor heterogeneity can 
be perceived quantifiably and show a statistical difference during the visits. Hence it is 
required to assess the treatment response at early stages to optimize treatment planning 
and help in decision making.

Further to extend the analysis and to investigate the diagnosing ability of statistically 
significant features at multiple orientations and one scale, ROC Analysis has been per-
formed. It can be observed that the best radiomic features were SRE, SZE, and energy 
by achieving an AUROC of 76.38%, 75.16%, and 71.10% respectively. The fine texture 
has more short runs compared to the coarse texture. The contrast enhanced tumor region 
tends to have a fine texture portion after the DCE exam performed during NACT. This 
might be the reason to have a significant difference in Visits 2 & 3 with respect to Visit 1.  
The distribution of homogeneous regions is defined by SZE and found to be more 
after and at the end of the treatment. The malignant lesions characterized by angio-
genesis were associated with aggressive nature compared to benign lesions. Moreover, 
energy increases with an increase in the uniformity of the pixels from Visit 1 to 3. F1max  
is measured to test the accuracy between the comparisons and asymptotic probability is 
a significant level where the probability of area under the curve is found correct.

Interestingly, preliminary results from [32,33] reported that the radiomic features 
alone can differentiate the treatment response before and after the treatment. While a 
couple of studies have been conducted in NACT treatment response, they have been 
used either first follow-up NACT data or/and the end of the NACT data. However, 
these findings were obtained using different data sources but have yet to be validated. 
Previous findings have not been limited to this condition, but eventually proposed a 
radiomics based breast malignancy index (RBMI) to find the pathological changes 
during NACT treatment [34]. The treatment response at every stage of NACT could 
help for early detection of the response. This quantitative study suggests that scale-ori-
entation based Gabor filters are used as an instinctive method to explore the efficiency 
of radiomic features in multiple orientations and scales. This method provides a struc-
tured way to investigate the scale-orientation consistency of potential features, and 
these findings show that important radiomic features can be found in several best scale 
orientation statistical settings which demonstrates higher robustness.

There are a few limitations in the study. The patient cohort used in this analysis is 
very small and considered to be a preliminary result. It is observed that they show the 
potential of radiomic features to assess the NACT treatment response and compare 
the response of the treatment at Visit 1, Visit 2, and Visit 3 of NACT observed in 
multiple scales and orientations. In the future, machine learning methods are used to 
quantitatively predict the NACT treatment response.
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5	 Conclusion

The NACT treatment response for breast cancer patients has great importance 
clinically that can improve the prognosis and disease-free survival. In this study, an 
attempt is made to quantify the tumor changes with radiomic analysis on Gabor derived 
DCE-MR images. The data is collected from QIN Breast of TCIA which contains 
68 subjects. A  total of 25 patients’ data is considered for three different time points 
Visit 1, Visit 2, and Visit 3. Radiomic features which include global, GLCM, GLRLM, 
and GLSZM features are extracted using MATLAB and statistically tested between 
the individual visits using MedCalc software. Specifically, results demonstrate that the 
radiomic signatures for treatment response from Visit 2 to Visit 3 at λ = 2 and θ = 30°, 
at λ = 2 and θ = 135°, and Visit 1 to Visit 3 at λ = 2 and θ = 120° remained significant. 
Further, the SRE and SZE features at λ = 2 and θ = 30° and energy at λ = 2 and θ = 135° 
are prominent radiomic features that exhibited the discriminant power with an AUROC 
of 76.38%, 75.16%, and 71.10% respectively. In conclusion, this study has been used 
for identifying the radiomic feature that could assess the response of the treatment in 
different scales and orientations, however, this method is not used to explore scale 
and orientation in radiomics analysis. Hence, findings from this study potentially hold 
radiomic features in different Gabor settings that could help clinicians for assessing the 
treatment response that allows the identification of patients who respond to the NACT 
treatment.
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