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Abstract—Traveling salesman problem (TSP) is one well-
known NP-Complete problem. The basic simulated
annealing algorithm is improved with the four vertices and
three lines inequality to search the optimal Hamiltonian
circuit (OHC) or approximate OHC. The four vertices and
three lines inequality is taken as the heuristic information to
convert the local Hamiltonian paths in the Hamiltonian
circuit (HC) into the local optimal Hamiltonian paths and
the HC become shorter. The HCs are generated with the
basic simulated algorithm first. Then the local Hamiltonian
paths are changed into the local optimal Hamiltonian paths
with the four vertices and three lines inequality. The
algorithm of the improved simulated annealing is designed
and tested with twenty TSP instances. The experimental
results show that the better approximate OHCs are found
than those searched with the basic simulated annealing
algorithm under the same preconditions.

Index Terms—Traveling salesman problem, Simulated
annealing, Four vertices and three lines inequality.

L INTRODUCTION

The objective of traveling salesman problem (TSP) is to
find the optimal Hamiltonian circuit (OHC) in a tourist
map. It has been proven to be NP-Complete. The number
of the Hamiltonian circuits (HC) increases in proportion to
the factorial of the number of the cities in the map [1]
(given the cities are connected by routes). The TSP has
been widely studied in the fields of combinatorial
mathematics, graph theory and computer science due to its
theoretical and practical values. The efficient algorithms
are conceived and improved to resolve it within a
reasonable computation time.

The algorithms for TSP can be categorized into three
types which are the exact algorithms, the approximate
algorithms and the intelligent optimization algorithms.
With the exact algorithms, the OHC is ensured to find
whereas they are not suitable to cope with the large scale
of TSP. These algorithms include the traditional search
graph algorithms [2], linear programming methods [3] and
dynamic programming methods [4]. The experiments
illustrated that these exact algorithms are feasible for TSP
with less than 1,000 cities [5]. If the TSP scale becomes
larger, the computation time is too long or the powerful
computers must be employed. The experts have found that
the performance of the exact algorithms is hard to improve
for big TSP. The approximate algorithms cannot
guarantee to find the OHC. However, they play an
important role for large scale of TSP due to their
polynomial but not exponential time complexity. When
the local heuristic information is merged into the exact
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algorithms, the exact algorithms turn into the approximate
algorithms. The approximate algorithms for TSP include
the minimum spanning tree algorithm [6], the subset cover
algorithms [7] etc in related to graph. These algorithms
are efficient whereas the solutions they found have a big
gap from the best solutions. The k-opt (A=2, 3, 4, 5)
algorithms and the LK or LKH algorithms are the
competitive approximate algorithms for TSP [5]. It is
reported that these algorithms are robust to tackle the large
scale of TSP with thousands of cities, even with more than
3,000,000 cities [8]. The researchers also claimed that the
tours quality can not be evaluated because the OHCs of
these instances are not known.

In the end of last century, the intelligent optimization
algorithms become more and more mature. TSP is taken
as one of the best platforms to test their performance.
Almost all of the intelligent algorithms, such as the
artificial neural network [9], the genetic algorithms [10],
the simulated annealing (SA) algorithm [11], the ant
colony optimization algorithm [12], the particle swarm
optimization algorithm [13] and the consultant-guided
search algorithm [14] etc, are applied to TSP. The
intelligent optimization algorithms evolve to the best
solutions based on the evolutionary rules which are
different from the local heuristic rules used by the
approximate algorithms. The evolutionary rules are
executed to generate the best or approximate solutions
under the defined statistical formulae. The approximate
optimal solutions are usually found with the intelligent
algorithms and they are always being improved. The
memetic algorithms are the integration of the intelligent
algorithms and the local heuristics, which utilize the
advantages of the two kinds of algorithms for the large
scale of TSP [4]. The experiments show that they will find
the better solutions.

The SA algorithm is one of the efficient methods for the
continuous and discrete optimization problems. It is
derived from the simulation of the cooling schedule of
metals. The cooling process is controlled by a defined
function which is convenient to implement. In addition,
the SA algorithm has no much demand for the initial
solutions. Although it has many merits, it is always
criticized for its bad performance and slow convergence
when it is applied to the complex TSP. The basic
simulated annealing (BSA) is improved by several
researchers for TSP. Liu introduced the SA integrated
with the Tabu search to detect the better solutions. The
temperature is reduced adaptively with a temperature
control function [11]. Based on most of the edges in the
best circuit linked by neighbor cities, the probabilistic
neighborhood model was introduced by Li [15] and merge
into the optimization process of the BSA algorithm. The
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SA algorithm is also integrated with the ant colony
optimization [16] to utilize their advantages together.

To accelerate the convergence of the BSA and obtain
the better approximate OHCs, the four vertices and three
lines inequality is merged into the optimization process of
the BSA. The four point conditions for symmetrical TSP
has been summarized by Vladimir [17] under their
assumptions. The four vertices and three lines inequality is
the extension of one of the four point conditions. It can be
taken as the constraint of the local optimal Hamiltonian
paths composed of four vertices and three lines. When the
Hamiltonian circuits are generated with the BSA, the four
vertices and three lines inequality is applied to the local
Hamiltonian paths in the HCs. After the local Hamiltonian
paths are converted into the local optimal Hamiltonian
paths, the better HCs are obtained. The computation
process is executed until the OHC or approximate OHC is
found. The improved simulated annealing (ISA) algorithm
is tested with the TSP instances and compared with the
results computed with the BSA. The experiments show
that the better approximate OHCs are found with the ISA
and the convergence is also accelerated.

II. MATHEMATICAL MODEL OF TSP

The objective of TSP is to find the OHC in the map.
The map is generally represented as a weighted graph
(WG). The cities and routes correspond to the vertices and
edges in the WG, respectively. Given a complete
symmetrical WG with n vertices, the number of HCs is (n-
1)!/2. The length of the OHC is shortest among all of the
HCs. For graph G with n vertices, it is represented as
G=<V, E>. Where V=<y, v,,..., v> are the vertices sets
and E=<e., €1x3,..., em-1xn> are the edges sets. v; (1<i<n)
is the vertex and ejy; (1<i, j<n) is the edge linking the two
vertices v; and v;. Graph G is represented as the adjacent
matrix A(G)=[ajlon (1<, j<n). Where ay=1 if (v,
v)EE(G) and v and v; are adjacent in the graph G.
Otherwise, a;=0. If the edges are assigned with weights
W=[Wijj]axn, the graph G becomes one WG. The weight w;;
is often taken as distance, cost etc for various kinds of
TSP. For the symmetrical TSP, wj; is equal to wj;.

Given a HC with n vertices, it is represented as
HC™'=(vy, v, v3,..., va, v1). The HC includes all of the
vertices in the WG once and exactly once unless it is the
head and end vertices. The head and end vertices are
identical to form the HC. The other vertices between them
are the middle vertices. Given /i is the distance between
the two adjacent vertices v; and v in the HC, the
mathematical model of the Euclidean TSP is given as
formula (1).

L. = min(L(HC)) =min i L (1)
i,j=1

s.t. v, =v;ande, EE(HC)

Where L(HC) is the length of the HC, e;.(1<i, j<n) is
the edge linking the two adjacent vertices v; and vj in the
HC. For a symmetrical WG with » vertices, the number of
HCs is (n-1)!/2. It is a great challenge to find an OHC
among all of the HCs.

The HC is composed of the local Hamiltonian paths
(LHP) and the OHC includes the local optimal
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Hamiltonian paths (LOHP). The LHP or LOHP including
i vertices is represented as LHP' or LOHP' =(vy, vy, vs,...,
v;). For an arbitrary LOHP in the OHC, its two end
vertices are determined in general. Its length is the
minimum among those of the LHPs with the same vertices
in case that their two end vertices are the same. From
above analysis, we know that the LHPs in the OHC and
most of the LHPs in an approximate OHC must be LOHPs.
The four vertices and three lines inequality is used to
convert the LHP?s into the LOHP"s and a HC will become
a better HC. The local heuristic is helpful to accelerate the
convergence of BSA as well as find the better
approximate OHC.

III. THE IMPROVED SIMULATED ANNEALING (ISA)

The ISA algorithm is the combination of the BSA
algorithm and the four vertices and three lines inequality.
The framework of the ISA for TSP is given in Table 1.

TABLE L. THE PROCEDURE OF THE ISA ALGORITHM
Step The pseudo codes of the ISA algorithm
1 Generate an initial HC at random and compute its length L.

2 Set the initial and end temperature 7:=T7; and 7:=T%.

3 Set the maximum iterations of the inner loop N:=N. and
iteration index #:=1.

‘While (temperature bigger than Ty)

4

5 While (iterations less than N;)

6 Generate the next HC’ with the previous HC.
7

Compute the length L’ of the HC’ and the
absolute error AL:=L- L.

8 If (AL > 0)

9 Replace the HC with the HC’ and #:= #+1.

10 Else

11 If (exp(AL/T) > rand( ) )

12 Apply the four vertices and three lines
inequality to generate shorter HC’.

13 Replace the HC with the HC’ and #:= #+1.

14 Else

15 Discard the HC’ and #:= ¢+1.

16 End

17 Update the temperature 7:=kT.

18 End

The main steps in Table 1 are described as follows.
Step 1 is used to compute the initial HC. The numbers
representing the n vertices are chosen randomly to form
the initial HC, such as HC=(2,1,4,3,5,2) for TSP with 5
cities (vertices). The initializations of ISA are completed
before step 4. There are two computation loops in the ISA
algorithm. The outer loop is terminated by the appointed
end temperature assigned in step 2. The terminal condition
of the inner loop is the maximum computation iterations
assigned in step 3.

The next HC’ is generated at step 6. Firstly, two
different cities in the previous HC are selected at random
and their positions in the HC are exchanged. Then the next
HC’ is generated. For example, two cities 1 and 3 in the
HC=(2,1,4,3,5,2) are selected and exchanged and a new
HC’=(2, 3,4,1,5,2) is generated. If the HC’ is longer than
the HC, the 2-opt method [18] is used to change the HC
into a new a HC’. With the method, a LHP in the HC’ is
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selected at random and the vertices in the LHP are
reversed. For example, a LHP=(3,4,1,5) in the HC’ is
chosen and reversed and the next new HC’=(2,5,1,4,3,2) is
produced. The two operations to generate the HC’ are
executed once in one computation cycle. The new HC’ is
maintained if it conforms to the conditions at step 8 or
step 11. Otherwise, it will be discarded at step 15.

exp denotes the base of the natural logarithms and the
value is assigned as 2.71828. The four vertices and three
lines inequality can be applied to the HC’ once it is
generated. In the ISA algorithm, it is placed at step 12 to
change the HC into a shorter HC’. The principle of four
vertices and three lines inequality is illustrated in Fig. 1.

Given at least two HC exists in the WG, the two
different HCs with n vertices are shown in Fig. 1 (a) and
(b) The HC in F1g 1(a)i Is the OHC. One of the LOHP*s
in the Fig. 1 Sa) is LOHP* =(Vit, Vi, Vi, Vi) (2<i<n, 1<j<n-
1). The LHP"=(vi.i, v}, v}, vj+1) in Fig. 1 (b) includes the
same four vertices v, Vj, Vi, vj+1 and the positions of the
two middle vertices are different from those vertices in the
Fig. 1 (a). Given the two dashed paths LHP™s are
identical except the LOHP* and LHP®, the length of the
two LHP™s are equal and they are noted as L in the Fig.
1 (a) and (b). For the LOHP* and LHP* , lixj 1s the length of
the edge ej. Two pairs of three edges €(i-)xis Cix> Ejx(j+1)
and e.1)xj, €jxis Cix(jt1) hnk the four vertices vi.i, vj, vj, Vil in
the LOHP® and LHP® The length of the LOHP is
computed as [i_1«i+lij+ixg+1) and the length of the LHP" is
computed as [i1t«itlix+1). Because the length of the
OHC is shorter than or equal to the length of the HC, the
four vertices and three hnes inequality holds as formula
(2). An arbitrary LOHP* in the OHC conforms to the
pr1n01p1e of the four vertices and three lines 1negual1ty It
is the heurlstlc information to change the LHP" into the
LOHP?, and the shorter HCs will be obtained.

Lictyit LSt Dixitlix+ny 2
Vi li><j Vi
Lty i<y
Vil Vit
\\\ Lrest
[ O
Vi Vh

Vj+1

Vi Vn
(b)

The four vertices and three lines inequality

Figure 1.
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Because the OHC is composed of the LOHPs, the OHC
is also taken as the combinations of the n LOHP*s. The
four vertlces and three lines 1nequa11ty is used to transform
the LHP*s into the LOHP' to generate the shorter
approximate OHCs. It notes that the function of four
vertices and three lines inequality is equal to the 2-opt
method [18] when a LOHP is taken as the edge e;.;. Based
on the four vertices and three lines inequality, we can
understand the intrinsic efficiency of 2-opt method. It
always changes a LHP into a LOHP to generate the OHC
or approximate OHC. As we know, the number of LOHPs
is much less than that of general LHPs. It is unfortunate
that the LHP*s still exist after 2-shift of vertices and edges.
The four vertices and three lines 1nequahty is applied to
the LHP*s and change them into the LOHP’s.

When the inner loop is completed at step 16, the
temperature is updated at step 17. k is the factor of
temperature decrement, and it is less than 1 to ensure the
temperature become smaller and smaller. The assignment
of parameter k is important to determine the convergent
rate of SA algorithm. The ISA converges to the OHC or
approximate OHC once the temperature 7' is equal to or
less than the end temperature 7%.

IV. ILLUSTRATIVE EXAMPLES

The TSP instances are downloaded from the website:
www2.iwr.uni-heidelberg.de/groups/comopt/software
/TSPLIB95/tsp/. These TSP instances are used to illustrate
the performance of the ISA. The ISA algorithm is coded
with C++ language and runs on the Lenovo computer with
processor 2.3GHz and inner memory 2G. The BSA
algorithm is also coded and executed on the same
computer for comparisons. The parameters of SA
algorithm are set as those in Table []. The initial HCs are
generated at random. For different TSP instances, the
initial temperature and computation cycle of inner loop
are set as different values.

TABLE II. THE PARAMETERS OF THE IMPROVED SA ALGORITHM
Initial End Maximum Factor of
temperature temperature cycle of inner temperature

To T: loop N, decrement k
Citynumx15 0.0001 Citynumx500 0.99

The experiments are tried for the selected twenty TSP
instances and the computation results with the two
algorithms are shown in Table [ and Table []. The length
of the OHC or approximate OHC is computed with real
numbers of city coordinates. The integer parts of the
length are maintained and the decimal parts are neglected.
The sequences of OHC of some TSP instances are given
[5] and their length is also computed with the real
numbers of the city coordinates. They will be larger than
those of the length computed with the integers of the city
coordinates. For the TSP with unknown sequence of OHC,
the given length of OHC computed with integer
coordinates are shown in Table [J and Table [1. To show
the distinctions of performance between the ISA and BSA,
the error of the approximate OHCs to the OHC is defined
as Error= (L(HC)-L(OHC))/L(OHC)*100%. Where L(HC)
represents the length of the searched approximate OHC
and L(OHC) is the length of the given OHC. For the
selected TSP instances, the errors of the results are
computed and shown in Table [] and Table [].
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TABLE III. LENGTH OF THE APPROXIMATE OHCS DETECTED WITH
THE ISA ALGORITHM

TSP ISA algorithm OHC
instances Approximate OHC Error 1%
Berlin52 7544 0 7544
St70 677 0 677
Eil76 544 0 544
Pr76 108159 0 108159
Rat99 1220 0.74 1211
KorA100 21285 0 21285
kroB100 22139 0 22141
KroC100 20750 0 20750
KroD100 21309 0.07 21294
Pr107 44324 0.05 44301
Pr124 59030 0 59030
Ch130 6110 0 6110
KroA150 26851 1.23 26524
KroB150 26263 0.51 26130
Rat195 2359 1.55 2323
KroA200 29548 0.61 29368
KroB200 29461 0.08 29437
TSP225 3933 0.33 3920
Pr264 49135 0 49135
A280 2627 1.58 2586

TABLE IV. LENGTH OF THE APPROXIMATE OHCS DETECTED WITH

THE BSA ALGORITHM

TSP BSA algorithm OHC
instances Approximate OHC Error 1%
Berlin52 7544 0 7544
St70 682 0.74 677
Eil76 544 0 544
Pr76 109187 0.95 108159
Rat99 1221 0.83 1211
KroA100 21344 0.28 21285
KroB100 22509 1.66 22141
KroC100 20852 0.49 20750
KroD100 21442 0.70 21294
Pr107 44575 0.62 44301
Pr124 59181 0.26 59030
Ch130 6184 1.21 6110
KroA150 26920 1.49 26524
KroB150 26513 1.47 26130
Rat195 2376 228 2323
KroA200 29754 1.31 29368
KroB200 29693 0.87 29437
TSP225 3950 0.77 3920
Pr264 50028 1.82 49135
A280 2637 1.97 2586

In view of the computation results, it is found that the
better approximate OHCs are found with the ISA
algorithm. With the BSA algorithm, most of the LHPs in
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the approximate OHCs conform to the four vertices and
three lines inequality whereas a smaller number of LHPs
do not. When these LHPs are adjusted with the four
vertices and three lines inequality, the shorter approximate
OHCs are obtained. On the other hand, the performance of
the ISA is determined by the BSA. The four vertices and
three lines inequality is helpful when the LHP’s in the
HCs violate it. In addition, the executive times of the four
vertices and three lines inequality affect the computational
results. Once the executive times of four vertices and three
lines inequality is changed, the computational results are
different. It is also found that the parameters of the SA
algorithm play an important role to affect the quality of
the approximate OHCs. When the parameters are changed
slightly, the different approximate OHCs are generated.
The two contents will be researched in the future.

For the Eil76 and A280, the change of the HCs
computed with the ISA and BSA algorithms are illustrated
in Fig. 2 and Fig.3. The x-coordinate is the computation
cycles and the y-coordinate is the length of the
approximate HCs. Before the two algorithms converge to
the same approximate OHCs, the ISA algorithm always
finds the better approximate HCs. It is verified that the
convergence of ISA is faster than that of the BSA in the
same preconditions. For Eil76, before the 1500™
computation cycle, the two algorithms converge to the
OHCs. For the A280, the ISA finds a better approximate
OHC than the BSA does. The computation results
illustrate that the performance of the ISA is better than
that of the BSA. The optimization processes of the other
TSP instances have the similar change.

3500
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Length of HC
—_ (3] (3]
W (=3 wn
S S S
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Figure 2. The changes of the HCs generated with the ISA and BSA
algorithms for Eil76
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Figure 3. The changes of the HCs generated with the ISA and BSA
algorithms for A280
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V. CONCLUDIONS

The ISA method is the integration of the BSA
algorithm and the four vertices and three lines inequality.
It shows better performance than the BSA for TSP. The
four vertices and three lines inequality is convenient to
implement to change the LHPs into the LOHP*s and
make the HC become shorter. The performance of the ISA
is better than that of the BSA and it nearly always finds
the shorter approximate OHCs (or OHC) than the BSA
does under the same preconditions. From the experimental
results, the ISA algorithm detects the shorter approximate
OHCs than those searched with the BSA algorithm in
most cases. Of course, the assignment of the parameters is
appropriate. The convergence of the ISA algorithm is
faster than that of the BSA algorithm.

The authors find that the performance of the ISA is
affected by the position and executive times of the four
vertices and three lines equality in the algorithm. It will be
focused on in the future to improve the performance of
ISA. In addition, the assignment of the SA parameters also
plays an important role to affect the performance of the
ISA. The selection of an appropriate set of parameters will
be researched through experiments. In addition, the ISA
will be tested with large scale of TSP.
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