
PAPER
INTEGRATIVE EDUCATIONAL APPROACH ORIENTED TOWARDS SOFTWARE AND SYSTEMS DEVELOPMENT

Integrative Educational Approach Oriented
Towards Software and Systems Development

http://dx.doi.org/10.3991/ijep.v3i1.2345

A.J. Stoica1 and S. Islam2
1 Uppsala University, Uppsala, Sweden

2 University of East London, London, United Kingdom

Abstract—The paper is based on our academic teaching and
research work in software and system engineering to effec-
tively develop modern, complex real-life Web application
systems. It bridges the gap between academic education and
industry needs and illustrates how such collaboration can be
successfully developed in the IT area where technology
development is rapid. Its scope covers the processes, models,
technologies, people, and knowledge that have the capability
to contribute to developing such systems. The paper also
relates to contributions of some of Harlan D. Mills award
recipients for software engineering achievement, to address
the needs to: i) improve the engineering education in an
academic setting, and ii) develop real-life software and
system projects. Hybrid educational methods are applied
for student learning that combine class room approach of
teaching fundamental theoretical concepts and practice via
real world complex projects embedding intelligence in
software and systems products. System thinking demanded
by modern design philosophies is applied to interlink prod-
ucts, software, and people. Student groups are developing
their projects in an interactive and collaborative manner.

Index Terms—software and system engineering education;
software theories and methods; teaching and learning
strategies; systems platforms and architectures; Web-based
software; teamwork

I. INTRODUCTION

The increasing pace of change in information technol-
ogy (IT) and the needs to globally address these changes
in the engineering education have guided us to improve
the engineering education in an academic setting taking
also into account the companies needs to apply these
methods for real life software projects. Therefore, teach-
ing software and systems engineering is a complex and
difficult task due to great deal of materials in variety of
concepts and methods and demonstrate the applicability of
the methods in a real project context. Thus learning and
teaching through class room teaching is necessary to be
further developed for the students to gain knowledge and
skills from practical understanding.

The paper is based on our experience related to the the-
ory and practice of computer engineering education,
focusing at educational methods for Web Application
Systems (WAS) development applied for i) projects
designed in an academic environment for educational
purpose, as well as for ii) real-life (company-related)
projects. The paper presents the concepts, models, and
tools integrated in a systemic approach and the lessons
learned from teaching by doing, maintaining the balance

between conceptual and operational aspects in software
engineering education.

In our educational work, we are guided by: i) lifelong
learning preparing our students for applications-oriented
careers, working in all levels of computer systems engi-
neering in particular software and systems engineering
domain; ii) contributions Harlan D. Mills award recipi-
ents: Bertrand Meyer for practical and fundamental con-
tributions to object-oriented software engineering, soft-
ware reuse, and the integration of formal methods into the
above; Barry Boehm for developing empirical software
engineering models that consider cost, schedule, and
quality, as well as software process spiral model, Theory
W and the MBASE approach; Lionel Briand for his work
on model-based testing and verification; David Parnas for
fundamental contributions to large-scale system develop-
ment by establishing software engineering as an engineer-
ing discipline.

This paper is structured as follows. Section II presents
software and systems engineering in the academia. Sec-
tion III provides our curriculum approach and educational
strategies. Section IV is dedicated to our activity related to
applied methods for software and system development: a)
theoretical concepts, models, and tools; b) practical pro-
jects having real customers. Section V presents experience
gained and lessons learned. Finally, discussions and
conclusions are presented in Sections VI and VII.

II. SOFTWARE AND SYSTEMS ENGINEERING IN

THE ACADEMIA

Software engineering is the engineering discipline con-
cerned with the application of theory, knowledge, and
practice to build effectively and efficiently quality soft-
ware that satisfy the stakeholders’ requirements. The
development can be associated to large, medium or small
systems intended for use in production environments, over
a possibly long period, worked on by possibly many
people, and possibly undergoing many changes. Software
system development includes management, maintenance,
validation, documentation, and so forth. Software profes-
sionals certainly play an important role for producing and
maintaining the final software product throughout the
software life cycle.

Systems engineering here is concerned with the plat-
form (infrastructure) on which the application software is
developed, hardware components that are needed, net-
work and communication hardware and software as well
as the integration of the above with the developed applica-
tion software. Security, dependability, cost, schedule, and
high performance are also included [17, 24]. Software and

36 http://www.i-jep.org

http://dx.doi.org/10.3991/ijep.v3i1.2345�

PAPER
INTEGRATIVE EDUCATIONAL APPROACH ORIENTED TOWARDS SOFTWARE AND SYSTEMS DEVELOPMENT

system engineering consider both the business and the
technical aspects of all customers with the goal of provid-
ing a quality product that meets the user needs [19, 24, 25,
26, 27].

The academic institutions role is: i) to produce com-
puter engineering professionals who will build and main-
tain these systems to the satisfaction of their beneficiaries;
ii) to provide active learning environment in particular
encourage teamwork so that students will be more likely
to understand the concepts and practice; iii) to train people
who will belong to the top tier, taking into account that
software engineering literature confirms that ratios of 20
are not uncommon between the quality of the work of the
best and worst developers in a project, distinguishing the
true software professional from the occasional program-
mer. Furthermore the academic institutions should also
teach the students fundamental modes of thought that will
accompany them throughout their careers and help them
grow in an ever-changing field. As in hardware design,
the technology evolves, but the concepts remain.

III. CURRICULUM APPROACH AND EDUCATIONAL

STRATEGIES

A. Goals of Software Engineering Curriculum
Based on [11] and our practical and academic experi-

ence, we present the following goals of a Software Engi-
neering curriculum:

Principles - lasting concepts that underlie the whole
field, such as: abstraction; distinction between specifica-
tion and implementation; recursion; information hiding;
reuse; complexity; scaling up; designing for change;
classification; typing; exception handling

Practices - problem-solving techniques that good pro-
fessionals apply consciously and regularly such as: con-
figuration management; project management; metrics;
ergonomics and user interfaces; documentation; user
interaction; high-level system analysis; debugging

Applications - areas of expertise in which the principles
and practices find their best expression like traditional
specific areas of software techniques: fundamental algo-
rithms and data structures, compiler writing, operating
systems, database systems, Web-based systems, AI tech-
niques, numerical computing

Tools - state-of-the-art products that facilitate the
application of the principles and practices. The exposure
of students to the tools should proceed with a critical
spirit, and their study should be understood as the study of
a few examples in light of more general principles.

Mathematics - the formal basis that makes it possible to
understand everything else: i) applying mathematical
reasoning to software development; ii) modeling software
issues in mathematical terms; iii) the engineering side of
software engineering implies teaching mathematics com-
mon to engineering education: calculus, discrete mathe-
matics, applied probability and statistics, logic, and nu-
merical methods.

Besides formal courses, our curriculum contains a
software system development project course with real
customers. The course consists of developing long-term
group projects in year 4 that include aspects of require-
ments engineering, analysis, system design, testing, and
implementation, using models, processes, and tools for IT

projects. Architectural models for development of sophis-
ticated Internet applications are also included. In conclu-
sion, our software engineering curriculum maintains
balance between the principles and the techniques or
between conceptual and operational areas in order to be: i)
scientifically founded; ii) technically up to date; iii) firmly
rooted in the field’s practice.

B. Software and System Development Courses
Our undergraduate program in computer engineering

contains courses that cover the previously mentioned
goals: principles, practices, applications, tools, and
mathematics. Specific software and systems development
classes scheduled in the last two years of the undergradu-
ate computer engineering program are:

Software Engineering basic course - discusses a com-
prehensive spectrum of software engineering topics and
techniques.

Analytical Methods in Software Engineering – ad-
vanced level course on analytical models and methods
used to study how the software factors interplay with
economic and human factors in the context of various
approaches to the software process.

IT Project Management, Models, Processes, and Tools
– provides theoretical knowledge connected to IT project
management of modern, complex, n-tier, Internet-based
applications and systems.

IT Project Development – practical project develop-
ment work performed in parallel with other courses during
periods 2 and 3 in the last year of undergraduate studies.
The course is based on the application of knowledge and
skills acquired by students through their undergraduate
program in computer engineering in order to develop real-
life complex team projects connected either to applica-
tions in the academia or to applications generated in
collaboration with IT companies.

These projects are completed before the final individual
graduation thesis work in period 4.

Our basic course follows the Software Engineering
Curriculum Report specified by IEEE Computer Soci-
ety/ACM Computing Curricula for undergraduate degree
program in Computer Engineering ”CE 2004 Final Re-
port”. The other two courses extend the basic software
engineering course with theoretical concepts, analytical
methods, models, and tools, in order to give the students
the knowledge to work with complex real projects, in
particular to develop modern, complex web application
systems [17]. The objectives of our specific above men-
tioned package in software and system engineering are:
 Educate undergraduate engineering students with

software and system engineering knowledge, prac-
tice, and skills that are useful for them to become en-
gineering professionals

 Cultivate, improve, and deploy best practices to meet
their future business goals

 Active learning through real-life projects to achieve
as a major output of their education - timely project
delivery to satisfied customers as active partners of
their education together with their academic institu-
tion. Use the “practices” concept from real-life in
their education by teaching and actively using proc-
esses, methods, tools, and concepts to improve their

iJEP – Volume 3, Issue 1, January 2013 37

PAPER
INTEGRATIVE EDUCATIONAL APPROACH ORIENTED TOWARDS SOFTWARE AND SYSTEMS DEVELOPMENT

projects, skills, work processes, and work products
created and/or acquired.

 Projects development with two main product im-
provement criteria: quality and productivity that re-
quire improving: i) processes; ii) people and behav-
iors; iii) technology and tools.

C. Teahing and Learning Strategies
We follow the Facilitation theory [21] for the effective

teaching and learning. In particular, lecturer would more
able to listen to learners, especially to their feelings and
accept feedback from the students. On the other hand,
learners should also take the responsibility for learning
and provide much input for their learning during the
tutorial tasks, open question sessions, and project works as
well as reflect their understanding in course work and
exam. Therefore learners construct his or her own learning
through relevant learning activities and lecturers should
provide accurate learning environment to support the
learning activities [22]. We also follow Sensory stimula-
tion theory [21] where students learn through observing
and hearing which is the most effective way to learn.
Reinforcement theory is also applicable in our context as
students are always given feedback at end of the tutorial
tasks and positive remark for the correct answer during
the lecture session.

Our integrative educational approach is also related to
competence based education [29] or learning in relation
with a professional context. In our undergraduate program
in computer engineering, we use project based education -
students develop their final real-life team projects using
the knowledge acquired during their studies. They are
further developing problem solving, critical thinking
skills, oral and written communication skills, teamwork,
and follow a variety of laboratory sessions that are essen-
tial to the study of computer engineering. Therefore, the
learning process often consider experimental learning
using practical experience from the case study. Using
active learning [23] as a fundamental educational method
we develop our cooperation as an educational institution
with industrial organizations by including in our curricu-
lum real-life software and system development projects
that provide a strong undergraduate program in computer
engineering with two final specializations: i) software and
ii) system (networking) engineering respectively.

IV. ACTIVITY RELATED TO APPLIED METHODS

FOR SOFTWARE AND SYSTEM DEVELOPMENT

A. Theoretical Concepts, Models and Tools
There are several theoretical concepts, models, and

tools that we include in our software engineering curricu-
lum such as:
 Object-Oriented Analysis and Design (OOAD) [7],

Unified Modeling Language (UML) [8,12], Unified
Software Development Process (USDP/RUP) [9, 10]
and associated Rational Suite Tools

 Model Based (System) Architecting and Software
Engineering (MBASE) integrates models associated
to: success, process, product, and properties of soft-
ware and system development. Identifies and avoids
model clashes (incompatibilities among the underly-
ing assumptions of a set of models which produces
conflict, confusion, mistrust, frustration, rework,

throwaway systems) [3,4, 5]. MBASE can be ex-
tended to include relevant models/frameworks [14,
16,19]. Fig. 1 presents examples of classes of models
used in software system engineering. Fig. 2 illus-
trates possible model clashes in software system en-
gineering.

MBASE includes compatible adaptations of:
 the stakeholder Win-Win model [2]
 the DMR Benefits Realization Approach [18]
 elements of Unified Software Development Process

[10,13]
 concepts such as Object-Oriented Analysis and De-

sign, [7], Unified Modeling Language [8, 12]
 the COCOMO II suite of software cost estimation

models [6]
 Spiral Model with its associated anchor point mile-

stones and risk management models [1].

The basic steps of Model-Based Architecting and Soft-
ware Engineering (MBASE) are:
 Identify success-critical stakeholders, their shared

vision and value propositions
 Establish people, process, and product plans
 Monitor progress & environment with respect to vi-

sion elements and plans and apply corrective actions
(shared vision, plans, experience-based updates) as
necessary.

Figure 1. Classes of models used in software system engineering

Figure 2. Models and model clashes in software system engineering

38 http://www.i-jep.org

PAPER
INTEGRATIVE EDUCATIONAL APPROACH ORIENTED TOWARDS SOFTWARE AND SYSTEMS DEVELOPMENT

Examples of model clashes in software and system de-
velopment are: i) property model clashes such as mini-
mize cost and schedule and maximize quality; ii) process
model and success model clash such as waterfall process
model and ”I’ll know it when I see it” (IKIWISI) proto-
typing success model. There are several models we used
in our projects:
 Success models: in general Win-Win centered. Other

success models were used for specific projects.
 Process models: Win-Win Spiral Process or Unified

Software Development Process
 Product models: Unified Modeling Language, Object

Oriented Analysis and Design, database models,
network architecture models and user interface mod-
els.

 Property models: schedule, effort, risk models.

There are success models such as Win-Win which de-
pend on Theory W Software Project Management [2].
This theory explains the conditions to make every stake-
holder a winner and is the theoretical foundation of the
Win-Win approach. Applying the Win-Win model allevi-
ates conflicts such as: i) customers requiring low budget,
quick schedule, and ii) maintainers requiring well-
documented software systems, no bugs. The solution is
using Win-Win collaboration and negotiation model and
negotiation media such as Face-To-Face, telephone, Win-
Win software, other computer media. Figure 3 shows the
Win-Win negotiation model. Applying the Win-Win
negotiation model implies that agreements are generated
as the result of a process which consists of several basic
steps:
 Identify stakeholders
 Identify primary Win Conditions (WinC)
 Identify Issues needing resolution
 Offer Options as potential solutions
 Negotiate (”together”) to reach Agreements.

Everything above is referred to Taxonomy and is used
to develop and review major software and system devel-
opment process milestones such as Life Cycle Objectives
(LCO) and Life Cycle Architecture (LCA). An example of
a Win-Win situation can be letting maintainers act as
quality managers during development. Developers think
quality management is boring and maintainers think
quality management is exciting as it makes their future
work easier.

A comparison between Win-Win Spiral and IBM
RUP processes is given below:

Win-Win Spiral Process
 Architecture centric
 Cyclic, in particular each cycle is Win-Win and risk

driven
 Process major milestones: LCO, LCA and IOC hav-

ing milestone components defined by the MBASE
Guidelines.

Rational Unified Process (RUP)
 Architecture centric
 Use case-driven model
 Iterative, each iteration is like a mini-waterfall

Figure 3. Win-Win negotiation model

 Four stages each consisting of >1 iterations of the
software at that stage of development

 Project major milestones: LCO, LCA, and IOC, and
numerous artifacts from Rational Process Library.

Both processes are i) based on best practices adopted in
software projects, avoiding inventing everything from
scratch and reusing processes that have been successful
for other organizations; ii) architecture centered, use case
driven, iterative, and risk driven. Win-Win Spiral may, but
does not need to be based on use cases. Milestones and
their very general goals are similar. Resulting artifacts
differ significantly between the two processes (not just the
names but content also). Win-Win Spiral Process is con-
nected to the success, product, and property models. RUP
Process is connected only to product models (e.g. UML
models).

MBASE is more abstract - a conceptual framework for
model integration that includes Win-Win, model clash
analysis, and risk analysis. Associated to MBASE are
Guidelines (for LCO, LCA, IOC deliverables), Electronic
Process Guide, and tools (Model Guide, Process Guide,
Active Templates).

RUP is more concrete - an implementation of the best
practices. The IBM Rational Method Composer allows to
customize RUP to meet unique needs of a project. Alter-
native process models such as: Waterfall, component-
based development (COTS), rapid application develop-
ment for hardware-oriented components (DSDM), and
Extreme Programming (XP) are possible to be used but
their application was not considered to be compliant with
the nature of the projects under development that can vary
from year to year. As an example, in the Software Engi-
neering course students were divided into project groups.
Each group planed and designed a software solution. Two
different software and system development approaches
were considered – MBASE and IBM RUP. The projects
using the MBASE approach were: Fire & Security Sys-
tem, and Newspaper Delivery System and the projects
using the RUP approach were: Program Invocator Agent /
Workspace Handler, Fire Alarm System, Networking
Game, and Newspaper Delivery System.

B. Practical Projects Having Real Customers
The IT Project Management, Methods, and Tools

course had two parts: i) Part 1 – teaching theoretical and
practical knowledge connected to managing the develop-
ment of modern, complex software and systems, in par-
ticular Web based application systems, and ii) Part 2 –
active learning by applying the knowledge from Part 1 as
well as the knowledge from the other courses from the
computer engineering undergraduate curriculum for

iJEP – Volume 3, Issue 1, January 2013 39

PAPER
INTEGRATIVE EDUCATIONAL APPROACH ORIENTED TOWARDS SOFTWARE AND SYSTEMS DEVELOPMENT

developing the students’ final practical real-life complex
projects. In the second part of the course, 100 students
participated in real projects. The students were divided
into 8 groups. After attending Part 1 of the “IT Project
Management, Methods, and Tools” course the students
responded to a survey regarding the provided theoretical
and practical guidance for reasoning about the main
aspects of complex software and system development
projects in practice: management, methods, models, and
tools. At the end of Part 2 of the course, a one-day work-
shop was scheduled for all project stakeholders with the
following goals: final project presentations, discussions,
and evaluations. Each project group consisted of two
subgroups: i) software subgroup and ii) system (network-
ing) subgroup. The system subgroup built the infrastruc-
ture (complete network structure: hardware and software).
The software subgroup built an application based on that
infrastructure. The technology used in projects, if not
stated otherwise was Web-based clients, n-tier, and Java
(J2EE) for server-side programming.

In the following, we provide details and results con-
nected to applying our educational methods for software
and system development for real-life projects in the fol-
lowing areas: (1) Project Descriptions, (2) Partial Results
Obtained in the Inception Phase, (3) Use of Tools, and (4)
Project Specific Workflows.

1) Project Descriptions
We illustrate the application of our educational methods

for software and systems development in what follows.
The following real-life (company related) projects were
developed:
 E-Commerce System – module-based, B2B, B2C

system.
 Tool for Project Management – modules for plan-

ning resources, time reporting and the like.
 WAP Service – for a major service provider. Services

already available via the provider’s Web-site such as
making or cancelling reservations, getting info about
events, were to be made accessible via WAP.

 Estimation Tool – implementation of an algorithm
calculating Use Case Points (UCP) as a means to es-
timate the development effort needed for software
projects.

 General Web Shop – implemented for a world-wide
non-profit organization, Consisted of WAP-services
design and implementation in addition to building a
Web interface.

 Customer Relationship Management Solution (CRM)
- a prototype of a framework, ordered by a consulting
company.

 Knowledge Management (KM) Solution - a prototype
of a framework, ordered by a consulting company.

 Knowledge Tracking Application – for planning and
following up individual competence plans in a major
company.

2) Partial Results Obtained in the Inception Phase
In the first phase (Inception) of the software and devel-

opment process we present the main (partial) results
synthesized from the above-mentioned real-life projects.
 Win-win – all stakeholders win conditions were iden-

tified and documented.

 Requirements – elicitation enough for prototype
building.

 Use case models – actors and main use cases were
identified.

 Analysis models – use case diagrams, sequence dia-
grams and data model were developed.

 Initial risk analysis – main project risks lists were
identified and presented in tables

 Process models – all projects used the RUP process
model.

 Prototyping – most project groups made Graphical
User Interface (GUI) prototypes for checking cus-
tomer requirements.

 Architecture – n-tier Web Systems architecture was
found feasible for all projects.

 Project planning – project resources were estimated
and allocated.

 Tool selection – MS Source Safe (used by three pro-
ject groups) in order to manage the artifacts. Rational
Rose, different prototyping tools were also applied.

3) Use of Tools
All software and systems development project groups

used tools as state-of-the art products that facilitate the
application of the principles and practices. The applied
tools were of two categories: i) recommended tools, and
ii) additional tools.

a) Recommended Tools
Rational Rose – every group used it for e.g. use-case

modeling, sequential and class diagrams.
RUP – every group used it as a reference as well as the

accompanying templates.
Requisite Pro – one group evaluated but concluded it

was to short time to learn and implement it during the
allocated project time.

MBASE – approach was used as framework concept
only.

Win-Win – was used as a negotiation technique (tool
was not available in Windows architecture).

COCOMO II – was not used because of time con-
straints and lack of experience.

b) Additional Tools
JBuilder or Visual Age – every group used it. Java was

used because it is adequate for developing Web based
solutions and students had previous knowledge about it.

Data modeling tools – for example Sybase Power De-
signer, MS Visio Technical, Direct Modeler. Data model-
ing course used ER – modeling, not UML.

MS Source Safe – was used for code version handling.
MS Excel –was identified to be adequate for project risk

list handling.
Microsoft Project – was used for project scheduling.

4) Project Specific Workflows
We present the following project workflows associated

with software and system development of the real-life
projects specifications.

Feasibility Study – was based on the stakeholders Win-
Win approach.

40 http://www.i-jep.org

PAPER
INTEGRATIVE EDUCATIONAL APPROACH ORIENTED TOWARDS SOFTWARE AND SYSTEMS DEVELOPMENT

Business Modeling – was primarily used by the Cus-
tomer Relationship Management (CRM) project group.

Requirements were:
 Gathered through brainstorming/meetings/use case

seminars with the customer, and studying the domain
literature.

 Validated through feedback on draft requirements
documents and prototypes (close to the Win-Win ap-
proach).

 Documented in use case models and supplementary
specifications stating the non-functional require-
ments.

 Analysis and Design workflow consisted of:
 Analysis
 Modeled in: logical data model, use case model, se-

quence and collaboration diagrams.
 Architecture
 Modeled in: use case models, sequence diagrams,

class diagrams and network diagrams. It consisted of:
n-tier, Web clients (two project groups had WAP cli-
ents); J2EE was used at server side.

Implementation – consisted of 2-3 iterations.
Testing – non-automated testing of use cases was ap-

plied.
Configuration and Change Management – three project

groups used MS Source Safe, the other project groups
used non-automated methods.

Deployment workflow was based on:
 Operating Systems: Windows 2000 server or Unix
 Application Servers: Bea WebLogic, IBM Web-

Sphere or JBoss (freeware)
 Web Servers: Apache
 Data Base Management Systems: Hypersonic (free-

ware, Apache-connected), MS SQL Server, MS Ac-
cess or IBM DB2

Project Management workflow – followed the associ-
ated course methodology.

Environment workflow consisted of:
 Integrated Development Environment (IDE) for Java

programming:
o Borland JBuilder or Visual Age
 Developing infrastructure:
o 4 PCs for each group, usually in the roles of: Web,

Application, and Database Servers
o Network configuration
o Firewall software.

Figure 4 shows as an example of one of the projects’
system architecture.

V. EXPERIENCE GAINED AND LESSONS LEARNED

In this section, we present the experience gained and
lessons learned designing educational methods for soft-
ware and system development applied to complex Web
based real-life projects.

A. Experience gained
The following main areas have been identified. These

are:

Figure 4. Project system architecture

1) Planning
Overall, all the project teams showed evidence that the

time spent on the early phases of software and system
development is highly relevant for the project success
since it saves considerable resources/ time afterwards.

2) Documentation
The project teams’ work confirmed that documentation

is not merely formalism for the customer. There is an
important feedback engineers/ developers can get from it
in later phases. Keeping that in mind, motivation for
project documenting/planning should be present during
the whole software and system development process.

3) Process
One of the key problems in the development projects

was identifying requirements. Solution: using a Win-Win
requirement negotiation approach.

4) Technical problems
Concerning the technical problems these were more

common, especially due to lack of experience with spe-
cific techniques. Solution was often to try out more than
one technique in parallel and choose the one that worked
best under the project constraints.

B. Lessons Learned
Our evaluation results showed that
 Effort must be dedicated to understanding processes

and frameworks.
 Effort is also needed for the model adaptation to

specific projects based on theoretical background in
various areas (such as software and system project
management, database systems, distributed systems,
computer security, network components…).

 The students’ lack of experience must be compen-
sated. One way is step by step guidance using e.g.
checklists, process guidelines, templates, and exam-
ples.

 The iterative process demands knowledge in all ar-
eas from start - hard for the students. An experienced
project mentor was added to each project group.

 The projects could use more tool support, but there
is a problem in having time to learn additional tools.

 The applied teaching and learning theory, i.e., facili-
tation theory, sensory stimulation theory, and rein-
forcement theory were well applied in our context.

iJEP – Volume 3, Issue 1, January 2013 41

PAPER
INTEGRATIVE EDUCATIONAL APPROACH ORIENTED TOWARDS SOFTWARE AND SYSTEMS DEVELOPMENT

VI. DISCUSSION

A. Planning
To our knowledge, we are the first to introduce these

educational methods in computer engineering education
(software and systems) in the last year of the undergradu-
ate study program by:
 Designing final degree projects
 Having the theoretical part well assimilated by the 3 -

course package (scheduled during periods 1 and 2 in
the final academic study year)

 Thoroughly assessed by course labs and exams prior
to the complex software and system projects

 Software and system development projects planned
and executed during periods 2 and 3

 Close interaction with the customers (companies)
and followed up by both academic teachers and
company representatives during periods 2 and 3

 Final workshops – pedagogical, scientific, and prac-
tical events organized like real- life high level profes-
sional events in these areas.

B. Implementation
We address the increasing pace of change in informa-

tion technology and the need to globally address these
changes in improving engineering education by:
 designing educational methods for software and sys-

tem development in an academic setting;
 helping students become effective in such skills as: IT

project management, process definition, client inter-
action, requirement negotiation, software and system
architecture, project organization and planning,
product validation and transition;

 taking into account the IT companies needs to apply
these methods for real-life projects.

We focus on software and systems development for
Web Application Systems [17] and apply a systemic
approach of methods, models, and tools integration called
Model Systems (MS) [15, 19]. We use a deep learning
approach via active learning that contributes to increasing
the quality of the learning outcomes and provides a learn-
ing environment that improves students’ performance.

Our educational strategies are:
 applying teaching-by-doing in order to achieve a bal-

ance between operational and conceptual aspects;
 involving students in a full software and system de-

velopment life-cycle;
 using risk-driven process models for all projects

(academic and/or real-life company-related).

Our area of application is IT undergraduate education
in software engineering and networking engineering. We
involve all the main stakeholders: 1) academic teachers; 2)
software and system Web developers (student teams); 3)
project beneficiaries (customers represented by IT com-
panies). We assess and evaluate our common work and
final results by organizing one-day workshops for final
project presentations scheduled at the end of the under-
graduate curriculum in computer engineering. Our pro-
jects meet the requirements for Web-based application
systems such as: e-commerce, consumer Web, mobile and
software as a service areas. These are well illustrated by

the project descriptions from previous years and validated
by the workshop practical results.

The one day workshop is organized as follows:
 Final project presentations by team leaders followed

by practical demos;
 Project work discussion and evaluation by the other

project stakeholders;
 Conclusions and suggestions for further improve-

ments.

As a result of the workshop, the students learn from the
other project experiences, compare their work with the
work done by other fellow students, and develop their
communication abilities. The academic teachers advice
and evaluate the students as well as use the workshop
outcomes for validating their educational methods. The
customers evaluate the quality of the project outcomes,
make useful suggestions and help the students become
familiar with their future work environment. Based on the
workshop results, we have a positive feedback regarding
our educational methods for software and system devel-
opment. Recent career news from the IEEE Computer
Society [20] show that the most sought positions after
2012 are software engineers and Web developers, and
high quality creative design and user-experience person-
nel. This confirms our role as academic institution to: i)
teach fundamental modes of thought to the future software
and system professionals in the above mentioned areas
that will successfully built and maintain systems to the
satisfaction of their beneficiaries, and ii) educate people
who will belong to the top tier.

VII. CONCLUSION

In this paper, we have presented educational methods
for software and systems development of Web based
applications using models, processes, project manage-
ment, and tools. Class room approach of teaching funda-
mental theoretical concepts and practice via real world
complex projects are applied for student learning in soft-
ware and systems engineering education. The practical
results designing and implementing real-life projects
based on the knowledge learned through theory allow us
to draw the following main conclusions: our educational
methods represent a valid improvement of software and
system engineering education demonstrated by their
applicability for real-life software and system projects and
the high professional level of our graduates acquired
during their academic studies. In future we are planning to
perform more empirical studies by the students based on
the software engineering methods learned during class
room and active learning education.

REFERENCES
[1] Boehm B. “A spiral model of software development and en-

hancement”, 1988, Computer 21(5): 61 -72 http://dx.doi.org/
10.1109/2.59

[2] Boehm B. “Theory-W Software Project Management: Principles
and Examples.” 1989, IEEE Transactions on Software Engineer-
ing 15(7):902-916 http://dx.doi.org/10.1109/32.29489

[3] Boehm B. and Port D. "Escaping the Software Tar Pit: Model
Clashes and How to Avoid Them.”, Software Engineering Notes,
Association for Computing Machinery, pp. 36-48, January 1999.

[4] Boehm, B. and Port, D. "When Models Collide: Lessons From
Software System Analysis”, IEEE IT Pro, pp. 49-56, January |
February 1999.

42 http://www.i-jep.org

http://dx.doi.org/�10.1109/2.59�
http://dx.doi.org/�10.1109/2.59�
http://dx.doi.org/10.1109/32.29489�

PAPER
INTEGRATIVE EDUCATIONAL APPROACH ORIENTED TOWARDS SOFTWARE AND SYSTEMS DEVELOPMENT

[5] Boehm, B., Port, D., Al-Said, M. "Avoiding the Software Model-
Clash SpiderWeb," IEEE Computer, pp. 120-122, November 2000

[6] Boehm, B. “Software Cost Estimation with Cocomo II”, 2000,
Prentice Hall PTR

[7] Booch G. ”Object-Oriented Analysis and Design With Applica-
tions”, 1994, Addison-Wesley Pub Co

[8] Booch G, Jacobson I, Rumbaugh J. ”The Unified Modeling
Language User Guide”, 1998, Addison-Wesley Pub Co

[9] Jacobson J, Booch G, Rumbaugh J. ”The Unified Software
Development Process ” 1999, Addison-Wesley Pub Co

[10] Kruchten P. “The Rational Unified Process, An Introduction”, 2nd
edition, 2000, Addison-Wesley Pub Co

[11] Meyer B. “Software engineering in the academy”, 2001,
Computer 34 (5): 28 -35 http://dx.doi.org/10.1109/2.920608

[12] Rumbaugh J, Jacobson I, Booch G. ”The Unified Modeling
Language Reference Manual”, 1998, Addison-Wesley Pub Co

[13] Royce W. ”Software Project Management : A Unified Frame-
work”, 1998, Addison-Wesley Pub Co

[14] Stoica A.J. “A Decisional Framework in Software Design”.
Position paper, 21st International Conference on Software Engi-
neering, EDSER1 Workshop, p.1-6, L.A., USA, May 1999.

[15] Stoica A.J. “Facets of Software Development Represented by
Model Systems: Analysis and Enhancement”. In: Proceedings of
the 14th International Forum on Software Cost Modeling , Section
4, p. 1-24, USC-CSE, USA, Oct 1999.

[16] Stoica A.J. “ A Theoretical Decisional Framework for Software
Process and Applications”. Technical report, Uppsala University,
Uppsala, Sweden, April 1999.

[17] Stoica A.J. “Aspects of Building Web Application Systems using
the MBASE Approach”. In: Proceedings of the 15th International
Forum on Software Cost Modeling,USC-CSE, USA, Oct 2000.

[18] Thorp J. ”The Information Paradox : Realizing the Business
Benefits of Information Technology”, McGraw-Hill, 1998.

[19] Stoica A.J. , Babu P., Stoica P. “Quantitative Framework for
Managing Software Life-Cycle”, The Open Software Engineering
Journal, Vol.5, No. 1, pp.1-18, Bentham Science Publishers Ltd.,
2011.

[20] “Most Sought After in 2012: Software Engineers and Web
Developers”, BYC Newsfeed, IEEE. Accessed on 3/5/2012.
http://www.computer.org/portal/web/buildyourcareer/news/

[21] Dunn, L. . Theories of learning. [Online] Oxford Centre for Staff
and Learning Development Available at:
http://www.brookes.ac.uk/ ,2000.services/ocsld/resources/theories.
html [Accessed 5 January 2012].

[22] Biggs, J. “Aligning teaching for constructive learning”, The
Higher Education Academy, 1999.

[23] McGill, I. & Beaty, L.,” Action Learning, second edition: a guide
for professional, management and educational development”,
London: Kogan Page,1995.

[24] Graduate Reference Curriculum for Systems Engineering
(GRCSE), version 0.5, Stevens Institute of Technology, 2011.

[25] Stoica A.J., Margus Nael, “Agile Software Development and
ISO/IEC Software Quality Standards : Measuring Economic
Benefits and Calculating Quantitative Yields”. In: Proceedings of
the 25th International Forum on Software and System Cost Mod-
eling, pp. 1- 48, USC CSSE, USA, Nov. 2010.

[26] Islam, S. and Houmb, S. H., “Integrating Risk Management
Activities into Requirements Engineering”, In Proc. of the 4th
IEEE Research International Conference on Research Challen-
genges in IS (RCIS 2010), Nice, France.

[27] Stoica A.J., Lecture notes in “Tools and Processes for Software”,
Stanford University, Computer Science Department, Fall 1999.

[28] Briand L., “Embracing the Engineering Side of Software Engi-
neering”, IEEE Software, Vol.29, No.4, 2012.
http://dx.doi.org/10.1109/MS.2012.86

[29] Kouvenhowen W., “Competence-based curriculum development
in higher education: a globalized concept?” in Technology Educa-
tion and development, A.lazinica and C. Calafate, Eds., Tech
2009. http://dx.doi.org/10.5772/7297

AUTHORS

A. J. Stoica is Visiting Professor at the IT Department,
Uppsala University, Box 337, 751 05 Uppsala, Sweden.
She worked at KTH/SU Royal Institute of Technol-
ogy/Stockholm University as Associate Professor in
Computer and Systems Sciences. Her interest areas in-
clude value-based software and system engineering;
frameworks for reasoning and decision-making; managing
software life cycle; systems of integrated models for
software and system development; associated educational
methods. (e-mail: anca.stoica@it.uu.se).

Shareeful Islam is Lecturer at the School of Architec-
ture, Computing, and Engineering, University of East
London, London, United Kingdom. His research interest
areas are software development risk management model;
software quality specifically safety, security, and privacy;
model based development and evolution; management
and requirements engineering. (e-mail: sharee-
ful@uel.ac.uk).

Received 7 November 2012. Published as resubmitted by the authors
18 December 2012.

iJEP – Volume 3, Issue 1, January 2013 43

http://dx.doi.org/10.1109/2.920608�
http://www.computer.org/portal/web/buildyourcareer/news/�
http://www.brookes.ac.uk/ ,2000.services/ocsld/resources/theories.�html�
http://www.brookes.ac.uk/ ,2000.services/ocsld/resources/theories.�html�
http://dx.doi.org/10.1109/MS.2012.86�
http://dx.doi.org/10.5772/7297�

	Integrative Educational Approach Oriented Towards Software and Systems Development

