
Paper—Breast Cancer Image Multi-Classification Using Random Patch Aggregation and Depth-Wise… 

 

Breast Cancer Image Multi-Classification Using Random 

Patch Aggregation and Depth-Wise Convolution based 

Deep-Net Model 

https://doi.org/10.3991/ijoe.v17i01.18513 

Vandana Kate (),Pragya Shukla 
IET DAVV, Indore, India  

vandana.kate@gmail.com 

Abstract—Adapting the profound, deep convolutional neural network mod-

els for large image classification can result in the layout of network architec-

tures with a large number of learnable parameters and tuning of those varied pa-

rameters can considerably grow the complexity of the model. To address this 

problem a convolutional Deep-Net Model based on the extraction of random 

patches and enforcing depth-wise convolutions is proposed for training and 

classification of widely known benchmark Breast Cancer histopathology imag-

es. The classification result of these randomly extracted patches (size 

50X50X3) is aggregated using majority vote casting in deciding the final image 

classification type. It has been observed that the proposed Deep-Net model im-

plementation results when compared with classification results of the VGG Net 

(16 layers) learned features, outclasses achieving accuracy up to 89.6% on mul-

ti-class classification for 40X magnified images. The results further indicate 

model trained for images of one optical magnification factor (eg. 40X) might 

not classify images captured on different magnification (like 100X, 200X, and 

400X) with similar accuracy. Thus, different classifiers are required at different 

magnifications. 

Keywords—Image-Multi-Classification, Histopathology-Images, Breast-

Cancer (BC), Feature-Extraction, Deep-Neural-Networks 

1 Introduction 

A rapid increase has been observed in the occurrences of breast cancer, especially 

in Asian nations like China, India, and Malaysia [1][2]. Recognizing breast cancer is 

yet AI’s most philanthropic and intricate challenge. The vital symptom of breast can-

cer is normally a lump or a tumor that feels peculiar from the rest of the breast tissue. 

However, it is not always easy to distinguish a malignant tumor from a benign one 

because of their structural similarities. To effectively understand the structural ver-

sions, physicians should carefully look at an individual’s medical records and make 

various clinical examinations such as mammography or ultrasound. However, a pre-

cise and accurate analysis of a breast tumor can be acquired through few forms of 

biopsy wherein a small pattern of cells or tissue is removed and stained (using Hema-
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toxylin and Eosin stains) for examination [3]. The process of monitoring these images 

is a task of fatigue and requires expertise in the field [4]. There may be the possibility 

of missing important indicators when perceptibly searching for signs of cancer and 

may return a false negative. 

Light microscopes are used to examine fine details and enlarge images of small 

matter. Enlarging an image is known as magnification and the amount of refined spec-

ification that can be visible is called resolution. H & E-stained tissue images are often 

captured at different optical magnification degrees, where each magnification can 

constitute specific facts. The lowest magnification captures the larger vicinity of tis-

sue, while other larger magnification captures the zoomed-in view of the tissue. This 

explains the use of different magnifications which can doubtlessly yield varying dis-

criminated statistics. 

Deep learning methods have been exceedingly used to extract the applicable facts 

from the raw images and use them for classification tasks [5][6][7]. There are lots of 

contributions that had been proposed to enhance generalization capacity for various 

heavily used benchmark Cancer datasets by making use of deep convolutional net-

works. Most of the images concentrate on using complex model architecture consist-

ing of Alex Net [8] to VGG-16 [9], ResNet [10], Inception-V3 [11], and DenseNet 

[12] with functional manipulations such as dropout regularization, batch normaliza-

tion, transfer learning [13], and zero-shot training [14] have been evolved to try and 

expand Deep Learning on image data set. 

The Table 1 summarizes the work done in literature on Breast Cancer images. It 

compiles research accomplished with Unsupervised Methods, Supervised Methods, 

Ensemble techniques, and Deep Methods. Table 2 summarizes the methods employed 

for Binary and Multi-class classification using Histopathology Breast Cancer Image 

analysis. 

Though Deep convolutional neural network has confirmed its effectiveness for 

numerous image classification responsibilities, gaining comprehensive details present 

in biomedical images is difficult and the task adds on another difficulty when we 

stumble upon images of various magnification levels. Learning Deep-Net works with 

huge-size input dimensions requires a longer training time and a notably large net-

work shape with more no. of hidden layers and hardware memory. To ease the task of 

training Deep-Net work with huge size images as input literature [15][16] represented 

each image with one randomly cropped patch, and labeled the patch with the same 

label as of original image. But this approach leads to ambiguity in training examples 

as one patch may not be the good representative of the entire image. To deal with this 

problem, we propose and evaluate a deep-NET structure using SeparableConv2D to 

enforce depth-wise convolutions where we represent an input image with a small set 

of patches or tiles cropped from it and associating each tile with the corresponding 

image label. We also compared the proposed system with a widely used Pre-trained 

CNN model used for global feature extraction and classification using hard and soft 

voting techniques.  
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Table 1.  Summary of Machine Learning Methods employed in Histopathology Breast Cancer 

Image analysis 

Year Technique Classifier Research By 

2009 

S
u

p
er

v
is

ed
 C

la
ss

if
ic

at
io

n
 

Bayes classifier Marugame et al. [17] 

2013 Random Forests 
Basavanhally et al. 
[18] 

2014 MLP, SVM, Tree Irshad et al. [19] 

2015 LSSVM 
Korkmaz and Poyraz 

[20] 

2015 SVM and RF Tashk et al. [21] 

2016 Random Kitchen Sink Beevi et al. [22] 

2016 Random Forests Balazsi et al. [23] 

2017 Random Forests Valkonen et al. [24] 

2017 Cascade SVM Peikari et al. [25] 

2010 

U
n

-S
u
p

er
v
is

ed
 

C
la

ss
if

ic
at

io
n
 K-means Fatakdawala et al. [26] 

2011 K-means Roullier et al. [27] 

2015 Thresholding 
Sirinukunwattana et al. 

[28] 

2015 Mean-shift clustering Huang [29] 

2013 

U
si

n
g

 E
n

se
m

b
le

s SVM + Random 
Subspaces using 

Perceptron 

Filipczuk et al. [30] 

2013 Adaboost Vink et al. [31] 

2016 
Bagging and Tree 

using sum and variance 

Fern´andez-Carrobles 

et al. [32] 

2019 

D
ee

p
 L

ea
rn

in
g
 

Stacked Sparse 
Autoencoder (SSAE) 

based DNN 

Sawon et al. [33] 

2017 
CNN (Convolutional 

Neural Network) 

Spanhol, Fabio  et al. 

[34] 

2013 
Deep max-pooling 
CNN 

Cireşan  et al.[35] 

2017 CNN Araújo et  al.[36] 

2015 
SSAE (Sparse Stacked 

AutoEncoders) 
Xu et al.[37] 
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Table 2.  Summary of Methods employed for Binary and Multiclass Classification using 

Histopathology Breast Cancer Image analysis 

2 Dataset Used 

Spanhol et al. [38] offered a public dataset (BreakHis) of 82 breast cancer sufferers 

with diagnoses of eight forms of breast tumors. A framework for the evaluation of the 

classification strategies for 8 forms of tumor was also likewise proposed. Baseline 

accuracy was obtained using six feature extractors and four classifiers. The dataset 

includes 7,909 BC images of four magnification factors. Pictures are 460 pixels in 

pinnacle and 700d pixels huge. Table 3. illustrates distribution of classes and sub-

classes in benign, malignant breast cancer dataset at different magnification factor 

(40X, 100X, 200X, 400X). 

 

 

 

 

 

 

 

 

 

Year Technique Classifier Research By 

2016 
B

in
ar

y
 C

la
ss

if
ic

at
io

n
 

Global feature extraction 
Methods (LBP, GLCM etc.) 

Spanhol et al.[38] 

2017 shallow features Gupta et al. [39] 

2017 
Multiple feature vector (MFV) 

& transfer learning 
Fabio et  al. [40] 

2018 
Graph-manifold & BI-LSTM 

models 
Pratiher et al.[41] 

2016 

convolution neural network 
(CNN) model with fusion rule 

(FR) 

F. A. Spanhol et al. 

[42] 

2017 

ConvNet based fisher vector 

(CFV) & Gaussian mixture 
model (GMM) 

Song et al., [43] 

2017 Deep CNN Wei et al.[44] 

2019 
Incremental boosting convolu-

tion networks 
Vo, Duc et  al. [45] 

    

2017 

M
u
lt

i 
C

la
ss

 

C
la

ss
if

ic
a-

ti
o

n
 

Class structured deep CNN 
(CSDCNN) model 

B. Wei et al.[46] 

2018 CNN based approach D. Bardou et al.[47] 

2019 DNN Sawon et al. [48] 
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Table 3.  Distribution of Benign and Malignant classes, sub-classes in Breast Cancer 

(BreaKHis) Dataset @ different magnification factors 

Classes Sub-Classes 40X 100X 200X 400X Total 

Images 

Patient 

count 

B
e
n

ig
n

 

Adenosis 114 113 111 106 444 4 

Fibroadenoma  253 260 264 237 1014 10 

Tubular adenoma  109 121 108 115 453 3 

Phyllodes tumor  149 150 140 130 569 7 

M
a

li
g

n
a

n
t 

 Ductal carcinoma  864 903 896 788 3451 38 

Lobular carcinoma 156 170 163 137 626 5 

Mucinous carcino-

ma 

205 222 196 169 792 9 

Papillary carcinoma  145 142 135 138 560 6 

  Total 1995 2081 2013 1820 7909 82 

3 Convolutional Neural Network (CNN) 

CNN’s are a significant tool for image classification, retrieval and detection tasks 

these days. There are four predominant operations in CNNs, such as Convolution, 

Non-Linearity, Pooling/Sub Sampling, FC layer and Classification as shown in Fig. 1. 

CNN generally require plenty of training information, and has the capability to ad-

dress big, high-resolution images and remodeling them without losing significant 

characteristics. 

 

Fig. 1. Convolutional Neural Net 

4 Experiment 1- Global Feature Extraction using Transfer 

Learning 

Here an effort is made to construct accurate models for BC image classification 

problems through transfer learning in a quicker or better way.  Transfer learning is 

usually used for preventing over-fitting problem considering the fact that ConvNet 

contains more generic features (e.g. horizontal /vertical edge detectors or color detec-

tors) at initial layers, and later layers comprise more problem precise information of 

the multiple classes contained in the original data set. Typically, just the weights of 

trained convolutional layers are copied, rather than the entire network structure. This 

could be very effective as almost all data sets share low-level spatial traits that are 

better learned with big data sets. 

A pre-trained CNN based model VGG-16 trained on an Imagenet benchmark da-

taset was imported deliberating the high computational cost of training such models. 
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VGG16 is chosen for its gratifying performances in image recognition tasks [9], use-

fulness toward real-time applications, and feasibility of transfer learning for con-

strained datasets. A typical CNN has two essential components: first is the Convolu-

tional basis, which is composed of an assembly of convolutional and pooling layers. 

The main goal of the first part is to generate low-level features from the image. The 

second part consists of using the traditional machine learning approach, to categorize 

images from extracted features. We can compare and improve classification accuracy 

by training various classification models inclusive of linear Support Vector Machine 

(SVM), K-Nearest Neighbor (KNN) and Multilayer Perceptron Model (MLP) classi-

fiers on the features extracted by the Convolutional base part and using k-fold cross-

validation to estimate the error of the classifier. For data augmentation usually, imag-

es are transformed using affine transforms (such as horizontal and vertical flipping, 

contrast enhancement, rotating, zooming, mirroring, fill mode= nearest, etc.) to avoid 

class imbalance. Fig. 2 describes the Global feature extraction method for BC image 

classification. 

In addition, voting classifier strategies popularly called the weight-adjusted vote 

casting method is also used and compared. The idea of Ensemble Classifiers [49] is to 

combine the predictions made with the aid of more than one classifier, which can be 

more expressive than a single classifier prediction. Also, the outcomes obtained are 

much less dependent on the peculiarities of the training set. The varieties of voting 

used are hard and soft voting. The various classifiers used for voting were -Decision 

Tree Classifier, K Nearest Neighbor, Naive Bayes, Random Forest, Quadratic Discri-

minant Analysis, and AdaBoost. 

 

Fig. 2. Global Feature Extraction Model 
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4.1 Hard voting 

In this very last prediction depends on the prediction that appears most even when 

making classification with the usage of specific models. It is likewise known as ma-

jority vote casting. Prediction ŷ depends on prediction made thru unbiased classifiers 

C1 (x), C1 (x) … … … … Cm (x).  

  ŷ = mode {C1 (x), C1 (x) … … … … Cm (x)} (1) 

The equation shows final output prediction is obtained by taking mode of different 

classifiers used 

4.2 Soft voting 

In this final prediction ŷ relies upon on the predicted probability (p) of individual 

classifier. 

 ŷ =    argmax
i

{∑ wj pij
m
j=1 } (2) 

Where, pij  is the ith  probability of jth  classifier, wj  is the weight assigned to  jth 

classifier and m is the total number of classifiers used. 

The experimental results demonstrates that Average Accuracy using Soft Voting 

classifier was better than other conventional classifiers and Ensemble voting. The 

order of classifier accuracy was as follows Soft Voting > Hard Voting > MLP > SVC 

> KNN. Average Accuracy order for different magnification levels was as 40X (A) 

with 81.2% > 40X with 78.6% > 100X with 78% > 100X(A) with 75.6% > 200X with 

75.6% > 200X(A) with 75% > 400X (A) with 72.2% > 400X with 69.8% , here A 

stands for Augmentation.  

5 Proposed Deep-NET Model 

Adapting the prevailing deep neural models for large images can result in extra 

complicated architectures, with massive units of parameters. Exceptional tuning these 

large ranges of parameters can appreciably grow the complexity of the model. We 

thus propose a Deep-Net Model to resolve these issues. We also use various parame-

ter tuning and regularization methods adopted in literature for speeding Deep-Net 

works outputs such as- 

5.1 Batch size and epochs 

Batch size is the number of samples used from the learning set to estimate of the 

error gradient and is used to update the model weights. The more training examples 

we use the more accurately the weights will be adjusted towards improving the accu-

racy of the model. A batch size sample will be used to estimate the error gradient 

before the model weights are updated after completion of one epoch. Commonly used 
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learning algorithms are Batch Gradient Descent where batch size equals total training 

samples, Stochastic Gradient Descent where batch 𝑠𝑖𝑧𝑒 = = 1, Mini-batch Gradient 

Descent. Batch < 1 and <  no. of samples in the data set. 

5.2 Dropout 

Dropout is a way where randomly selected neurons are overlooked for the duration 

of training by means of zeroing their activation values. Dropout is implemented to 

hidden layer neurons of the Deep-Net model. Dropout is used for regularization by 

using adding noise to the output function maps of every layer, adding robustness to 

the model in managing variations of the test image. 

5.3 Batch normalization 

Batch normalization is again a regularization technique that provides some noise to 

each hidden layer by normalizing the set of activations in the layer. Normalization 

works by subtracting the batch average value from each of the calculated activations 

and dividing by the batch standard deviation. This pre-processing technique allows 

each layer of a network to analyze/learn by way of itself and more independently of 

other layers.  

To further speed up the task of training Deep-Net work with huge size images 

which is the major problem considered in this paper, the proposed Deep-Net Model is 

based on the extraction of random patches and enforcing separable convolutions for 

training. Further aggregate result of these patches is used for final image class recog-

nition. Separable convolutions first perform a depth wise spatial convolution on each 

input channel separately followed by a point wise convolution that mixes all the 

channels as shown in Fig 3. Various steps implemented in sequence to build Deep-Net 

Model for 40X magnified images are explained as follows: 

Step 1: Patch extraction: Here we extract multiple patches of 50𝑋50 from images 

of both the positive and negative classes. This dataset holds 16,176 patches of size 

50X50 extracted from 2022  histopathology images of breast cancer specimens 

scanned at  40𝑋. Of these, 10,960 patches test malignant and 5, 216 patches test be-

nign. The dataset is available in public domain with the name Breakhis for breast 

cancer Dataset. In addition, a text file is created containing list of paths to image 

patches. 

Step 2: Database creation: Using the patches we create a mean file, which is the 

mean value of a pixel as seen through all the patches found in learning database. This 

mean value is subtracted from the pixel to roughly “zero" the data, improving the 

efficiency of the Deep Learning algorithm. Then, using text file created in the previ-

ous step, we calculate an index by multiplying the length of this list in text file by 0.8 

so we can slice this list to get sub-lists for the training and testing datasets. Next, 20% 

of remaining list is kept for testing. Now, datasets are a list with tuples (holding paths 

and the base path (training, validation or testing) with class label for each image) for 

information about the training, validation, and testing sets. We now actually build 
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training, validation and testing image set using above tuples in separately named fold-

ers. If the base path does not exist, we'll create the new directory.  
Step 3: Build model: As a next step we suggest a deep-NET structure using Sepa-

rable-Conv2D to enforce depth-wise convolutions. The purpose of doing convolution 

is to extract useful capabilities from the input. In Convolutional Neural Network, 

numerous features are extracted via convolution using filters whose weights are au-

tomatically learned throughout training. All those extracted features are then com-

bined to make decisions. Convolution also takes spatial relationships of pixels into 

concern. Deep Learning have come up with different styles of convolutions (e.g. 

2D, 3D, (1x1), Transposed, Dilated, Spatially Separable, Depth-wise Separable, Flat-

tened, Grouped, Shuffled etc.). Here, in this work depthwise separable convolutions is 

used, commonly used in deep architectures (e.g. Mobile Net and Xception) which is 

applied to single channel at a time rather than applying to all channels at the same 

time, this requires lesser number of learnable parameters thus computations are re-

duced and resolves overfitting issues. The depth wise separable convolutions encom-

pass steps involving depth-wise convolutions and 1𝑥1 convolutions. 

For a histopathology input image of length 50 𝑋 50 𝑋 3 (color images) we need to 

do 2D convolution (with stride=1, padding=0) with N kernels of size h X h X 3   in 

which h is even, which maps input layer (50𝑋50𝑋𝐷) into the output layer (50 −
 ℎ +  1)𝑋(50 −  ℎ +  1) 𝑋 𝑁) . The normal multiplications required are 
𝑁𝑋 (ℎ 𝑋 ℎ 𝑋 3) 𝑋 (50 −  ℎ +  1) 𝑋(50 −  ℎ +  1). On the contrary, for the identical 

transformation, the multiplication required for depth wise separable convolution is: 

3 𝑋 ℎ 𝑋 ℎ 𝑋 1 𝑋 (50 − ℎ + 1)2 + 𝑁 𝑋 1 𝑋 1 𝑋 3 𝑋 (50 − ℎ + 1)2 = (ℎ2  +
𝑁) 𝑋 3 𝑋 (50 − ℎ + 1)2  (3) 

The ratio of multiplications among depth wise separable convolution and 2D con-

volution is now 

 
 1

𝑁
+ 

1

ℎ2 (4) 

Assuming that output layer has many channels i.e (𝑁𝐶  >> h), the above expression 

reduces all the way down to  

 1/h/h (5) 

Asymptotically, if 3X3 filters are used, 2D convolutions spend nine times more in 

multiplications than depth wise separable convolutions. For 5 X 5 filters, 2D convolu-

tions spend 25 times more time in doing multiplications.  

We will build a classifier to train on 80% of a original breast cancer histopatholo-

gy image dataset. Of this, we'll keep 21% of the data for validation/dev set, thus split-

ting our dataset into training, validation, and testing sets in the ratio - 59% (for train-

ing): 21% (for validation): 20% (for testing). Using Keras, we'll define a CNN (Con-

volutional Neural Network), calling it as BCNet, and train it on our images. We'll then 

derive metrics such as confusion matrix, accuracy, f score, recall and precision to 

analyze the performance of the model. We use ImageDataGenerator from Keras for 
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image data augmentation and extract batches of images to avoid overloading the en-

tire dataset in memory at once. 

The Deep-NET model performs the following operations: 

Use 3𝑋3 convolutional _lters 

Stack these filters on top of each other 

Perform max-pooling 

Use SeparableConv2D for depth-wise separable convolution 

The class deep-NET has a static method build () that takes four parameters- width 

and height of the image, its depth (the number of color channels in each image), and 

the number of classes the network will predict between, which, for us, is 8 (0 and 7). 

In this method, we initialize model and shape. Here we used channels first, to update 

the shape and the channel dimension. Now, we'll define three DEPTHWISE CONV =
>  𝑅𝐸𝐿𝑈 =>  𝑃𝑂𝑂𝐿 layers; each with a higher stacking and a greater number of 

filters. The softmax classifier outputs prediction percentages for each class. In the 

end, we return the model.  

Step 4: Train model: Here we train and evaluate our model. Here, we'll import 

from keras, sklearn, Deep-Net  , config, imutils, matplotlib, numpy, and os. In this 

script, first, we set initial values for the number of epochs to 200-400, the learning 

rate = 1e − 2, and the batch size of 64. We'll get the number of paths in the three 

directories for training, validation, and testing. Then, we adjust class weights to deal 

with class imbalance problem. We will initialize the model using the Adagrad opti-

mizer and compile it with a categorical cross-entropy loss function. The model is 

compiled and trained for the given dataset. 

Step 5: Image labeling: After patch classification result is computed image-wise 

classification is obtained using majority voting, where the most happening patch label 

is selected as image label. 

Step 6: Evaluation: In this section, we present an extensive experimental evalua-

tion shown in Table 5 for the proposed model with architecture shown in Table 4 on 

the BreakHis dataset, in order to show case its better performance than Global feature 

extraction method using metrics such as Accuracy, F-Score, Precision and Recall. The 

steps were defined for 40𝑋 i.e we trained the model at 40𝑋 magnification and as it 

has the tendency of being maximum informative magnification factor, we test it with 

images of other stage magnifications i.e.,100𝑋, 200𝑋, 400𝑋.  
However, it would seem that one magnification model may not be able to handle 

images with other magnifications, and different classifiers are required at different 

magnifications. Moreover, decision in such cases where large variation in patient 

score exists, may not be reliable by just considering one magnification level. Howev-

er, it would seem that one magnification model may not be able to handle images with 

other magnifications, and different classifiers are required at different magnifications. 

Moreover, a decision in such cases where large variation in patient score exists, may 

not be reliable by just considering one magnification level. However, it appears that 

one magnification trained model might not classify images with similar accuracy for 

different magnification images. 
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Fig. 3. Depth wise Separable Convolution 

Table 4.  Architecture of Sequential Deep-Net Model 

Architecture of Sequential DeepNet Model 

{Layer Type} {Output Shape} {Learnable Parameters} 

InputLayer (None, 50, 50, 3) 0 

Separable_Conv2D (pad-
ding='same') 

(None, 48, 48, 32) 155 

Activation('relu'), 

Batch_Normalization,  

MaxPooling2D((2,2), Dropout(0.25) 

(None, 24, 24, 32) 128 

Separable_Conv2D (pad-
ding='same') 

(None, 24, 24, 64) 2400 

Activation('relu'), 

Batch_Normalization, 

(None, 24, 24, 64) 256 

Separable_Conv2D (pad-

ding='same') 

(None, 24, 24, 64) 4736 

Activation('relu'), 
Batch_Normalization,  

MaxPooling2D((2,2), Dropout(0.25) 

(None, 24, 24, 64) 256 

Separable_Conv2D (pad-

ding='same') 

(None, 12, 12, 128) 8896 

Activation('relu'), 
Batch_Normalization, 

(None, 12, 12, 128) 152 

Separable_Conv2D (pad-

ding='same') 

(None, 12, 12, 128) 17664 

Activation('relu'), 

Batch_Normalization, 

(None, 12, 12, 128) 152 

Separable_Conv2D (pad-
ding='same') 

(None, 12, 12, 128) 17664 

Activation('relu'), 

Batch_Normalization,  
MaxPooling2D((2,2), Dropout(0.25) 

(None, 12, 12, 128) 512 

Flatten (None, 4608) 0 

Dense Layer (None, 256) 
 

Activation('relu'), 
Batch_Normalization,  

Dropout(0.25) 

(None, 256) 1179904 

Dense Layer (None, 8) 1024 

Activation('Softmax') (None, 8) 
 

Total Trainable Parameters  {1,233,533} 
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Table 5.  Results of Proposed DeepNet Model using metrics such as F-score (F-S), Recall (R) 

and Precision (P) for all the 8 sub-classes (A, F, TA, PT, DC, LC, MC, PC) of all 

magnification levels (40X, 100X, 200X, 400X) 

Metrics used -> F-S R P  Acc F-S R P  Acc 

Sub-

Classes\Magnification 

40X 
 

100X   

Adenosis (A) 0.8 0.84 0.86  

 

 

 

 

86.89 

0.76 0.68 0.85  

 

 

 

 

88.69 

Fibroadenoma (F) 0.9 0.88 0.92 0.9 0.95 0.87 

Phyllodes Tumor 

(PT) 

0.79 0.76 0.93 0.77 0.68 0.88 

Tubular Adnoma 0.91 0.93 0.9 0.91 0.96 0.87 

Ductal Carcinoma 

(DC) 

0.76 0.85 0.78 0.7 0.68 0.73 

Lobular Carcinoma 

(LC) 

0.87 0.82 0.93 0.88 0.89 0.86 

Mucinous Carcino-

ma(MC) 

0.77 0.72 0.93 0.72 0.65 0.81 

Papillary Carcinoma 

(PC) 

0.9 0.93 0.97 0.89 0.93 0.85 

Metrics used  -> F-S R P Acc F-S R P Acc 

Sub-

Classes\Magnification 

200X 
 

400X   

Adenosis (A) 0.66 0.65 0.88  

 

 

 

 

86.53 

0.63 0.55 0.73  

 
 

 

 
86.37 

Fibroadenoma (F) 0.85 0.86 0.84 0.86 0.91 0.81 

Phyllodes Tumor 

(PT) 

0.72 0.64 0.84 0.7 0.67 0.73 

Tubular Adnoma 0.9 0.94 0.85 0.87 0.89 0.86 

Ductal Carcinoma 

(DC) 

0.7 0.62 0.79 0.61 0.58 0.66 

Lobular Carcinoma 

(LC) 

0.88 0.93 0.85 0.84 0.87 0.82 

Mucinous  

Carcinoma(MC) 

0.66 0.59 0.75 0.53 0.44 0.66 

Papillary Carcinoma 

(PC) 

0.86 0.91 0.82 0,83 0.89 0.77 

Table 6.  Comparison of the proposed work with literature (results in bold demonstrates the 

best result achieved).The metric chosen for comparison is Accuracy 

Magnification Factor 

Methods 40X 100X 200X 400X 
     
[38] 83.8 ± 4.1 82.1 ± 4.9 85.1 ± 3.1 82.3 ± 3.8 

[42] 88.6±5.6 84.5 ± 2.4 85.3 ± 3.8 81.7 ± 4.9 

[50] 83.0 ± 3.0 83.1 ± 3.5 84.6 ± 2.7 82.1 ± 4.4 

This work 86.89 ± 4.0 88.69±3.9 86.53±4.2 86.37±4.3 
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6 Comparison with State-of-The-Art 

To endorse the viability of proposed deep architecture for BC sub-classification we 

balance our results with some state of art work. In Table-7 we assemble the best out-

comes got in this work along with other CNN-based approach presented in, [38], [42] 

and [50] applied on the same Breast Cancer dataset as used in this paper. Results 

depicts that the proposed strategy beats many of contemporary strategies except in 

some cases. The objective of this work is to examine and comprehensively analyze 

the sub-class classification performance of the proposed model across all optical 

magnification frontiers. 

7 Conclusion 

The work presented here proposed a Deep-Net Model based on the extraction of 

random patches and enforcing depth-wise convolutions which is an enhancement over 

traditional way of using Deep-Net models for image classification. An Exhaustive 

comparison of proposed model for 8 sub-class classification for Histopathology 

Breast Cancer images is presented over transfer learning based Global Feature Extrac-

tion method using Ensemble voting classifiers. Results show case better performance 

of proposed Deep-Net model over Global feature extraction method. Above result 

examination also reveals that one magnification model may not be able to handle 

images with other magnifications thus it raises the need for a magnification independ-

ent model utilizing deep learning to classify the benign and malignant cases. The 

study opens some questions about scale in variance properties of feature-classifier 

combination, role of ensemble classification, considering that the magnification spe-

cific model requires relatively less training than the magnification independent model. 

This research is a foundation for our future publication in the integration of deep 

learning and block-chain technology. 
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