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Abstract—The early detection of cancer in both healthy and high-risk popu-

lations offers increased opportunity for treatment and curative intent. In this pa-

per, we propose a hybrid classifier that produces an efficient classification sys-

tem for cancer detection in cell datasets. The first part of this work investigates 

the performance of artificial neural networks (ANN) such as Self-Organizing 

Feature Map (SOM) and Learning Vector Quantization (LVQ), while in the 

second part, we present our investigation on the performances of Decision Tree 

(DT) and its pruning model. We also, in the third part, present our proposal for 

a new hybrid classifier that is based on the Random Forest (RF) and the combi-

nation of the LVQ and DT. Experimental results of the proposed hybrid classi-

fier indicate that the hybrid classifier effectively avoids the drawbacks of indi-

vidual classifiers and has high anti-noise performance. 

Keywords—Self-Organizing Map, Learning Vector Quantization, Decision 

Tree, Cancer Detection, Hybrid Classifier, Bootstrap Sampling 

1 Introduction 

The use of artificial intelligence in biomedical engineering includes three phases; 

sensor input, signal processing, and classification. Few classifiers, such as the Deci-

sion Tree (DT) and Learning Vector Quantization (LVQ), have a near-optimal per-

formance for different databases [4, 17, 28]. However, only a few classifiers used in 

biomedical databases where their performances depend on the used database and 

special operation conditions [3, 6, 18]. On the other hand, new methods were pro-

posed to improve the performance of individual classifiers such as the Genetic Algo-

rithm [15], Hybrid Genetic Algorithm [15], and Swarm Optimization [26, 27], to list a 

few. However, the improved classifiers still have inherent flaws from their basic algo-

rithms and complicated coding issue with, in many cases, lack discussion of classifi-

cation time. The Self-Organizing Feature Map (SOM) represents a simple neural 

network-based classifier, Kohonen model-based, that utilizes the principle of competi-

tion between neurons [2, 3]. The SOM was developed based on the human brain neu-

rons' function [1]. Unsupervised learning classifiers, such as SOM, are evolved into 

supervised learning classifiers such as the LVQ [23]. Also, other supervised learning 

76 http://www.i-joe.org

https://doi.org/10.3991/ijoe.v17i03.19683
mailto:example@example.org


Paper—An Efficient Hybrid Classifier for Cancer Detection 

classifiers such as the DT were developed based on Iterative Dichotomiser 3 (ID3), 

C4.5, or the Classification and Regression Trees [7, 22]. The study of Decision Tree is 

utilized to develop the Random Forest (RF), a combination of multiple Decision 

Trees, that is commonly used in ensemble methods to avoid overfitting [10]. In this 

paper, we investigate unsupervised classifiers, such as the SOM, to analyze the per-

formance of Artificial Neural Networks (ANN) with a competition layer. Also, we 

investigate the performance of supervised-learning classifiers such as LVQ, DT, and 

RF. This paper aims at proposing an efficient hybrid classifier, utilizing the ensemble 

method, based on results from different investigated classifiers for the biomedical 

databases. Each classifier is analyzed through realigned training and testing dataset 

from the breast cell database of the UCI machine learning repository [19]. The pro-

posed hybrid classifier should overcome the disadvantages of individual classifiers 

and provide high classification performance on different databases. 

2 Cell Tumor (CT) Database 

Under the microscope, images of tumor cell disclose important information related 

to the possibility of having cancer. The database from the University of Wisconsin 

includes 357 benign cases and 212 malignant cases [19]. Features of a typical cell 

from the database include radius, texture, perimeter, area, smoothness, compactness, 

concavity, concave points, symmetry, and fractal dimension [20]. These ten features 

are extracted from a digitized image of a fine needle aspirate of a breast mass. The 

extracted features describe the characteristics of each cell nucleus found in the tumor 

image. Also, the average, standard deviation, and worst value of the ten characteristics 

are calculated. For each case, the database has thirty extracted features; the average 

values of ten features form the 1st to 10th features, the standard deviation of ten fea-

tures forms the 11th to 20th features, and the worst values from the 21st to 30th features. 

Table 1 illustrates the used equations to calculate the ten characteristics of cell images 

where μ = 1/N (p_1 + p_2+. . p_N ), pi is the gray-scale value, N is the number of 

pixels in the moving window, E is the ratio of number of pixels to the real scale of the 

cell,  q is number of pixels on cell covered area of tumor cell image, h is number of 

points on the perimeter, i is the point serial number, θ2 is the coordinate of centroid of 

the tumor image, P⃗⃗ i is the coordinate of one point on the perimeter of the tumor cell 

image, P1, P2, and P3 are the initial point, point with the highest curvature, and final 

point; respectively, V⃗⃗  is the direction vector of concavity, Pi is the point with the high-

est curvature in tumor cell image, θ1 is the point of centroid of symmetry lines from 

the standard Non-tumor image, and θ2 is the point of centroid of tumor cell image. 
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Table 1.  Cell feature selection 

Feature  

Selected 
Description 

Feature Mathematical Computa-

tion 

Texture(f) 
Estimated by the standard deviation of gray-scale 

values f = μ√
1

𝑁
∑(𝑝𝑖 − 𝜇)2

𝑁

𝑖=1

 

Perimeter(P)  P = E∑𝑝𝑖

𝑤

𝑖=1

 

Area(A)  A = E∑𝑝𝑖

𝑞

𝑖=1

 

Radius(R) Radius R = 
∑ (|�⃗� 𝑖−𝜃2

⃗⃗ ⃗⃗ |)ℎ
𝑖=1

ℎ
 

Smoothness Local variation in radius lengths S = √∑(𝑝𝑖 − 𝜇)2

𝑁

𝑖=1

 

Compactness  
𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2

𝐴𝑟𝑒𝑎 − 1
 

Concavity 
Measured by the angle in radians of the severity of 
concave portions of the contour 

∠�⃗� = 𝑃1𝑃2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  +𝑃2𝑃3

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

Concave Points Number of concave portions of the contour C= ∑ 𝑃𝑖𝑖=0  

Symmetry 

Estimated by calculating the centroid of the bilat-

eral Symmetry lines from Non-tumor images and 
curve asymmetry lines from tumor cell images 

∠(𝜃1
⃗⃗  ⃗ − 𝜃2

⃗⃗⃗⃗ ) 

Fractal Dimension  
Coastline  
Approximation - 1 

3 Artificial Neuron Network with Competition Layer 

This section discusses the competition layer ANN as a mathematical model, theo-

retical basis, and simulation steps. The first part of this section discusses the unsuper-

vised learning competition SOM, while the second part of this section discusses the 

supervised learning classifier LVQ. 

3.1 Self-Organizing Map (SOM) 

The classification idea is based on the principle that any external stimuli cause 

changes to the internal neuronal parameters rather than neuron's position [3]. This 

change will generate a specialized tissue as a reaction to the external stimuli. As the 

external stimuli keep increasing, the internal parameters' change continues to increase, 

which generates a clustering function. For near and local neurons' interaction in the 

self-organizing cluster, some studies expressed this interaction as a neural lateral 

interaction [3]. Within the circle center of the neuron that sends messages, the adja-

cent neurons are excited while the far neurons are in the passive state. 

For the mathematic model of SOM [1], the 𝑗𝑡ℎ neural input in the competition layer 

is expressed by (1):  
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 𝐼𝑗 = ∑ 𝑊𝑖𝑗𝑋𝑖𝑖  (1) 

where 𝑋 represents the external signal and 𝑊𝑖𝑗  represents the weight parameters 

between the competition layer neuron and input layer. The inner product is shown in 

(2). 

||𝑋 − 𝑊𝑒|| = min
𝑖=1

||𝑋 − 𝑊𝑗|| ||𝑋−𝑊𝑗|| = √∑ (𝑋𝑖 − 𝑊𝑖𝑗)
2𝑛

𝑖=1  (2) 

The 𝑗𝑡ℎ output of the competition layer can be described as shown in (3).   

 𝑑𝑌𝑗 𝑑𝑡⁄ = 𝐼𝑗 + ∑ 𝑅𝑘 − 𝑔(𝑌𝑗)𝑘∈𝑆𝑗
 (3) 

where 𝑆𝑗 represents the group of near neurons, 𝑅𝑘 represents the weighted parame-

ters between near neurons, and 𝑔(𝑌𝑗) represents some nonlinear lose. If the 𝑗𝑡ℎ neuron 

is wining the specific stimulus, the output will be one, 𝑌𝑗 is equal to one, and the com-

petition layer will be the output layer. Because of the interaction, the weighted param-

eters will change per stimuli, as shown in (4), and thus there must be a group of neu-

rons that respond to the stimuli trigger. 

 𝑑𝑊𝑗 𝑑𝑡⁄ = α𝑌𝑗𝑋 − B𝑌𝑗𝑊𝑗 (4) 

where 𝑊𝑗 represents the weighted vector, 𝑋 represents the input vector, and α and 

𝐵 represent the adjustment number. If the 𝑁𝑐 represents the winning group of neurons, 

the output 𝑌𝑗 in the group 𝑁𝑐 should be one, 𝐵 will be α, which will lead to the same 

stimuli, and the weighted parameters will be decreased in value. If the 𝑌𝑗  did not 

change, in this group, no matter how many times the stimuli trigger, the 𝑌𝑗 is called 𝑁𝑐 

beyond doubt. Also, if the 𝑌𝑗 is not in the group, the 𝐵 and 𝑌𝑗 will be 0, indicating that 

the parameters will not change, as shown in (5). This procedure is captured in the 

learning process of SOM. 

 {

𝑑𝑊𝑗

𝑑𝑡
= α(𝑋 − 𝑊𝑗),             𝑗 ∈ 𝑁𝑐

 
𝑑𝑊𝑗

𝑑𝑡
= 0,                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 (5) 

At the end of the learning process, α represents the study rate, which is a gradually 

decreasing function with only one variable; study time. Therefore, α may be repre-

sented by any function such as 𝛼 = 1/t where 𝑡 is the study time. The MATLAB 

offers a basic programming mode of setting the competition network [10]. In this 

article, for the first simulation, the SOM is used to completely classify 100 different 

patients randomly extracted from the cell tumor (CT) database, which can deeply find 

the performance of ANN with the competition layer. Since there are 100 different 

patients, the number of neurons is set to 100. For the second simulation, the SOM is 

used to classify two cell categories; malignant and benign. 

One can state that three key parameters can affect the performance of the ANN 

with competition layer; learning / iteration time, number of neurons in the completion 
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layer, and study rate as indicated in Ref. [5]. In the first simulation, 600 training sam-

ples and 168 testing samples, the learning/iteration time will change gradually as 10, 

20, 50, 100, 250, 500, and 1500 to find the suitable iteration while the study rate is set 

to 0.01 to obtain fast and accurate classification [1, 13]. In the second simulation, the 

suitable iteration is kept fixed to find a suitable study rate where the SOM changes the 

number of neurons to 2 to classify two cell categories. The testing database for the 

second simulation consisting of 569 cases from the CT Database. Figure 1 shows the 

flowchart of designing the SOM. There are two tests in the whole process. In the first 

test, the SOM should classify 100 different patients. In the second test, the SOM 

should classify two categories of 569 patients. 

 

Fig. 1. Flowchart of the proposed SOM 

3.2 Learning Vector Quantization (LVQ) 

The LVQ is developed based on the Kohonen Competition Function, which has the 

same principle of SOM [23]. The main difference between the two networks is the 

utilization of LVQ on supervised learning. The LVQ network is composed of three 

different layers; input, competition, and output, so the LVQ can automatically adjust 

the weighted parameters to obtain correct classification at the output layer and sets the 

weighted parameters between the competition layer and output layer. The values of 

these weighted parameters are always one or zero since the wining neurons should be 

one when it is associated with a particular class of input, while zero indicates failing  

neurons. The winning neuron from the competition layer is decided by (2) where 

the process of updating the parameters is similar to (5). Still, we consider the runner-

up neuron in the case of the wrong winning neuron and the restricted decision by one 

neuron [13]. Comparing the output layer result with actual classification, the LVQ can 

update the weighted parameter without many iterations to ensure better performance 

by setting the suitable mean square error (MSE) for training [14]. 

To find the suitable MSE and iteration of the proposed Advanced LVQ (ALVQ) 

classifier, the value of MSE is set to the maximum value from five individual Fast-

Good LVQ classifiers with the largest iteration. The requirements of the Fast-Good 

LVQ are set to: classification time less than 10 seconds, and accuracy, sensitivity, and 

specificity are larger than 85%. 

Figure 2 shows the flowchart of designing the ALVQ classifier. First, this paper 

manually finds valid ranges of MSE, iteration, and number of neurons for Fast-Good 

LVQs. Second, the Five LVQs take 150% of the maximum iteration time with the 

minimum number of neurons from the previous results. Third, the ALVQ utilizes the 

maximum MSE with associated iteration from Five LVQs. The number of neurons of 
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ALVQ is set to the maximum number of the Fast-Good LVQs. In this section, the 

same CT Database that consists of 569 cases, 519 training cases, and 50 testing cases 

is used. To evaluate the performance of classifiers, the database will be randomly 

realigned ten times before each simulation. 

 

Fig. 2. Flowchart of the proposed ALVQ Classifier 

To evaluate the anti-noise classification performance, this paper uses ALVQ to 

conduct another three tests. The first test employs random Gaussian noise into 50% of 

the training set. The second test adds an unknown noise into a quarter of the training 

set through three random distributions with random parameters. The third test changes 

the data of 20 patients in the training set into a different value. This process uses the 

Colon Cancer Database. The whole simulation is conducted ten times due to random 

parameters of the noise. 

The influence of iteration and number of neurons in the competition layer is ana-

lyzed in the SOM Section. Since the SOM doesn't have the output layer and competi-

tion layer, the SOM classifier performance will not be affected by supervised teach-

ing. We can easily find the effects of iteration and the number of neurons, with a fixed 

study rate, on the results without setting the MSE of LVQ. The results indicate classi-

fication improvement in the learning function and study rate in comparison with other 

results such as [13, 25]. This paper uses a 0.01 study rate, which is enough to make an 

accurate classification for many small databases within ten iterations if there is no 

significant noise in the training set or insufficient training process [13]. 

4 Decision Tree 

The DT is considered as a statistical technique of the information reaction that is 

based on the entropy and information gain from the ID3 algorithm [7]. The entropy 

𝐻(𝑉) of information is used to describe the purity of group information, as shown in 

(6). If all samples are in the same group, the 𝐻(𝑉) will be zero. In other words, if a 

system has mostly the same information, its entropy will be minimal. The DT is con-

structed with each non-terminal/non-leaf node representing the selected attribute on 

which the data is split. Further, terminal/leaf nodes represent the class label of the 

classification decision after computing all attributes [24]. In ID3, the entropy always 
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affects the non-leaf node. The smallest entropy or largest information gain is used to 

be the non-leaf node in every iteration. The larger the number of single attributes in 

the data set, the higher probability of this attribute becoming a non-leaf node. To 

avoid drawbacks of the ID3 of tending to adopt more samples in the classifier where 

many tree branches offer useless details, the C4.5 algorithm is used where the gain is 

replaced by the gain ratio, as shown in (6), [8].  

 𝐼𝐺_𝑟𝑎𝑡𝑖𝑜 = 𝐼𝐺(𝑉)/𝐻(𝑉),𝐻(𝑉) = −∑ 𝑝(𝑣𝑗) log2 𝑣𝑗   𝑗  (6) 

where 𝐼𝐺𝑟𝑎𝑡𝑖𝑜 represents the information gain, 𝑣𝑗  represents the difference value 

from the group feature 𝑉, and 𝑝(𝑣𝑗) represents the proportion of sample 𝑗 in group 𝑉. 

Furthermore, due to the binary categories of the CT database, the Classification 

and Regression Trees (CART) is a better choice [12]. The CART implementation is 

similar to the C4.5. The only difference is that CART is based on the Gini index, 

which is a standard impurity measure [22]. The CART can generate a regression tree. 

However, this work focuses on classification by the CART Method. To avoid the 

overfitting issue, this work uses the pessimistic pruning algorithm [9]. The pessimistic 

pruning method replaces the previous non-leaf node with the leaf node. To maintain 

the information classification accuracy and efficiency, the pessimistic pruning algo-

rithm bases its judgment on the classification error. For a leaf node, it covers N sam-

ples, and the ratio of classification error is (E+0.5)/N. If the inside non-leaf node has 

L following nodes, the ratio of classification error can be found, as shown in (7). 

 e = (∑
Ei+0.5∗L

∑Ni
) (7) 

where the constant 0.5 represents the punishment of calculating error ratio for a 

specific node. In the case of two-group classification, the error follows the Bernoulli 

Distribution. The calculation of the standard deviation of the error of a sub-node in-

side a non-leaf node can be found using (8). 

 σ (subtree) = √N ∗ e ∗ (1 − e) (8) 

Assuming the final leaf node will be cut, and the error classification is J, then the 

ratio of error should be (J+0.5)/N. If the difference between the non-leaf node error 

ratio and sub-node error ratio is larger than the signal node, the tree branch will be 

cut. 

Figure 3. shows the flow chart of the DT used in this paper. The DT uses the same 

CT database used by LVQ. To ensure finding the correct performance, the database 

will be randomly realigned ten times before each classification. Also, the mathemati-

cal logic procedure and the confusion matrix will be used to investigate the perfor-

mance of the pruning tree from the CART and the normal DT from CART. Finally, 

the same anti-noising tests applied to LVQ will be applied to the Pruning CART.  
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Fig. 3. Flowchart of the proposed supervised classifier 

5 Hybrid Classifier 

A hybrid classifier is proposed based on the random forest (RF) and the combina-

tion of LVQ and DT. The purpose of the hybrid classifier is to overcome the draw-

backs of each classifier based on the analyzed performance of individual classifiers.  

From the mathematical inference of ANN with the competition Layer, the LVQ 

must take enough iterations to adjust its weighted parameters. However, not all neu-

rons in the competition layer can make accurate reactions to different inputs. In the 

case of too large/small Euclidean distances between some vectors of input data, the 

learning process of competition and random initial weighed parameters limits the 

classification accuracy. In this case, the LVQ utilizes this drawback to avoid a big 

noisy training set. However, the DT can be more sensitive to any perturbations in the 

training data making it hard to avoid a wrong classification for noisy training data. 

Therefore, the LVQ can make up the drawbacks of DT. Furthermore, the DT can 

make up the deficient performance of neurons. When considering the multicollineari-

ty drawback, the DT greedily chooses the significant group feature, and the LVQ 

chooses the small Euclidean distance group. Finally, ensemble methods, such as RFs, 

can negate this issue. 

The RF is considered as multiple DTs-based classifier where the output category is 

determined by the output mode of individual trees [10]. When data progress inside the 

RF, it cause each DT to categories the data. The RF makes the final decision based on 

the majority vote of individual DTs. The Bootstrap Sampling method is used where it 

samples the data to create training groups equal to the number of used DTs inside the 

RF [21]. If a group S contains n samples x_1, x_2… ,x_n, then sampling the group n 

times creates a new group S'. For the new group S', the probability of not including 

one sample is = (1 − 1/𝑛)𝑛 . Thus, we can get a new group with the same number of 

samples but different from the previous one. The new group S' is created as a training 

group for a specific DT [11]. The C4.5 method is fast enough to run one hundred 

Decision Tree models. In summary, we used 100 new groups as 100 training sets for 

100 Decision Tree models with the C4.5 method. The classification result is based on 

the majority vote from DT results. Meanwhile, inherited problems of RFs are incom-

prehensible and hardly incremental in the classification process. The DT and LVQ 
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can provide an inside process of classified features that should efficiently make up the 

flaws of RFs. 

The proposed hybrid classifier consists of two sub-hybrid classifiers, where its 

framework is presented in Figure 4. The first sub-hybrid classifier bases its classifica-

tion decision on two classifiers. The LVQ-based classifier uses the ALVQ with suita-

ble training MSE and iteration from the Five LVQs. The DT-based classifier uses the 

pruning CART method. The other sub-hybrid classifier employs the RF where one 

hundred C4.5 DTs, based on the Bootstrap Sampling method, are used to create new 

one hundred training sets from the 519 training cases. 

 

Fig. 4. The flowchart of the proposed hybrid supervised classifier 

To reduce the classification time, the three classifiers are run in parallel to vote for 

the final classification result. The hybrid classifier performance is also tested against 

noisy cases in the same test setup of the LVQ and DT individual classifiers. The RF is 

considered as multiple DTs-based classifier where the output category is determined 

by the output mode of individual trees [10]. When data progress inside the RF, it 

cause each DT to categories the data. The RF makes the final decision based on the 

majority vote of individual DTs. 
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6 Experimental Work and Performance Analysis 

This section presents the simulation results of three individual classifiers and the 

proposed hybrid classifier. 

6.1 Classifier performance evaluation 

The accuracy, sensitivity, and specificity are used to evaluate classifiers' perfor-

mance, as shown in (9). 

Accuracy =
(TP+TN)

(TP+FN+FP+TN)
Sensitivity =

TP

(TP+FN)
Specificity

TN

(TN+FP)
 (9) 

where TP indicates true positive, TN indicates true negative, FN indicates false 

negative, and FP indicates false positive. 

 

 

Fig. 5. Classification Results of the SOM 
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6.2 SOM classification analysis 

Figure 5 shows the classification results of the SOM. At the beginning of the simu-

lation, each neuron in the network is given a serial number so the program can easily 

check which neuron is related to a specific category of the database. The columns of 

figure 5 represent the patient number, while rows indicate the iteration (10, 20, 50, 

100, 250, 500, 1500). The intersection of patient number and iteration indicates neu-

rons' serial number. 

The SOM system assigns every neuron a random serial number in each iteration, 

which represents one input category. For example, in Figure 5, for the first patient 

when the iteration is 250, the neuron's serial number of the classifier is 71. As Figure 

5 indicates, using more iterations provides the neuron with better-weighted parame-

ters like the human's memory since it requires more time stimulus to provide better 

results. However, simulation results indicate that using a large iteration will not effi-

ciently enhance classification performance anymore; on the contrary, it decreases 

performance because of long classification time with almost unimproved accuracy. 

Simulation results also indicate that using 250 iterations results in acceptable accuracy 

and classification time. 

In the case of using iteration less than 250, the SOM correctly identifies less than 

seventy patients. On the other hand, using iteration larger than 250 results in a little-

improved accuracy for the SOM network but at the price of longer classification time.  

Results also show that using 500 iterations allows the SOM to avoid the error of 

250 iterations, such as the change between 31st and 32nd columns, which takes longer 

classification time close to ten seconds. However, using 500 iterations introduces a 

new error, such as the change between 16th and 52nd columns. Figure 5 also indicates 

that no matter how the iterations change, the SOM cannot correctly classify five pa-

tients; number 81, 39, 51, 99, and 58. These results are due to the limited learning 

ability of neurons or due to disabled neurons being unable to effectively update the 

weighted parameters along with the iteration and study rate. In summary, the 250-

iteration results in the best classification performance. 

If there are more than 100 neurons to classify 100 patients in the SOM competition 

layer, the classification performance of SOM should produce better performance. The 

SOM is also used for cancer detection. The previous discussion recommends using 

the 250 iterations. The results, shown in Table 2, indicate the SOM performance in 

cancer classification. Table 2 indicates that the number of used neurons affects classi-

fication time. Figure 6 shows the reaction time of neurons to the input data. These two 

experiments indicate that the iteration and number of neurons largely affect ANN with 

the competition layer. Using more iterations can enhance classification performance 

but increases the classification time. Using more neurons can avoid the overfitting 

problem and efficiently enhance the classification performance. Comparing the SOM 

with the traditional K-Means method, the SOM overcomes many of the K-means 

drawbacks [16]. For example, in the case of the unknown database, more cases than 

the predicted number of classified groups in the training group must be known using 

the K-means classifier.  
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6.3 LVQ classification analysis 

Figure 7 shows an example of the LVQ training confusion matrix with 20 neurons, 

0.1 error limit, and 250 iterations. The true positive set has 322 patients which occupy 

62% of all training sets, the false negative set has 42 patients, the false positive set has 

7 patients, and the true negative set has 148 patients. Results indicate 88.5% sensitivi-

ty, 95.5% specificity, 97.9% precision, 77.9% negative predictive value, and 90.4% 

accuracy. 

 

Fig. 6. Times of Neuronal Reaction 

  

Fig. 7. An example of LVQ training confusion matrix 
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Table 2.  SOM classification performance in identifying cancer 

Classification Targets 569 Patients (Two Neurons) 

Confusion matrix (Training group) 
Predicted 

Negative Positive 

Actual 
Negative 347 10 

Positive 42 170 

Performance Accuracy Sensitivity Specificity 

Test group 90.86% 80.18% 97.20% 

Iteration times Simulation Time (Two neurons/ neurons) 

<50 

100 

250 
>500 

<10 second 

17 second 

44 seconds 
90 seconds 

 

Fast-good LVQ results: To find a suitable MSE range, this paper designs LVQ 

with very small MSE and enough number of iterations. Figure 8 shows a typical ex-

ample of the MSE curve versus Epochs for a training MSE of 0.01 and 250 iterations. 

Figure 8 shows that MSE cannot get a lower value than 0.0829 after 9 iterations. 

Since the supervised LVQ can efficiently adjust the weighted parameters of the neu-

ron from the actual output, the LVQ takes the shortest time of iteration to achieve the 

best performance. The LVQ cannot reach 0 MSE due to the disabled neurons and the 

drawback of competition learning processing, which already indicated in the SOM 

Section. After several simulations with the random training data and testing data, 

Table 3 shows the MSE training goal range to reach Fast-Good LVQ. Table 3 indi-

cates that the LVQ can have the best performance within 10 iterations and 10 seconds 

for the realigned CT Database. Figure 8 indicates that the performance will be distort-

ed when LVQ cannot get 0.0829 MSE and continues to classify until 250 iteration 

ends. In this case, the number of neurons should be chosen from 20 to 25 because the 

simulation time of 30 neurons is close to 10 seconds, and a smaller number of neurons 

can inherent the overfitting problem as discussed in the SOM Section. So, the Fast-

Good LVQ should have MSE less or equal to 0.1, 15 to 30 neurons, and 10 iterations. 

Table 3.  LVQ classification performance in identifying cancer 

Condition Range Best MSE Iteration Time 

10~30 Neurons 0.0925~ 0.082852 <10 <10s 

Performance  Accuracy Sensitivity Specificity 

 >90% >85% >92% 

 

The ALVQ results: From the analysis of the previous section, parameters of the 

five LVQs of the ALVQ should have 0.01 MSE, 15 iterations, and 10 neurons. The 

MSE and iteration of the ALVQ are found from five LVQs. This accurate classifier 

can automatically find the suitable weighted parameters from five ALVQs, and it can 

adapt to other databases with a similar scale. Table 4 shows the ALVQ classification 

performance in identifying cancer. As Table 4 shows, after ten times of simulation 

with realigned training and testing sets of the CT Database, the ALVQ has average 
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accuracy and specificity above 90%. However, the sensitivity is around 82%, which 

means the ALVQ suffers the overfitting problem for some malignancy inputs. 

Table 5 shows the simulation results of the anti-noise performance of the ALVQ. 

From the simulation results, the LVQ has high anti-noise classification performance 

in case of large SNR and, in case of the noise, has different distribution function. 

However, if we change 20 input data into 2000, the LVQ will be crashed. Figure 9 

indicates that LVQ needs more classification time to handle significant different input 

data. Therefore, for the ALVQ, if there is a considerable noise, using short iteration 

time will not be enough. 

 

Fig. 8. Example of Curve of MSE 

 

Fig. 9. MSE Curve of the third noisy testing set 
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Table 4.  LVQ classification performance in identifying cancer 

 Total number Benign tumor Malignancy 

Number patients 569 357 212 

Advanced LVQ 

Confusion matrix 

(Random 50 Test group) 

Predicted (Average) 

Negative Positive 

Actual 
Negative 30.8 0.2 

Positive 3 16 

Performance Accuracy Sensitivity Specificity 

Test group 93.6% 84.2% 99.35% 

Total Simulation Time 14 seconds 

Table 5.  LVQ anti-noise performance 

No Noise 

 Total number Benign tumor Malignancy 

Total patients 569 357 212 

Test patients 519 40 10 

Performance Accuracy Sensitivity Specificity 

Test group 98% 90% 100% 

First Noise 

Noisy Patients Gaussian Noise SNR Ratio in dB 

261 1 to 100 

Performance Accuracy Sensitivity Specificity 

Test group 98% 90% 100% 

Second Noise 

Noisy Patients Three Random Distribution 

131 
Poisson, Rayleigh, Noncentral Chi-Square Distribu-

tion with random <10 parameters 

Performance Accuracy Sensitivity Specificity 

Test group 96.8% 90% 98.5% 

Third Noise 

Noisy Patients Large Noise 

20 0, 200, 2000 

Performance Accuracy Sensitivity Specificity 

The data of 20 patients changes to all 0 

Test group 94.8% 90% 96% 

The data of 20 patients changes to all 200 

Test group 98% 90% 100% 

The data of 20 patients changes to all 2000 

Test group 80.8% 4% 100% 

6.4 Decision tree classification analysis 

Table 6 shows the average classification performance of the DT for the realigned 

training and testing set from the CT Database. As table 6 indicates, the DT can be a 

competent classifier for early detection of cancer. 
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As Figure 10 shows, the DT can easily detect cancerous cells and find logical 

mathematical classification where x indicates a feature of the input data. For example, 

Figure 10 shows x23 as the worst value of the perimeter of the cell and X27 as the 

worst value of concavity of cell in input data which become the tree's chance nodes. If 

a cell has a perimeter larger than 114.65 and a concavity less than 0.1907, the specific 

person will have a 90.4% probability of not getting cancer.  

From Figure 10, the mathematical function can be expressed by the DT in the type 

of Y = f(X); like piecewise functions. For example, when Y = 2, then X23 > 114.65, 

X27 > 0.1907, and X23 > 15.665. However, it cannot build the consecutive relation-

ship between two attributes in the type of Xm + Xn < constant where X is the input 

and (m, n)  indicates the serial number of input features. This is because all X -

boundary judgment is parallel with the axis. So, the DT offers straightforward judg-

ment, but it is hard to render the mathematical relationship between each attribute 

with one mathematical equation.  

From Figure 10, there is a degradation in the classification performance when the 

classifier executes in step X22. When the group size is small, the judgment becomes 

useless due to overfitting issue. Therefore, it is essential to stop the tree from growing 

too deep accurately. One solution is by using the pessimistic pruning method. 

The pessimistic pruning method-based DT is shown in Figure 11. The simulation 

results of the 3rd best-level, the 0.0289 new re-substitution error after pruning, and 

0.0193 re-substitution error before pruning, indicate that the best level is three, which 

is the smallest value in subtrees because the DTM is based on the minimal cost calcu-

lation. The re-substitution error indicates re-inputting the data and checking the classi-

fication error. For example, for 30 leaves DT with 1000 samples having 10 error sam-

ples, the re-substitution error will be 10/1000=1%. After applying the pruning pro-

cess, the substation error is increased from 0.019 to 0.029. However, as shown in 

table 7, the simulation performance on the testing data is better than the previous 

results of DT because the pruning method can effectively handle the overfitting prob-

lem. 

Table 6.  Decision tree classification performance in identifying cancer 

 Total number Benign tumor Malignancy 

Number of patients 569 357 212 

Confusion matrix 

(Random 50 Test group) 

Predicted (Average) 

Negative Positive 

Actual 
Negative 28.6 1.4 

Positive 3.4 16.6 

Performance Accuracy Sensitivity Specificity 

Test group 90.4% 83% 95.33% 

Classification Time 1.2 seconds 

iJOE ‒ Vol. 17, No. 03, 2021 91



Paper—An Efficient Hybrid Classifier for Cancer Detection 

 

Fig. 10.  Complete tree model 

Table 7.  Pruning decision tree performance 

Confusion matrix  

(Random 50 Test group) 

Predicted (Average) 

Negative Positive 

Actual 
Negative 31 0.8 

Positive 2.2 16 

Performance  Accuracy Sensitivity Specificity 

 Test group 94% 87.91% 97.48% 

Time of simulation 2.2 seconds 

 

Fig. 11. Pruning the Decision Tree 

Table 8 shows the simulation results of the anti-noise performance of the pruning 

DT. From the simulation results of the first noisy and the second noisy testing sets, 

the DT shows the worst performance when the noise embedded into the training set. 

Comparing with the LVQ anti-noise performance, Pruning DT is easily affected by 

noise. When the 20 patients are directly changed into 200, the pruning DT has 100% 
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classification accuracy for the testing group. Though the DT is pruned, the pruning 

DT also has the overfitting problem and makes harder classification when the small 

noise results in a highly correlative data. The results of the third noise test also indi-

cate that adding suitable noise into input data, pruning the DT model shows better 

results. 

Table 8.  Decision Tree anti-noise performance 

No Noise 

 Total number Benign tumor Malignancy 

Total Patients 569 357 212 

Training Sets 519 317 202 

Test Sets 50 40 10 

Performance Accuracy Sensitivity Specificity 

Test group 94% 90% 95% 

First Noise 

Noisy Patients Gaussian Noise SNR Ratio in dB 

261 1 to 100 

Performance Accuracy Sensitivity Specificity 

Test group 93.2% 90% 94% 

Second Noise 

Noisy Patients Three Random Distribution 

131 
Poisson, Rayleigh, Noncentral Chi-Square Distribu-

tion with random <10 parameters 

Performance Accuracy Sensitivity Specificity 

Test group 92% 90% 92.5% 

Third Noise 

Noisy Patients Large Noise 

20 0, 200, 2000 

Performance Accuracy Sensitivity Specificity 

The data of 20 patients changes to all 0. 

Test group 92.8% 90% 93.5% 

The data of 20 patients changes to all 200 

Test group 100% 100% 100% 

The data of 20 patients changes to all 2000 

Test group 92.8% 90% 93.5% 

6.5 Proposed hybrid classifier performance analysis 

The hybrid classifier uses the CT database that consists of realigned 569 cases split 

into 519 training cases and 50 testing cases. The previous analysis and simulations 

highlight the drawbacks and merits of each classifier. Therefore, a hybrid classifier is 

proposed to avoid all drawbacks of individual classifiers. As Figure 12 shows, the 

ALVQ classifier (3rd row) adopts the suitable training MSE with the iteration from 

five LVQs, the DT (1st row) adopts pruning CART, and the RF classifier (2nd row) 

uses 100 decision trees. As Figure 12 shows, the 2nd or 9th columns make up the flaws 

of disabled neurons and/or the insufficient iteration, the 28th column makes up the 
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random and/or repeating choice of uninformative input data/variable from RF, and the 

40th column make up the overfitting problem of Pruning Decision Tree. 

As table 9 shows, the hybrid classifier has the highest anti-noise performance. The 

LVQ and the RF can make up the flaws of low anti-noise performance of Pruning DT 

for the 1st noise. The DT and RF can make up the flaws of LVQ for the 3rd noise. 

However, the hybrid classifier did not have a high performance for the second noise 

due to the wrong votes from LVQ and Decision Tree. This drawback can also be 

found in table 5 and table 8. The low noise results in correlated variables of CT data-

base, therefore, the LVQ has low ability to recognize them, and DT is easily over-

fitted. The DT in the hybrid classifier shows the important variables/features of input 

data that affects the classification and can help in viewing the logical mathematical 

classification. The hybrid classifier can be efficiently coded to show vectors of the 

training input data with LVQ weighted parameters. However, the ability of LVQ is 

limited by the other two DTs for the same weighted vote. If the DT gets the wrong 

results and LVQ made the correct classification, the hybrid classifier is prone to two 

DTs. Furthermore, the whole process increases the classification time by automatical-

ly find the best training MSE. 

Table 9.  Confusion matrix of hybrid classifier 

No Noise 

 Total number Benign tumor Malignancy 

Total Patients 569 357 212 

Training Patients 519 317 202 

Test Patients 50 40 10 

Performance Accuracy Sensitivity Specificity 

Test group 100% 100% 100% 

First Noise 

Noisy Patients Gaussian Noise SNR Ratio in dB 

261 1 to 100 

Performance Accuracy Sensitivity Specificity 

Test group 97.2% 96% 97.5% 

Second Noise 

Noisy Patients Three Random Distribution 

131 
Poisson, Rayleigh, Noncentral Chi-Square Distribu-

tion with random <10 parameters 

Performance Accuracy Sensitivity Specificity 

Test group 94.8% 92% 95.5% 

Third Noise 

Noisy Patients Large Noise 

20 0, 200, 2000 

Performance Accuracy Sensitivity Specificity 

The data of 20 patients changes to all 0. 

Test group 98% 100% 97.5% 

The data of 20 patients changes to all 200 

Test group 100% 100% 100% 

The data of 20 patients changes to all 2000 

Test group 98% 90% 100% 
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7 Conclusion 

This paper focuses on enhancing the classification performance of cancer in cell 

database. Through analysis of three different classifiers, including Pruning DT, RF, 

and LVQ, this paper develops a hybrid classifier that has high classification perfor-

mance for different small binary databases. Experimental results of ANN with a com-

petition layer indicate that the SOM and LVQ are affected by the iteration, which 

recursively finds the best-weighted parameters between the competition layer and the 

input layer with a suitable study rate. The suitable training MSE and suitable iteration 

are the most critical parameters to obtain efficient LVQ. Furthermore, the ANN with 

the competition layer also has high anti-noise performance and stable classification 

time. The main drawbacks of ANN with competition layer are limitation by the learn-

ing process, and it is hard to classify some input vectors that have small (or large) 

Euclidean distance between each of them and the initial vectors of weighted parame-

ters. The pessimistic pruning DT requires less computational complexity than ANN 

without the model training but has the worst anti-noisy performance because it de-

mands independent and identical distribution of input data. Therefore, the normaliza-

tion is a possible pre-processing solution for DT. The proposed hybrid classifier can 

be developed based on combination of other machine learning methods depending on 

the targeted database. For example, if image pixels are input instead of extracted fea-

tures then the LVQ takes large computations and should be replaced by convolutional 

neural networks. 

 

Fig. 12. Example of hybrid classifier results 
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