
SPECIAL FOCUS PAPER
JAVA IMPLEMENTATION OF THE BATCHED ILAB SHARED ARCHITECTURE

JAVA Implementation of the Batched iLab
Shared Architecture

http://dx.doi.org/10.3991/ijoe.v9iS3.2531

L.J. Payne, M.F. Schulz
The University of Queensland, Brisbane, Australia

Abstract—The MIT iLab Shared Architecture is limited
currently to running on the Microsoft Windows platform. A
JAVA implementation of the Batched iLab Shared Archi-
tecture has been developed that can be used on other
operating systems and still interoperate with the existing
Microsoft .NET web services of MIT’s iLab ServiceBroker.
The Batched iLab Shared Architecture has been revised and
separates the Labserver into a LabServer that handles
experiment management and a LabEquipment that handles
experiment execution. The JAVA implementation provides
a 3-tier code development model that allows code to be
reused and to develop only the code that is specific to each
experiment.

Index Terms—MIT iLab, Remote laboratories, Web Ser-
vices.

I. INTRODUCTION

The iLab Shared Architecture (ISA) developed by MIT
[1] uses the Microsoft .NET (DotNet) web services of the
Microsoft Windows platform [2]. It also uses the Micro-
soft SQL database server for information storage by the
ServiceBroker and LabServers. The Microsoft Visual
Studio development tools are used to build the web
applications for the ServiceBroker, LabClients and Lab-
Servers. By developing these web applications in JAVA
[3] and using the PostgreSQL database [4], it is now
possible to extend the use of the iLab Shared Architecture
beyond the Microsoft Windows platform.

JAVA provides the jax-ws framework for developing
web service applications that interoperate with the DotNet
web services. This allows a JAVA LabClient to commu-
nicate with a DotNet ServiceBroker that in turn communi-
cates with a JAVA LabServer. The NetBeans IDE and
Glassfish web server [5] are used to develop these JAVA
web and web service applications while PostgreSQL is
used for database storage.

JAVA is the programming language of choice with over
3 billion devices using JAVA. The development tools and
database software are free to download from the Internet,
are free to use, and are available for a wide range of
operating system platforms such as LINUX and Mac-OS
as well as Microsoft Windows.

II. ILAB SHARED ARCHITECTURE MODEL

A. Existing Model
Figure. 1 shows the existing model for an MIT Batched

experiment which consists of three parts: a LabClient, a
ServiceBroker and a LabServer with attached equipment.

The LabClient provides the interface through which the
user creates and submits an experiment specification. The

Figure 1. MIT’s Batched iLab Shared Architecture model.

ServiceBroker enables the user to launch the LabClient
after proper authentication. The LabServer handles the
validation and submission of an experiment specification
from the LabClient (via the ServiceBroker) and executes
the experiment on the equipment according to the experi-
ment specification.

B. Revised Model
Figure. 2 shows the model developed at the University

of Queensland which consists of four parts: LabClient,
ServiceBroker, LabServer and LabEquipment [6]. The
LabClient and ServiceBroker are the same as in the MIT
model but the LabServer has been separated into two
parts. Again, the LabServer handles the validation and
submission of an experiment specification from the
LabClient (via the ServiceBroker) but experiment execu-
tion has been moved from the LabServer the LabEquip-
ment.

Quite often the software used to drive the equipment
hardware is very dependent on the computer platform
being used, and in many cases is only available for the
Microsoft Windows platform. So by separating out the
LabEquipment from the LabServer, the LabServer can be
developed in JAVA and handle experiment management
while the LabEquipment can be platform dependent and
handle experiment execution.

As a result of the separation, the LabEquipment and
LabServer no longer need to reside on the same computer.
The LabEquipment can reside at a location suitable for
running the experiment which may be in a hazardous area
or behind a network firewall. The LabServer can reside on
a system server, possibly along with the ServiceBroker
and the LabClient.

An example of this occurs at the University of Queen-
sland where the Radioactivity LabEquipment is located in

Figure 2. Revised Batched iLab Shared Architecture model.

4 http://www.i-joe.org

SPECIAL FOCUS PAPER
JAVA IMPLEMENTATION OF THE BATCHED ILAB SHARED ARCHITECTURE

the Physics department while the Radioactivity LabServer
and LabClient reside on the School of Information Tech-
nology and Electrical Engineering server along with the
UQ OpeniLabs ServiceBroker.

The LabEquipment also provides a mechanism for
powering down the equipment after a period of inactivity.
Generally, there is a burst of activity when experiments
are submitted followed by long periods of inactivity. It
makes sense then to power down the equipment during
these periods of inactivity to reduce component wear as
well as reducing overall power usage.

C. LabEquipment Farm
By having the LabEquipment separate from the Lab-

Server, it is now possible to duplicate the LabEquipment
to create a “farm” (Figure 3) of LabEquipment units
connected to the same LabServer. This has the advantages
of increased experiment throughput and improved reliabil-
ity. Should any one of the LabEquipment units fail, the
other units will pick up the load. The disadvantage is that
the LabEquipment units must produce the same result,
within acceptable limits, for the same experiment specifi-
cation.

III. JAVA INTEROPERABILITY WITH DOTNET

A LabServer coded in JAVA must interoperate with a
DotNet ServiceBroker in exactly the same way as a
DotNet LabServer would (Figure 4).

JAVA provides a jax-ws framework to do this but this
framework requires web service JAVA classes to func-
tion. Fortunately these classes can be generated from a
WSDL file created from the DotNet web service.

The web service of a DotNet LabServer is opened with
a web browser and then the Service Description (WSDL)
is viewed in the browser. The service description is saved
to a file which is then used to generate the web service
JAVA classes.

IV. LABSERVER WEB SERVICE

The JAVA web service for the LabServer is generated
from the WSDL file obtained from the MIT’s DotNet
LabServer web service. An example implementation of a
Batch LabServer was provided with the MIT 6.1 version
of the Batch ServiceBroker as the Time-Of-Day experi-
ment. This implementation was originally used to obtain
the WSDL file from the DotNet web service. Since then,
an abstract class of the DotNet web service has been
written for the LabServer to obtain the WSDL file.

A. SOAP Header
The ServiceBroker passes information in the SOAP

header of the web service call to the LabServer. This
includes the Identifier which is the ServiceBroker's GUID
and the outgoing PassKey and both are used to determine
the authenticity of the ServiceBroker making the request.
(Figure 5)

SOAP header processing is carried out in a message
handler that is attached to the web service for the incom-
ing requests. Since each request is independent of any
other request, the information in the SOAP header has to
be passed between the message handler and the web
service application by means of the message context. The
LabServer may receive two consecutive requests from two

different ServiceBrokers meaning the information in the
SOAP header will be different for each request.

The Identifier and PassKey are contained in an
AuthHeader object that is extracted from the SOAP
header and passed to the LabServer’s web service through
the message context for authentication. Should authentica-
tion fail, an exception is thrown back to the ServiceBroker
denying access to the LabServer.

The LabServer uses a JAVA Enterprise Bean to do the
work of the web service. The web service simply proc-
esses the AuthHeader object information that it received
through the message context from the message handler
before passing the request on to the bean to do the work.

B. Initialization
The first point of contact with the web service is its

message handler. When a ServiceBroker sends a request
to the LabServer, the message handler processes the
request before passing the message to the LabServer’s
web service (Figure 6). This means that the first phase of
initialization of the LabServer has to be carried out in the
message handler and not in the web service. This is fine
because a message context exists in the message handler
allowing configuration information to be read from the
web.xml file. This information includes the location of the
configuration properties XML file which is read and an
instance of a ConfigProperties object created.

Figure 3. LabEquipment farm.

Figure 4. Java LabServer replaces DotNet LabServer.

Figure 5. DotNet ServiceBroker web service call to a Java LabServer.

iJOE – Volume 9, Special Issue 3: "REV2013", April 2013 5

SPECIAL FOCUS PAPER
JAVA IMPLEMENTATION OF THE BATCHED ILAB SHARED ARCHITECTURE

Figure 6. Java LabServer web service initialization.

Figure 7. Java LabClient web application.

But how does the LabServer’s web service Enterprise
Bean get to see the configuration information? The mes-
sage handler places the newly created ConfigProperties
object into a static variable in the LabServer’s web service
and sets an initialized boolean flag. When the web service
bean’s constructor executes, it gets the ConfigProperties
object from the static variable in the LabServer’s web
service and carries out the remainder of the initialization
required by the LabServer.

Why can't the LabServer’s web service bean get the
configuration information from the web.xml file itself? A
web service context does not exist outside of a web
service call to enable that to occur.

V. LABCLIENT WEB APPLICATION

The LabClient uses the Java ServerFaces framework to
provide an interface for the user to submit experiments
and retrieve results (Figure 7). A Loader Script is used by
the ServiceBroker to launch the LabClient. The loader
script passes the LabServer’s GUID and the ServiceBro-
ker’s web service URL to the LabClient, by way of the
URL request parameters. This allows a single deployment
of the LabClient to be used by multiple ServiceBrokers
and LabServers.

The JAVA web service reference for the LabClient is
generated from the WSDL file obtained from the DotNet
ServiceBroker web service abstract class that includes
only the web service methods for batch experiments.

The ServiceBroker generates a CouponId and Coupon-
Passkey when the LabClient is launched and passes these
to the LabClient also by the way of the URL request
parameters. The CouponId and CouponPasskey are then
passed back to the ServiceBroker in the SOAP header
with each web service call and used by the ServiceBroker
to determine the authenticity of the LabClient making the
request.
The LabClients developed at the University of Queensland
are considered to be an engineering approach. They do not
provide any fancy graphical interface but do provide suf-
ficient information to submit an experiment to the Lab-
Server. For example, the LabClient for the Radioactivity
experiment simply provides standard web page controls to
specify the experiment setup, distance of the Geiger tube

Figure 8. University of Queensland’s Radioactivity LabClient.

Figure 9. NorthWestern University’s Radioactivity LabClient.

from the radioactive source and the duration of exposure
to the radioactive source as shown in Figure 8.

Northwestern University has developed an Adobe Flash
LabClient [7] for use by high school students as shown in
Figure 9. It provides a graphical simulation of the Radio-
activity experiment and then a step-by-step procedure for
preparing, running and completing the experiment. The
students are asked questions and are required to provide
answers to those questions before continuing to the next
step.

A. SOAP Header
The LabClient passes information in the SOAP header

of the web service call to the ServiceBroker. This includes
the CouponId and CouponPasskey which were passed by
the ServiceBroker to the LabClient when it was launched.

SOAP header processing is carried out in the message
handler that is attached to the web service reference for
the outgoing requests. The CouponId and CouponPasskey
are passed to the message handler by the LabClient
through the message context where they are placed in an
SbAuthHeader object and inserted into the SOAP header.

6 http://www.i-joe.org

SPECIAL FOCUS PAPER
JAVA IMPLEMENTATION OF THE BATCHED ILAB SHARED ARCHITECTURE

Figure 10. Java LabClient web service call to a DotNet ServiceBroker.

VI. LABEQUIPMENT WEB SERVICE

The LabEquipment web service application is responsi-
ble for executing an experiment on the equipment accord-
ing to the specification provided to it by the LabServer. In
certain cases, it also provides a mechanism for powering
down the equipment after a period of inactivity. Gener-
ally, there is a burst of activity when experiments are
submitted followed by long periods of inactivity. It makes
sense then to power down the equipment during these
periods of inactivity to reduce component wear as well as
reducing overall power usage.

As mentioned earlier, the LabEquipment software is
dependent on the computer platform used. If the LabE-
quipment only used the network to communicate with the
equipment or carry out simulations then the LabEquip-
ment could be developed in JAVA.

The JAVA web service reference for the LabEquipment
is generated from the WSDL file obtained from the
DotNet LabEquipment web service abstract class.

A. SOAP Header
In a similar fashion to the LabServer web service, the

LabServer passes information in the SOAP header of the
web service call to the LabEquipment. This includes the
Identifier which is the LabServer’s GUID and the outgo-
ing PassKey and both are used to determine the authentic-
ity of the LabServer making the request.

SOAP header processing is carried out in the message
handler that is attached to the web service for incoming
requests. The AuthHeader object containing the Identifier
and PassKey is extracted from the SOAP header and
passed to the LabEquipment’s web service through the
message context for authentication. Should authentication
fail, an exception is thrown back to the LabServer denying
access to the LabEquipment.

The LabEquipment uses a JAVA Enterprise Bean to do
the work of the web service. The web service simply
processes the AuthHeader object information that it
received through the message context before passing the
request on to the bean to do the work (Figure 11).

B. Initialization
Initialization of the LabEquipment web service occurs

in the same way as the LabServer web service. The first
phase of the initialization occurs in the message handler
attached to the web service. The web service bean’s
constructor then carries out the remainder of the initializa-
tion required by the LabEquipment.

C. Web Methods
The LabEquipment service provides a number of web

methods that can be called by the LabServer to run ex-
periments on the LabEquipment. These include:

Figure 11. Java LabServer web service call to a Java LabEquipment.

 GetLabEquipmentStatus – Determines the status of
the LabEquipment and if it is offline, provides a
status message.

 Validate – Takes an experiment specification string
in XML format and determines the validity of the
specification parameters and the estimated execu-
tion time. This time is dependent on the experi-
ment specification and the type of equipment used.

 StartLabExecution - Takes an experiment specifi-
cation string in XML format and after successful
validation, starts the experiment executing on the
equipment.

 GetLabExecutionStatus – Determines the status of
the currently executing experiment including an es-
timate of the execution time remaining.

 GetLabExecutionResults – Retrieves the results of
the experiment as a string in XML format after it
has finished executing.

 CancelLabExecution – Cancels the experiment that
is currently executing.

These web methods do not depend on the experiment
that is being executed or the type of equipment being
used.

D. Experiment Execution
Execution of the experiment is carried out by the LabE-

quipment under the management of the LabServer and is
summarized by the flowchart shown in Figure 12.

The LabServer starts the experiment executing on the
LabEquipment by calling the StartLabExecution web
service method. Periodically, the LabServer checks the
execution status of the experiment by calling the GetLa-
bExecutionStatus web service method. This provides the
LabServer with an estimate of the time remaining until
completion and allows the LabServer to determine when
to check the execution status again provided that execu-

Figure 12. LabServer experiment execution management flowchart.

iJOE – Volume 9, Special Issue 3: "REV2013", April 2013 7

SPECIAL FOCUS PAPER
JAVA IMPLEMENTATION OF THE BATCHED ILAB SHARED ARCHITECTURE

tion has not completed, failed or been cancelled. The
current implementation of the LabServer checks the
execution status every 20 seconds which prevents exces-
sive traffic between the LabServer and LabEquipment. As
the time remaining until completion approaches zero, the
LabServer checks the execution status more often by
halving the time remaining.

When the experiment execution completes on the La-
bEquipment, the LabServer retrieves the results by calling
the GetLabExecutionResults web service method.

VII. DUMMY SERVICEBROKER

A Dummy ServiceBroker has been developed to enable
the development of the LabServer and its LabClient
without the complexities of having to log into an iLab
ServiceBroker. The Dummy ServiceBroker simply pro-
vides pass-through methods to allow the LabClient to
communicate directly with the LabServer. Only one web
method is not entirely pass-through and that is the Submit
web method where an experiment number needs to be
generated.

It is then possible, while debugging, to step through the
code from the LabClient into the Dummy ServiceBroker
then into the LabServer and LabEquipment and all the
way back again to the LabClient.

The Dummy ServiceBroker can also communicate with
more than one LabServer during development. This may
be useful when one LabServer is being developed with the
JAVA jax-ws framework and while another LabServer is
being developed with the Microsoft .NET framework.

VIII. 3-TIER CODE DEVELOPMENT MODEL

Development of the LabServer and LabEquipment web
service applications occurs at three levels as shown in
Figure 13.

For LabServer applications, the bottom level is a library
containing code common to all LabServer web service
applications. It contains the base classes for processing
experiment specifications and experiment results, database
routines and the process threads that manage experiment
execution on the LabEquipment.

For LabEquipment applications, the bottom level is a
library containing code common to all LabEquipment web
service applications. It contains the base classes for
processing experiment specifications and experiment
results, base classes for the equipment devices and ex-
periment execution drivers and the process threads that
power up and power down the equipment.

Figure 13. 3-Tier code development model.

The next level up is the library containing the code that
processes the experiment specification and experiment
results for a specific experiment, for example, the Radio-
activity experiment or the Time-Of-Day experiment. For
the LabServer, this level also contains the drivers that
manage experiment execution for specific experiments.
For the LabEquipment, this level also contains the equip-
ment devices and experiment execution drivers specific to
the experiment.

The top level of the model is the web service applica-
tion and its message handler. The code at this level cannot
be placed in a library because it is the application that is
deployed to the web server. The web service applications
for each LabServer are identical except for configuration
information. Similarly, the web service applications for
each LabEquipment are identical except for configuration
information.

Using this model for the LabServer and LabEquipment
allows speedy creation of new applications by focusing on
the development of experiment specific code at the second
level and reusing the code at the other two levels.

IX. CONCLUSION

The development of a JAVA implementation of the
Batched iLab Shared Architecture has enabled platforms
other than Microsoft Windows to host iLab experiments.

The use of the JAVA jax-ws framework has allowed the
LabServer web service applications and LabClient web
applications to interoperate with existing Microsoft .NET
iLab ServiceBrokers.

By using the 3-tier code development approach, the
time and effort required to create new iLab experiments is
reduced.

REFERENCES
[1] J. Harward, et. al., “The iLab Shared Architecture: A Web

Services Infrastructure to Build Communities of Internet Accessi-
ble Laboratories”, Proceedings of the IEEE, Vol96(6), pp. 931-
950, June 2008. http://dx.doi.org/10.1109/JPROC.2008.921607

[2] iLab Downloads – iLabs Dev – MIT Wiki Service
https://wikis.mit.edu/confluence/display/ILAB2/iLab+Downloads

[3] Java Platform (JDK) 7u9, http://www.oracle.com/technetwork/
java/javase/downloads/

[4] PostgreSQL 9.2, http://www.postgresql.org/download/
[5] NetBeans IDE 7.2 + Glassfish Development Server 3.1.2,

http://netbeans.org/downloads/
[6] UQ-iLab-BatchLabServer-Java Repository, https://github.com/uql

payne/UQ-iLab-BatchLabServer-Java
[7] ilabCentral – The place to share remote online laboratories

http://ilabcentral.org

AUTHORS

L. J. Payne is with the School of Information Technology
and Electrical Engineering, The University of Queensland,
Brisbane, Australia (e-mail: uqlpayne@uq.edu.au)
M. F. Schulz is with the Centre for Educational Innova-
tion & Technology, The University of Queensland,
Brisbane, Australia (e-mail: m.schulz@uq.edu.au).

This article is an extended and modified version of a paper presented
at the International Conference on Remote Engineering & Virtual
Instrumentation (REV2013), held at Darling Harbour, Sydney, Australia,
February 6-8, 2013. Received 27 February 2013. Published as resubmitted
by the authors 20 March 2013.

8 http://www.i-joe.org

