
SPECIAL FOCUS PAPER
AN XML MODULAR APPROACH IN THE BUILDING OF REMOTE LABS BY STUDENTS: A WAY TO IMPROVE LEARNING

An XML Modular Approach in the
Building of Remote Labs By Students:

A Way to Improve Learning
http://dx.doi.org/10.3991/ijoe.v9iS5.2662

R. Pastor-Vargas, D. Sánchez, S. Ros, R. Hernández, A. Caminero, L. Tobarra,
A. Robles-Gomez, M. Castro, E. San-Cristóbal, G. Diaz, M. Tawfik

Spanish University for Distance Education, Madrid, Spain

Abstract—Practical knowledge is increasingly getting more
attention in the higher education, especially in the field of
engineering education. Engineering is a discipline which
has, by its own definition, a large amount of practical
contents. Allowing students to interact with real equipment
can give to them a qualitative knowledge that cannot be
obtained in other way. In this situation, remote laboratories
are especially useful. This paper presents a way of reusing
remote labs code by its XML representation. The idea is
that students learn not only the basic subjects of the course,
even more, that students do not only manipulate lab equip-
ment. The idea is to give the students a practical way to
check the potential of work organization and to give a taste
of the powerfulness of code reusing, that is, in the end, a way
to improve work efficiency.

Index Terms—Reusing code, distributed systems, remote
laboratories, engineering education.

I. INTRODUCTION
In the past days, engineering students were used to ma-

nipulate complex mathematic expressions and, in most
cases, graduates began his working life without a practical
view. But today, increasingly, enterprises demand more
specialized students and, what is more important, enter-
prises demand graduates capable of starting to work as
quickly as possible. To improve the learning process in
this way, it is important to give to the students a taste of
real situations. It’s important for the students to develop
an intuitive knowledge of the theoretical concepts they are
studying. This can be done via laboratory practices.

Laboratory practices are very useful, but in some sce-
narios like distance education or with a large number of
students, another concept is needed. The solution in these
scenarios is the use of remote laboratories. There are tons
of works about remote laboratories [1-4] but in most
cases, they lack a structured development system or the
possibility of code reusing [5]. This last feature is very
important, especially in case of allowing students to build
their own virtual or remote laboratories. It is very easy and
simple to provide laboratory modules to students when a
researcher/lecturer uses a modular approach to the devel-
oping. These modules can be combined with student’s
modules (like a puzzle) to build new laboratories (virtual o
remote). In this case, this is achieved by RELATED.

RELATED is a framework that provides a structured
methodology to develop virtual and remote laboratories

[6]. Moreover, RELATED has a modular architecture and
the laboratories produced using this framework have
modular architectures too. This modular architecture is the
key piece to allow code reusing. In fact, every laboratory
module and even every laboratory developed using
RELATED could be expanded, reused or combined with
other modules.

It is important to promote motivation between students
[7] because motivated students perform better in general
competencies, in specific competencies and also acquires
better knowledge. Involving students in the development
of a remote lab promotes motivation [8] so a development
of a remote and virtual laboratory and its application in a
university course is presented.

This course is called “Real time systems” and is a part
of a degree in Industrial Engineering. The main learning
goal is to understand the basics of Real Time Operating
Systems (RTOS) and programming techniques, regarding
with issues like concurrency, real time clocks and tasks
planning. Also, as Industrial Engineers, they need to learn
how to represent industrial models used in control pro-
cesses. So, they have to program a real time process
representing a PID (Proportional Integral Derivative)
module and also learn how to use it in a distributed way.
To achieve this, students will work in the developing of a
real-time control system for a DC motor using
RELATED. This is done easily thanks to the RELATED
modular approach.

II. RELATED MODULAR STRUCTURE
RELATED is a framework focused in the development

of remote/virtual laboratories based in the concept of
component and using the MVC (Model-View-Controller)
paradigm. A laboratory can be defined as a set of compo-
nents which are part of the laboratory. The components
can be categorized as model components (M in MVC
paradigm) or view components (V in MVC paradigm).
The model components are called “modules” and they will
be executed by the RLAB server controller (C in MVC
paradigm). The view components will be executed by the
RLAB client controller in the user/student computer. Both
of them, RLAB server/client controllers, are Java based
applications so they can be executed on several operating
systems with Java support.

In order to select which components will be used in a
practical experience, a new component called “experi-
ment” is defined. The experiment declares which compo-

iJOE ‒ Volume 9, Special Issue 5: "EDUCON2013", June 2013 5

SPECIAL FOCUS PAPER
AN XML MODULAR APPROACH IN THE BUILDING OF REMOTE LABS BY STUDENTS: A WAY TO IMPROVE LEARNING

nents will be part of the practical experience. As the
definition of an experiment is declarative, a XML based
language will be used. This language is called LEDML
(Experimentation Description Markup Language) and,
basically, declares all components of the laboratory
(including model, view components and experiments). In
Fig. 1, it is shown the relationship between components
and laboratories.

So, an RLAB (Remote LABoratory) system it defined
using a formal specification based on LEDML. As this
specification is written in XML, all components have
associated a XML fragment defining its properties. Using
this approach, it is possible to reuse “XML fragments” to
include the components in other laboratories in an easy
way.

A. Modules
As it was mentioned before, the model components are

called “modules”. These modules, which are run-able
entities (Java coded), are running by the RELATED server
controller facilities in order to get/set data from/to the
equipment, and this data will be sent over Internet to the
RELATED client controller.

In order to provide a standardized interface for control-
ling module execution, the module implementation must
offer a predetermined set of methods (implementing the
IRLABModule java interface). This aspect is very signifi-
cant since it enables the modules to be reused to elaborate
other RLAB Systems (local or remote). The most im-
portant methods of the module interface are:

1. Init(): It returns a Boolean value according to module
initialization. It can be used to get information from
module or initialize some module behavior.

2. Start(): It marks the starting of module execution.
Useful to start module operations (like starting com-
munication threads with real equipment)

3. Run(): It will be called in every experiment sample. It
can be used to update module information.

4. Pause(): Used to pause modules that work with simu-
lations.

5. Resume(): Used to resume modules that run simula-
tions.

6. Stop(): It marks the stopping of module execution.
7. Exit(): Used to free resources in the local code im-

plementations.
8. GetVarValue(var): Used to retrieve the value of a

variable in the module implementation. This method
allows the signal values to be obtained in real time. It
is used internally by RLAB controller to update
module information.

9. SetVarValue(var, value): Used to change the value of
a variable in the module local implementation. Also,
it is used internally by RLAB controller to update
module information.

Once the module has been implemented (following the
before guidelines), it is mandatory to declare its XML
fragment. This XML fragment will be part of the labora-
tory specification, as it will be shown in the next sections.

B. Views
A view defines a GUI form composed of graphical

components and multimedia capabilities (video, anima-
tion, sound). These components allow users to view and

Figure 1. RELATED Modular Structure based on components.

manipulate the remote data defined in an RLAB System.
A view is implemented like a module, i.e., with a stand-
ardized interface (IRLABView java interface), but
different methods are needed. These are:

1. Show(): It presents the GUI form to the user.
2. Hide(): Used to hide the GUI form and run the finali-

zation tasks.
3. ReceiveData(vars): Used to update the graphical

components of the GUI form.
4. SendData(vars): Used to send data changes in varia-

bles associated to the view.

As before, in order to include as a component in the
laboratory, it is mandatory to write the corresponding
XML definition. One important aspect in the specification
of views is the feature to associate modules variables to
views. To do that, it can be used the <use> tag in the view
specification. For example, to use a variable called
“myVar” from a module specification (called “myMod-
ule”) simply it has to be declared as a <use> tag, indicat-
ing the internal name used in the view (property as of the
<use> tag):

<view name=”myviewnam”>
 …
 <use name="myVar"

 module="myModule"
 as="myVarNameInView"/>
 …
</view>

The RLAB controller will do the corresponding as-
signment in the ReceiveData() method, setting the
“myVarNameInView” variable of view with the data from
module.

C. Experiments
Experiments define the subset of components used in

the practical experience, so it does not have implementa-
tion issues. Only it is a declarative component. The key
idea is declaring modules and views used in the experi-
ment, using the <run> and <open> tags in its declaration.

RELATED provides some useful services like painting
variables in trend graphics or the capability to provide
internal editors for some type of variables. These capabili-
ties are declared in the experiment definition using the
<paint> tag (trend graphics) and <interactives> tag (edi-
tion). For every <paint> tag defined in an experiment, one
tab is built automatically on the left/bottom part of the
experiment panel. It is possible to group some modules
variables in one tab, assigning a list of variables names in

6 http://www.i-joe.org

SPECIAL FOCUS PAPER
AN XML MODULAR APPROACH IN THE BUILDING OF REMOTE LABS BY STUDENTS: A WAY TO IMPROVE LEARNING

the “names” attribute of the <paint> tag. In the same way,
a tab is created on the right/bottom part of the experimen-
tation panel for the <interactives> tag (one by module). In
Fig. 2 is shown the experimentation panel running an
experiment. This experiment is defined as part of a virtual
laboratory which specifies a signal generator module and
the experiment.

Once the fundamentals of RELATED are detailed, in
the next section it will be shown how the students build
their own laboratories.

III. PRACTICAL PROCEDURE OF BUILDING MODULAR
LABS BY STUDENT

Students do the practical work in several stages, guided
by a student’s manual. In the case of the “Real Time
Systems” course, these are stages which students must
follow:

1. Learn how RELATED works (facilities and general
services)

2. Prepare a computer with a RTOS (Real Time
Operating System).

3. Develop a PID controller in Real Time Java in a
modular way. This PID controller will run as a high
priority process in the RTOS prepared in point 2.

4. Develop an RLAB module, in order to communicate
with the real time process representing the PID, using
a network protocol based on RMI (Remote Method
Invocation, [9], [10]). Also the module configuration
XML fragment is got.

5. Test the behavior of the controller with a virtual
laboratory of a tank, combining the PID module de-
veloped with a tank virtual lab (also, module based).

6. Test the behavior of the controller with a remote
laboratory comprised of a DC motor, in the same
way that the virtual tank laboratory developed in the
last step.

Stages 1, 4 and 5/6 are general steps in the building
process of virtual/remote labs with RELATED. Stages 2
and 3 are more specific for the learning goals of this
course.

Students are provided with perfectly working laborato-
ries, this is, the virtual laboratory of the tank, and the
remote module of the DC motor, which are developed
previously by the lecturer/professor. Students must reuse
them (using only XML tags) to expand its capabilities
with the PID controller.

In next sections, details about the different stages will
be shown.

IV. REAL TIME PID DEVELOPMENT
There are several ways to develop a real-time system,

but in this case student must focus in developing real time
software using a prepared computer with real-time capa-
bilities. To achieve this, the first requirement is a comput-
er and a RTOS (Real Time Operating System). A RTOS
based on RT Linux [11] will be installed and set-up. The
first step is the installation, configuration and checking of
the RTOS capabilities.

In any case, students are provided with a preinstalled
RTOS in a university available computer with the purpose
of test and comparing the results or to use it directly, if the
student gets stuck with the installation of the RTOS. To

Figure 2. Experimentation panel running an experiment.

TABLE I.
REFERENCE VALUES TO VALIDATE STUDENT’S RTOS INSTALLATION

Command Max
(!s)

Min
(!s)

Avg
(!s)

cyclictest -t1 -p 80 -n -i 10000 -l 1000 -q 55 26 36
cyclictest -t1 -p 80 -i 10000 -l 1000 -q 120 38 72
cyclictest -t1 -p 80 -i 500 -n -l 1000 -q 63 33 18

cyclictest -t1 -p 80 -i 500 -l 1000 -q 102 30 70

access to this RTOS, students must use a standard SSH
client (like Putty) and connect to a given IP address with a
given login and password.

To perform several tests with the RTOS the cyclictest
[12] command is added. This command allows the run-
ning of several tests of validation of the RTOS capabili-
ties, in special in the aspect of system latency. For getting
more details about the working of this tool, students can
run the cyclictest command with the –h option or inspect
the [12] reference. In Table 1, the latency values for
several cyclictest commands on the preinstalled RTOS (on
the university available computer) is given to student, in
order to test in their RTOS installation is correct (values
must be similar).

When the RTOS is ready, it’s necessary to choose a
programming language to implement the real time code.
In this case Java with real-time extensions [13] is used
(RTJ, Real Time Java). Java was not a very common
language in the field of real-time systems in the past but, it
is getting more attention, especially since RTJ extensions
has changed the working of garbage collector and the use
of memory. Also, students have deeper knowledge of Java
programming language (in past courses they have pro-
gramming courses where they learn this programming
language).

It is necessary to install a JVM (Java Virtual Machine)
with real-time support; in this case IBM Real Time
WebSphere will be used [14]. Consequently, the next step
is to get the virtual machine working in the RTOS. Stu-
dent must check that the Java Virtual Machine is working
fine; this can be seen in Fig. 3.

Next step is the proper developing of a simple PID,
which will be running as a real-time process in the RTOS.
This PID must allow communication with external soft-
ware using a RMI (Remote Method Invocation) interface.

iJOE ‒ Volume 9, Special Issue 5: "EDUCON2013", June 2013 7

SPECIAL FOCUS PAPER
AN XML MODULAR APPROACH IN THE BUILDING OF REMOTE LABS BY STUDENTS: A WAY TO IMPROVE LEARNING

Figure 3. Testing the Real Time Java implementation

This external software (the RLAB module) will be located
in a different host than the RTOS host. This way, the PID
can be used with the tank simulated model and with the
DC motor.

To let the PID communicate with RELATED, several
steps must be done; first of all, the PID will run as a real-
time thread, this is shown in Fig. 4. A real-time thread can
be defined in RTJ, extending the RealtimeThread class
and configuring the thread parameters (for example, the
PriorityParameters object, shown in Fig. 4). Additionally,
a run method is needed to implement real time process
functionality. In this case, as it is shown in Fig. 5, it can be
seen the run() method is the way to calculate each control
value in a specific time moment. Fig. 6 shows the proce-
dure to start the PID controller, which is in basis to instan-
tiate the thread and calling its start method. Fig. 7 shows
the remote interface for RMI communications, which
could be used from external RMI client software (using
network communication) to get the PID calculated value.
There are two important methods defined in the remote
interface for controlling the execution of the Realtime-
Thread in the RTOS host: startController() and
stopController(). These methods will be used in the
RELATED module defined in the next section as part of
the corresponding code for init() and stop() methods in
a module. This allows controlling the remote execution in
the RTOS host of the RealtimeThread model representing
the PID.

Once the communication interface is added, the process
that represents the real-time PID is ready for running in
the RTOS.

V. RELATED REAL TIME PID MODULE
Once the real time process representing the PID con-

troller (running in a RTOS system) is ready and running, it
is time to develop the RLAB module (mandatory to
integrate the real-time PID process with an RELATED
module representing simple tank simulation or real time
equipment, like the DC motor). In this case, the
RELATED module acts as an RMI client to consume
information from the real-time PID process.

Having in mind the explained specifications, the main
class of the RELeATED PID module must implement
several specific methods that are defined in the
es.uned.scc.related.modules.IRLABModule interface
(detailed in section 2). This interface is located in the
distribution file of the RLAB Server Component (RLA-
BCServerProject.jar file). Students are provided with a
copy of the source code, the RLABCServerProject file and
also an example of the implementation of a simple random
number generator emodule.

To get the RELATED module working, several steps
must be followed. To summarize, they are the following:

Figure 4. Implementation of the Real Time Thread

Figure 5. Run method for the PID thread

Figure 6. Starting the PID thread

Figure 7. RMI communications interface

I. Modify the XML specification provided with the
lab distribution.

II. Develop the main class implementing the IRL-
ABModule interface.

III. Implement every method in the interface, and
those methods that could be necessary to com-
plement the laboratory required functionality.

IV. Pack the main class (and the additional classes,
if it is the case) in a .jar file.

Fig. 8 shows the XML tags (an XML fragment) needed
to define the RT PID module in order to run it in
RELATED. A more detailed explanation of LEDML and
how to define components by XML fragments is given in

8 http://www.i-joe.org

SPECIAL FOCUS PAPER
AN XML MODULAR APPROACH IN THE BUILDING OF REMOTE LABS BY STUDENTS: A WAY TO IMPROVE LEARNING

[6] but basically it can be seen that lab developer must
specify several basic parameters along with needed
variables to get the laboratory working.

In this case, there are three parameters used to com-
municate with the RTOS host and the Realtime thread
running the PID controller: host (ip or dns name for the
host with the RTOS), port (port number for RMI registry
needed to get an object reference to the remote interface)
and rmiName (an string representing the name of the
object which is registered in the RMI registry facility).
These three parameters allow to the RELATED module
get a reference to the remote interface (with RMI) and
control/communicate with the RTOS Realtime Thread
(basically, the module acts an RMI client).

The rest of variables represent the PID parameters of
the controller (Kp, Ti, Td, Beta, Tr, N and h) and the
values for the setpoint variable (yref), the calculated value
(u) and the manipulated variable (y).

Regarding to programming issues, students must take in
account the next issues to properly get the module running
and connected to the RTOS host:
• The init() method in the RELATED module must

establish and init the RMI communication with the
RTOS host, getting the proxy and starting the
Realtime Thread (invoking the startController()
method)

• The run() method in the RELATED module will
call the RMI remote method PidCalculation() using
the values of the above variables (yref and y) and it
will get the calculated value (u) from the RTOS
Realtime PID Thread.

• The stop() method in the RELATED module must
stop the Realtime PID Thread. To get this, the code
will make a method invocation to the stopControl-
ler() method of the RMI remote interface.

VI. TANK MODEL MODULE REUSING: TESTING THE
REAL TIME IMPLEMENTATION

Tank model virtual laboratory is composed by two
components/entities, one module (representing the model)
and a view (GUI with information about evolution of data
model). Again, a XML representation for both of them is
available (with the jar files implementing them). The
module and view definition is shown in figures 9 & 10.

The module and view for the tank model is developed
using EJS (Easy Java Simulations) [15], [16]. EJS gener-
ate a set of classes which can be reused in the developed
code for the module and the view. Only minor modifica-
tions must be set in the code before include these classes.
Following this procedure, it is very simple to develop
virtual laboratories (modules and views) and include them
as graphical interfaces in a remote laboratory, not only in
this case but in so many more.

EJS allows to lecturers an easy definition of physical
models based on ordinary differential equations (ODEs)
(EJS allows the use of pure Java code also). One of the
main advantages of using EJS is that also use the MVC
paradigm, so the model can be decoupled from the java
generated code by EJS and used as a model component
(module) in RELATED with little effort.

Also, EJS allows the definition of views (like the one it
is shown in Fig. 12 (a)) using a built-in editor. EJS allows
creating the view providing a set of advanced graphical

Figure 8. XML definition for RT PID module

Figure 9. XML definition for Tank model

Figure 10. XML definition for virtual view of tank model

elements that build on top of both standard Java Swing
components (containers, buttons, text fields, sliders,
combo boxes,…) and on specific scientific two- and three-
dimensional visualization classes from the Open Source
Physics project (particles, vectors, images, vector and
scalar fields,…). These elements are used in a simple
drag-and-drop way to build the interface

The views components of EJS can be easily added as a
RELATED view in the same way as a module.

In order to reuse both of them (module and view for
tank model), students only have to copy the XML frag-
ments in Fig. 9 and 10 for the module and the view, and
get access to the implementation files. Finally, they must
complete their laboratory description defining an experi-
ment which uses their developed module and tank labora-
tory components (module and view). Students only have
to modify a pre-defined XML template which is distribut-
ed along the rest of jar files and other additional software.
The experiment definition is it shown in Fig. 11. In this
definition, the two modules will be run (see the <run> tags
in the figure) in order to produce its associated data, and
the data needed by the PID module (control variable, u,
and measured variable, y) will be connected with its
corresponding tank modules variables (pump value and
tank level). To achieve this, there are two tags called <in>
and <out> which allows to RELATED to do the work
automatically, setting the values before (in) and after (out)
computing the module code for an experiment sampling.

iJOE ‒ Volume 9, Special Issue 5: "EDUCON2013", June 2013 9

SPECIAL FOCUS PAPER
AN XML MODULAR APPROACH IN THE BUILDING OF REMOTE LABS BY STUDENTS: A WAY TO IMPROVE LEARNING

Once the laboratory description is completed, it can be
running using the RLAB application, which provides
facilities to run the experiment. Fig. 12 shows an experi-
mental session. This experimental session is what the
student see when he/she is manipulating the laboratory.
There are two graphical components: one corresponding
to the virtual view of tank model (as it’s defined in Fig.
10) and another corresponding to the experimentation
panel.

In this experimentation panel (Fig.12 (b)), students can
change the PID parameters (selecting “RT PID Module”
tab at right) using the integrated editors (provided by
RELATED facilities) and view the level evolution on the
trend graphics tabs at the left. Using this visual representa-
tion, students can validate the behavior of their PID
implementations.

VII. REMOTE LAB DC MODULE REUSING: TESTING
THE REAL TIME IMPLEMENTATION

This is the final part and it is no need to develop any-
thing. At this time, every necessary module is available
and, like in the case of the tank model, it is only necessary
to modify the XML configuration file of the laboratory.
The difference in this case is that the module that allows
the interaction with the DC motor is located in a different
lab/computer, then, it is necessary to identify it inside the
student’s laboratory configuration file.

As it is a remote module there is no need to specify it as
a module in the student’s laboratory XML file, but with
the purpose of knowing its structure, students are provided
with the original DC motor laboratory XML configuration
file, that could be seen in Fig. 13.

So, in this experiment students will reuse the code asso-
ciated to the “Manual Module” module of the motor
(module named “motorRemotoMan”). In this case, the
PID module variables (u,y) will be “connected” with the
motor modules variables (voltage, speed), so an speed
control experiment will be defined. In Fig. 14 it is show
the XML fragment representation of this experiment.

To include the remote execution of motor module, the
<run> tag must include in the “type” attribute the “re-
mote” value to indicate RELATED to run the module in
the “source” laboratory. The “source” attribute identifies
uniquely a RELATED lab using its IP, its communication
port and a GUID (Globally Unique Identifier) generated
by RELATED. Also, it is possible to get information of
the remote module to paint the evolution of modules
variables (<paint> tag) and change its values (<interac-
tive> tag). For example, in this case, students will be able
to turn off/on the illumination system associated to the lab
(setLigth variable).

Figure 11. Tank experiment definition

Figure 12. Experimental session with the tank simulation

Figure 13. XML fragment of the DC motor lab

Figure 14. RT PID Speed control

(a) Virtual view of Tank model

(b) Experimentation panel running the experiment

10 http://www.i-joe.org

SPECIAL FOCUS PAPER
AN XML MODULAR APPROACH IN THE BUILDING OF REMOTE LABS BY STUDENTS: A WAY TO IMPROVE LEARNING

The next step in the experiment’s declaration consists in
the specification of variable’s connection between mod-
ules. In the same way, students can use a declarative
connection using the <in> and <out> tags inside a running
module. For this practical experience the student’s PID
controller component is generating a reference signal for
the voltage in the DC motor, so students have to connect
the output variable of their module component (“u” value)
to the voltage defined in the “motorRemotoMan” compo-
nent (this module has a variable named “voltage”). In Fig.
14, it’s shown this connection. The <out> tag is defined in
the running “RT PID Module”, so the attribute “name”
must be associated with a module variable from this
component. Then, the rest of attributes must be declared
using the “source” attribute (remote location of remote
module), the “module” attribute (name of the remote
module) and “var” attribute (remote variable declared in
the remote module).

Finally, to complete the experiment definition, students
can define which views will be presented during the
experiment (<open> tag) and services presented in the
experimentation panel (graphics and interactives varia-
bles). The experimentation panel is shown in figure 15,
showing the evolution of defined experiment including the
remote components.

Again, once the experiment definition is finished, it can
be loaded from the RLAB application in order to run the
experiment. In Fig. 15, the “Speed control” experiment in
an experimental session is shown. In Fig. 16, there also
two additional views used in the experiment, previously
developed for the motor lab which are reused using their
XML fragments and jar files. One of them provides a
virtual view of motor evolution and the other provides
visual feedback of motor.

The visual feedback view (see Fig. 16(b)) is associated
to the video streaming of images from a network camera
(from AXIS Company). Really, the view is supported by
the use of one specific module named “VIDEO SERVER”
and really acts as a client of this module, receiving imag-
es. Also, the view has PTZ (Pan, Tilt and Zoom) features
so the student can do some of these operations to get a
better image. Additionally, it is possible to record an
experimental session, using the corresponding icon on the
right panel of view.

VIII. CONCLUSIONS
RELATED provides a standardized way of developing

remote/virtual laboratories and useful services and facili-
ties (users management, booking system, etc.). The clean
separation between data and presentation (modules and
views) has several advantages, but the main is the soft-
ware reusing (code develop for this lab or others). In the
case of the DC motor system, on-site practical experience
software is reused and also, previous developed mod-
ules/views (for example, the video server and image
viewer) are included with no extra development cost.

The procedure to reuse an already defined and opera-
tional remote laboratory is based on RELATED capabili-
ties; there are definition XML fragments to reuse devel-
oped elements so it is an easy task to include them in the
student’s labs and provide an extensible way of building
remote/virtual labs. With these features, students can
develop their own virtual and remote laboratories, using
the structured methodology of RELATED. The “module”

Figure 15. Experiment control panel for DC motor

Figure 16. GUI for DC motor laboratory

paradigm allows to students develop their own code, and
integrate with “real” experiments simply creat-
ing/modifying the XML specifications (fragments) which
defines the behavior of systems/experiments.

ACKNOWLEDGMENT
The authors wish to thank the Spanish Ministry of Sci-

ence and Innovation and the National Plan R&D
TIN2008-06083-C01/TSI and TIN2008-06083-C03/TSI
“s-Labs: Integration of open services for remote and
distributed virtual laboratories, reusable and safe”. Also
authors would like to acknowledge the support of the
Project 142788-2008-BG-LEONARDO-LMP mPSS –
mobile Performance Support for Vocational Education
and Training Project and IPLECS Project – Internet-based
Performance-centered Learning Environment for Curricu-
la Support Project ERASMUS 141944-LLP-2008-1-ES-

(a) Virtual view of motor

(b) Real time image from motor

iJOE ‒ Volume 9, Special Issue 5: "EDUCON2013", June 2013 11

SPECIAL FOCUS PAPER
AN XML MODULAR APPROACH IN THE BUILDING OF REMOTE LABS BY STUDENTS: A WAY TO IMPROVE LEARNING

ERASMUS-ECDSP. Finally, the authors want to
acknowledge the support provided by e-Madrid Project,
S2009/TIC-1650, “Investigación y Desarrollo de
tecnologías para el e-learning en la Comunidad de Ma-
drid”.

REFERENCES
[1] Carlos A. Jara, Francisco A. Candelas, Santiago T. Puente,

Fernando Torres, Hands-on experiences of undergraduate students
in Automatics and Robotics using a virtual and remote laboratory,
Computers & Education, Volume 57, Issue 4, December 2011,
Pages 2451-2461

[2] Sergio Martin, Gabriel Diaz, Elio Sancristobal, Rosario Gil,
Manuel Castro, Juan Peire, New technology trends in education:
Seven years of forecasts and convergence, Computers & Educa-
tion, Volume 57, Issue 3, November 2011, Pages 1893-1906
http://dx.doi.org/10.1016/j.compedu.2011.04.003

[3] E. Fabregas, G. Farias, S. Dormido-Canto, S. Dormido, F.
Esquembre, Developing a remote laboratory for engineering edu-
cation, Computers & Education, Volume 57, Issue 2, September
2011, Pages 1686-1697 http://dx.doi.org/10.1016/j.compedu.
2011.02.015

[4] Hardison, J.L.; DeLong, K.; Bailey, P.H.; Harward, V.J.; ,
"Deploying interactive remote labs using the iLab Shared Archi-
tecture" Frontiers in Education Conference, 2008. FIE 2008. 38th
Annual , vol., no., pp.S2A-1-S2A-6, 22-25 Oct. 2008.

[5] A. Nourdine, R. Pastor, G. Vivas, "Limitations of remote laborato-
ries in control engineering education". International Journal of
Online Engineering, on vol. 6, pp. 31-33, 2010.

[6] Pastor, R.; Sanchez, D.; Aliane, N.; Hernandez, R.; Mariscal, G.;
Robles-Gomez, A.; Caminero, A.; Ros, S.; Tawfik, M.; Cristobal,
E.S.; Diaz, G.; Castro, M.; , "Structured remote laboratory devel-
opment," Technologies Applied to Electronics Teaching (TAEE),
2012 , vol., no., pp.314-319, 13-15 June 2012

[7] Xia, H.-W. “An exploratory study on specialized high school
education and instruction.” Technology and Vocational Education,
vol. 28 p. 32–34. 1995

[8] Pastor, R; Sanchez, D; Nourdine Aliane, Roberto Hernández,
Antonio Robles-Gómez, Agustín Caminero, Salvador Ros, Gabriel
Diaz, Manuel Castro; “Practical experiences on building struc-
tured remote and virtual laboratories from the student’s point of
view” Frontiers in Education Conference, 2012.

[9] http://www.oracle.com/technetwork/java/javase/tech/index-jsp-
136424.html, online, last access on 15/05/2013

[10] Wellings, A.; Clark, R.; Jensen, D.; Wells, D.; "A. framework for
integrating the real-time specification for Java and Java's remote
method invocation," Object-Oriented Real-Time Distributed
Computing, 2002. (ISORC 2002). Proceedings. Fifth IEEE Inter-
national Symposium on Object-Oriented Real-Time Distributed
Computing, vol., no., pp.13-22, 2002. http://dx.doi.org/10.1109/
ISORC.2002.1003655

[11] http://rt.wiki.kernel.org/, online, last access on 15/05/2013
[12] https://rt.wiki.kernel.org/index.php/Cyclictest, online, last access

on 15/05/2013
[13] Luder, A.; Peschke, J.; Heinze, M.; "Control programming using

Java," Industrial Electronics Magazine, IEEE, vol.2, no.2, pp.19-
27, June 2008. http://dx.doi.org/10.1109/MIE.2008.923518

[14] http://www-01.ibm.com/software/webservers/realtime/, online,
last access on 15/05/2013.

[15] http://fem.um.es/Ejs/, online, last access on 15/05/2013.

[16] S. Dormido, C. Martín, R. Pastor, J. Sánchez, F. Esquembre,
"Magnetic levitation system: a virtual lab in easy Java simulation",
American Control Conference, on proceedings vol. 4, pp. 3215-
3220, 2004.

AUTHORS
R. Pastor-Vargas is with the Control and Communica-

tion Systems Department, Spanish University for Distance
Education, UNED, Senior Lecturer, IEEE Member (e-
mail: rpastor@scc.uned.es)

D. Sánchez is with the Control and Communication
Systems Department, Spanish University for Distance
Education, UNED, Researcher (e-mail:
dsanchez@scc.uned.es)

S. Ros is with the Control and Communication Systems
Department, Spanish University for Distance Education,
UNED, Senior Lecturer, IEEE Senior Member (email:
sros@scc.uned.es)

R. Hernández is with the Control and Communication
Systems Department, Spanish University for Distance
Education, UNED, Senior Lecturer, IEEE Senior Member
(e-mail: roberto@scc.uned.es)

A. C. Caminero, at the Control and Communication
Systems Department of Spanish University for Distance
Education, UNED, Assistant Professor, IEEE Member
(email: accaminero@scc.uned.es)

L. Tobarra is with the Control and Communication
Systems Department, Spanish University for Distance
Education, UNED, Assistant Professor, IEEE Member
(email: llanos@scc.uned.es)

A. Robles-Gómez, is with the Control and Communi-
cation Systems Department, Spanish University for
Distance Education, UNED, Assistant Professor, IEEE
Member (email: arobles@scc.uned.es)

M. Castro is with the Electrical, Electronic and Control
Department, Spanish University for Distance Education,
UNED, Full Professor, IEEE Fellow Member (email:
mcastro@ieec.uned.es)

Gabriel Diaz, is with the Electrical, Electronic and
Control Department, Spanish University for Distance
Education, UNED, Associate lecturer, IEEE Member,
(email: gdiaz@ieec.uned.es)

E. San-Cristóbal, is with the Electrical, Electronic and
Control Department, Spanish University for Distance
Education, UNED, Assistant Professor, IEEE Gold
Member (email: elio@ieec.uned.es)

M. Tawfik, is with the Electrical, Electronic and Con-
trol Department, Spanish University for Distance Educa-
tion, UNED, Researcher, IEEE Member, (email: mtaw-
fik@ieec.uned.es)

This article is an extended and modified version of a paper presented
at the EDUCON2013 conference held at Technische Universität Berlin,
Berlin, Germany from March 13-15, 2013. Received 15 May 2013.
Published as resubmitted by the authors 27 May 2013.

12 http://www.i-joe.org

