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The emerging area of business process intelligence aims at enhancing the analysis power of business 
process management systems by employing performance-oriented technologies of data warehousing and 
mining. However, the differences in the assumptions and objectives of the underlying models, namely the 
business process model and the multidimensional data model, aggravate straightforward and meaning
ful convergence of the two concepts. The authors present an approach to designing a data warehous
ingfor enabling the multidimensional analysis of business processes and their execution. The aims of 
such analysis are manifold, from quantitative and qualitative assessment to process discovery, pattern 
recognition and mining. The authors demonstrate that business processes and workflows represent a 
non-conventional application scenario for the data warehousing approach and that multiple challenges 
arise at various design stages. They describe deficiencies of the conventional OLAP technology with 
respect to business process modeling andformulate the requirements for an adequate multidimensional 
presentation of process descriptions. Modeling extensions proposed at the conceptual level are veri
fied by implementing them in a relational OLAP system, accessible via state-of the-art visualfrontend 
tools. The authors demonstrate the benefits of the proposed modelingframework by presenting relevant 
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analysis tasks from the domain of medical engineering and showing the type of the decision support 
provided by our solution. 

INTRODUCTION 

Modern enterprises increasingly integrate and au
tomate their business processes with the objective 
of improving their efficiency and quality, reducing 
costs and human errors. Business Process Manage
ment Systems (BPMS) are employed to optimize 
process design and execution. These systems track 
business processes by logging large volumes of 
data related to their execution and provide basic 
functionality for routine analysis and reporting. 
However, conventional BPMS focus on the design 
support and simulation functionality for detecting 
performance bottlenecks, with rather limited, if 
any, analysis capabilities to quantify performance 
against specific business metrics. Deficiencies 
of the underlying business process modeling ap
proaches in terms of supporting comprehensive 
analysis and exploration of process data have 
been recogn ized by researchers and practitioners 
(Dayal, et al., 200 I; Grigori, et al., 2004). 

The ability to analyze process execution has 
become indispensable for eliminating the gaps in 
decision making. Last decade witnessed immense 
technological advancements in application inte
gration, business rules and workflows, Business 
Intelligence (BI), and BPMS. Forward-thinking 
organizations are beginn ing to realize that process 
intelligence goes beyond simple automation of 
business processes and that the convergence of 
BI and business process management technolo
gies would create value beyond the sum of their 
parts (Smith, 2002). The fundamental technology 
ofB! is referred to as OLAP (On-line A.nalytical 
E.rocessing), a term coined by Codd, et al. (1993). 
Data warehousing and OLAP are aimed at pro
viding key people in the enterprise with access 
to whatever level of information they need for 
decision making. 
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BUSINESS PROCESS 
INTELLIGENCE 

"Business Process Intelligence (BPI) refers to the 
application of business intelligence techniques 
(including for example OLAP analysis and data 
mining) in business process management, with 
the goal of providing a better understanding of 
a company's processes and of devising ways to 
improve them." (Castellanos & Casati, 2005). 
Recent advances in the above techniques as well 
as in business process and business performance 
management have come together to enable a near 
real-time monitoring and measurement of business 
processes as to identify, interpret, and respond to 
critical business events. 

According to Hall (2004), BPI can help 
companies improve their process management 
initiatives by: 

providing a consistent, process-based view 
of the company, 

• facilitating real-time business process 
monitoring, 

• aligning execution with strategy, 
• managing enterprise performance. 

The BPI approach overcomes the deficiencies 
of standard BPMS by storing process execution 
data in a data warehouse in a cleansed, transformed, 
and aggregated form (Dayal, et al., 2001). Such 
data can be analyzed using OLAP and data min
ing tools to support various knowledge extraction 
tasks that can be subdivided into the following 
subareas (Castellanos & Casati, 2005): 

• Process discovery is done by analyzing 
enterprise operations in order to derive 
the process model that can be used for 



• 

• 

automating process execution or increas
ing its efficiency. 

Process mining and analysis seeks toiden
tify interesting correlations helpful for 
forecasting, planning, or explaining certain 
phenomena. 
Prediction is important for anticipat
ing or preventing occurrence of certain 
situations. 
Exception handling assists the analyst in 
addressing specific problems, for instance, 
by retrieving the data on how similar prob
lems were handled in the past. 
Static optimization is concerned willi op
timizing the process configuration against 
previously identified optimization areas. 
Dynamic optimization is an intelligent com
ponent for supervising process instances 
at runtime in order to influence their ex
ecution as to maximize certain business 
objectives. 

The employment ofB! within the BPI frame
work has also caused companies to rethink the 
ways they use data warehouses by blurring the 
traditional separation of operational systems from 
BI applications (Hall, 2004). Traditionally, data 
warehouses store consolidated historical data 
and, thus, provide a retrospective analysis. In BPI 
scenarios, data warehouses are fed with current 
transactional data that has to be available for near 
real-time analysis. This requirement of support
ing day-to-day decision-making has triggered the 
emergence of a new branch called Operational BI, 
which links BI with business processes and enables 
process-oriented perspective of the analysis. 

"Operational BI combines real-time opera
tional transaction data with historical information 
to let decision-makers move beyond the "point-in
time" analysis associated with traditional BI and 
data warehousing applications" (Hall, 2004). 

Within our research, the terms Business Process 
Intelligence and OperationaiSus iness Intelligence 
are treated interchangeably. 

CONTRIBUTION AND OUTLINE 

The area of BPI is still immature and controversial, 
with many open issues and very few examples of 
existing solutions. One ofthe major BPI challenges 
is finding a meaningful solution for converging 
business process and workflow modeling tech
niques with the multidimensional data model that 
lies at the heart of the OLAPtechnology. The task 
of unifying the flow-oriented process specification 
and the snapshot-based multidimensional design 
for quantitative analysis is by far nottrivial due to 
differing and even conflicting prerequisites and 
objectives of the underlying approaches . 

Concepts and proposals presented in this 
work have been inspired by practical challenges 
encountered in the ongoing project on designing 
and implementing a BPI platform for a specific do
main of Surgical Workflow Analysis (SWA). The 
project is hosted by the Innovation Center Com
puter Assisted Surgery (lCCAS)' and involves 
collaborators from multiple scientific disciplines, 
such as medicine, medical engineering, databases 
and data warehousing, web technologies, scientific 
visualization, etc. Surgical Workflows wi II be used 
as a real-world usage scenario for demonstrating 
the applicability of the presented solution. 

The contribution of this work is to design a 
methodological framework for enabling business 
process analysis. The fundamental challenge of 
invoking the OLAP approach in the BPI context 
is a conceptual one, namely, gaining an adequate 
multidimensional perspective of process execu
tion data. We demonstrate that the classical data 
warehouse design steps are not feasible in this sce
nario due to general unavailability of pre-defined 
measures of interest. As a solution, we propose a 
card inality-based approach oftransforming exist
ing process models and process execution schemes 
into a set of facts and dimensions in a unified 
multi-dimensional space. The multidimensional 
model itselfhad to be extended to handle complex 
patterns encountered in the data. These extensions 
are reflected in terms of formal concepts as well 
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as a graphical notation X-DFM, which extends 
the popular DF Model of Golf are IIi, et al. (1998). 
We expect the proposed extended model to be ap
plicable to a variety of data warehouse scenarios 
dealing with complex data. As a proof of concept, 
we demonstrate its usage of our model for solving 
typical SWA tasks. 

The remainder of the chapter is structured as 
follows: Section 2 provides an overview of the 
related work in the field of BPI in general and 
Surgical Workflow Analysis in particular. The case 
study and its analysis requirements is presented 
in Section 3. Section 4 contains the background 
information on the relevant conceptual data mod
els, followed by Section 5 featuring the challenges 
of business process data warehouse design. In 
Sections 6 and 7 we present an extended concep
tual model in terms of its fundamental elements 
and advanced concepts, respectively. Section 
8 describes the overall approach to obtaining a 
multi-dimensional business process model from 
existing process descriptions, based on analyz
ing and refining the cardinalities of the relevant 
relationships between process components. Sec
tion 9 contains some considerations regarding the 
implementation and demonstrates the use of the 
presented framework for solving exemplary tasks 
from the field of SWA. Concluding remarks are 
given in Section 10. 

RELATED WORK 

Due to multidisciplinarity of our research, the 
related work falls into several categories, such 
as (a) enhancing business process analysis by 
employing the data warehousing approach, (b) 
extending OLAP to support complex scenarios, 
and (c) medical informatics research related to 
our application field ofSWA. 

Grigori, et al. (2004) present a comprehensive 
BPI tool suite for managing business process 
quality that was developed at Hewlett-Packard 
and implemented on top of HP Process Manager 
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BPMS. Thesuite includes three main components: 
I) the PDW loader for transferring the process log 
data into a Process Data Warehouse (PD W), 2) the 
Process Mining Engine for deriving sophisticated 
models from the data, and 3) the Cockpit, which 
is a graphical reporting tool of the end-user. The 
data warehousing approach was employed for 
structuring the relevant process data accord ing to 
the star schema, with process, service, and node 
state changes as facts and the related defin i tions 
as well as temporal and behavioral characteristics 
as dimensions. This approach enables analysis of 
process execution and system state evolution in 
the environments where processes have a uniform 
and well-defined scheme. 

Hao, et al. (2006) proposed an approach to 
visual analysis of business process performance 
metrics (impact factors) using Vis/mpact, a vi
sualization interface especially suitable for ag
gregating over large amounts of process-related 
data and based on analyzing process schemes and 
instances to identify business metrics of interest. 
The selected impact factors and the corresponding 
process instances are presented using a symmetric 
circular graph to display the relationships and the 
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details of the process flows. 
Medical applications are frequently encoun

tered in the data warehousing literature in the 
role of motivating case studies. Pedersen, et al. 
(2001) proposed an extended multidimensional 
data model for meeting the needs of non-standard 
application domains atthe example of accumulated 
patient diagnosis data. Golfarelli, et al. (1998) 
demonstrate the methodology of obtaining multi
dimensional schemes from existing E/R schemes 
using hospital admission as a usage scenario. Song, 
et al. (2001) use patient diagnosing and hilling 
case study to demonstrate various strategies of 
handling many-to-many relationships between 
facts and dimensions. Mansmann, et al. (2007a) 
describe how Surgical Process Modeling, used as 
a non-conventional data warehousing application 
scenario, results in the necessity to extend the 
conceptual foundations of the multidimensional 



data model. Implications of conceptual extensions 
for implementing a data warehouse and frontend 
tools for interactive analysis are given in (Mans
mann, et aI. , 2007b). 

Another category of related works refers to the 
modeling of Surgical Workflows. An approach to 
facilitating the complex task of surgery prepara
tion by employing the workflow technology to 
automate and optimize the surgical process was 
presented by Qi, et al. (2006). MUnchenberg, et 
al. (2000) designed instruction graphs to drive a 
surgical assist system for application in Frontal 
Orbital Advancements. Jannin, et al. (2003) used a 
ontologically designed scheme to model actht ities 
in the context of image-guided surgery. Ahmadi, et 
al. (2006) proposed an approach to automatic surgi
cal workflow recovery without explicit models of 
surgery types. A more recent work ofPadoy, et al. 
(2007) presents a model-based recovery approach 
based on automatics segmentation of surgeries 
into phases using hidden Markov models. 

A pioneering interdisciplinary research on 
designing scientific methods for Surgical Work
flows is carried out atICCAS. Major directions of 
their projects are surgical workflow formalization 
(Neumuth, etal., 2006), semantics (Burgert, eta!., 
2006), analysis (Neumuth, et aI., 2007), standard
ization (Burgert, et aI. , 2007), and visualization 
(Neumuth, Schumann, et aI., 2006). 

MOTIVATING CASE STUDY 

Medical applications are frequent suppliers ofmo
tivating usage scenarios in workflow management 
research. Patient treatments, diagnostic investi
gations, hospitalization, surgical interventions, 
and the overall hospital operation are examples 
of complex processes where the workflow tech
nology promises significant performance gains . 
Our case study is concerned with an emerging 
interdisciplinary field of SWA. 

Surgical Workflows foster intelligent ac
quisition of process descriptions from surgical 

interventions for the purpose of their cl in ical and 
technical analysis, as defined by Neumuth. StrauB, 
et al. (2006). This type of analysis is crucial for 
developing surgical assist systems for the oper
ating room of the future . Besides, it pro'vides a 
framework for evaluating new devices or s urgical 
strategy evolution. The medical informatics term 
Surgical Workjlows describes the methodological 
concept of the data acquisition and consolidation 
procedure. Process data is obtained manually or 
semi-automatically by monitoring and recording 
the course of a surgical interventioif. The manual 
part is carried out either in the real-time mode, 
i.e. , by observing the surgical intervention live in 
the operating room, or retrospectively, e.g. , from 
a video recording. 

REQUIREMENTS OF SURGICAL 
WORKFLOW ANALYSIS 

Surgeons, medical researchers, and engineers are 
interested in obtaining a well-defined formal re
cording scheme of a surgical process that would lay 
a foundation for a systema,tic accumulation ofthe 
obtained process descriptions in a centralized data 
warehouse to enable its comprehensive analysis 
and exploration. Whatever abstraction approach 
is adopted, there is a need for an unambiguous 
description of concepts that characterize a surgical 
process in a way adequate for modeling a wide 
range of workflow types and different surgical 
disciplines . 

Applications of SWA are manifold : sup
port for the preoperative planning by retrieving 
similar precedent cases, clinical documentation, 
postoperative exploration of surgicat" data, for
malization of the surgical know-how, analysis 
of the optimization potential with respect to the 
instruments and systems involved, evaluation of 
ergonomic conditions, verification of medical 
hypotheses, gaining input for designing surgical 
assist systems and workflow automation. Obvi
ously, such high diversity of potential applications 
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Figure 1. Vertical (de-)composition of a surgicalprocess 

Surgery ) ~~" 
( Phase" 

j} ( 

results in the diversity of expected query types. 
We distinguish the following major categories of 
analytical queries: 

I. Quantitative queries are concerned with 
performance indicators and other measure
ments occurrences, frequencies, duration, or 
availability of various events or objects. 

2. Qualitative queries aim at discovering rela
tionships, patterns, trends, and other kind of 
additional knowledge from the data. 

3. Ergonomic queries evaluate the design ofthe 
workspace, ergonomic limitations, positions 
and directions of involved participants and 
objects. 

4. Cognitive queries attempt to assess such 
"fuzzy" issues as usefulness, relevance, 
satisfaction, etc. 

Considering the expected query types, the 
multidimensional database technology seems a 
prom ising solution as it allows the analyst to view 
data from different perspectives, define various 
business metrics, and aggregate the data to the 
desired granularity. 
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STRUCTURING SURGICAL 
WORKFLOWS 

Surgical Workflows provide an abstraction of 
surgical interventions by capturing the character
istics of the original process that are relevant for 
the analysis. A common approach to structuring a 
process is to decompose it vertically, i.e., along the 
timeline, into logical units, such as sub-processes, 
stages, work steps, etc. Figure 1 shows a possible 
decomposition hierarchy of a surgery. 

From the logical point of view, surgical pro
cesses consist of phases, which, in their tum, 
consist of activities, i.e., work steps performing 
a certain action. Both phases and activities may 
overlap. Technically, an action may be executed 
by multiple participants using multiple instru
ments. To account for this observation, we refine 
the granularity to a "movement", which refers 
to a part of an action performed by a body part 
of a participant on a structure of a patient using 
a surgical instrument. In the upward direction, 
surgical instances can be grouped into classes by 
the diagnosis or therapy, which, in their tum, are 
associated with particular surgical disciplines. The 
above decomposition is called logical, or task
driven as it relies on the reasoning of a human 



expert for recognizing the constituent elements 
of a process. 

An alternative decomposition practice is a 
state-based one, aimed at automated data acquisi
tion. This approach uses the concepts system, state, 
and event to capture state evolution of involved 
systems and events that trigger state transitions. 
The concept of a system is very generic and may 
refer to a participant or his/her body part, a patient 
or a treated structure, an instrument or a device, 
etc. For instance, surgeon's eyes can be considered 
a system, their gaze direction can be then mod
eled as states, while surgeon's directives to other 
participants may be captured as events. 

Both data acquisition practices can be used as 
complementary ones to benefit from combining 
a human perspective with a systemic one. We 
introduce a superordinate concept component, 
synonymous to the term flow object defined in 
BPMN (2006), to enable uniform treatment of 
logical (i.e., activities) and technical (i.e., states 
and events) units ofa process with regard to their 
common properties. Thereby, the analyst is able 
to retrieve a unified timeline for the whole course 
of a surgery. 

With respect to the vertical decomposition 
depicted in Figure 1, we propose to distinguish 
between two major granularity levels of the ac
quired data: 

Workflow level refers to the characteristics 
of a surgical intervention as a whole, such 
as patient, location, date, etc. This data is 
normally supplied by other clinical infor
mation systems. Workflow-level data is 
useful for high-level analysis, such as hos
pital utilization, patient history, etc. 
Intra-workflow level refers to the properties 
of process components (e.g., events, activi
ties), such as instrument and device usage 
or treated structures. Detailed data is ac
quired from running surgical interventions 
and used for analyzing workflow execution 
within as well as across multiple instances. 

Figure 2 shows a simplified approximation 
of Surgical Workflows structure, expressed in 
the E/R (Entity-Relationship) modeling notation. 
This scheme will be refined in the upcom ing sec
tions. To identify the major design challenges, we 
proceed by inspecting the fundamentals of the 
involved modeling techniques. 

CONTROL FLOWS VS. 
MULTIDIMENSIONAL CUBES 

As mentioned in the introductory section, BPI 
aims at converging the techniques of business 
process model ing and business intelligence. More 
precisely, business process models serve as the 
input whereas the multidimensional data model 
builds the foundation ofa BPI framework. In this 
section, we overview the main concepts of both 
models as a preparation step for finding ways of 
their meaningful convergence. 

BUSINESS PROCESS MOD.ELlNG 

Business process models are employed to describe 
business activities in the real world. Business 
processes are typically described in terms of their 
objects, activities, and resources. WfMC (1999) 
defines business process as "a set of one or more 
linked procedures or activities which collectively 
realize a business objective or policy goal, nor
mally within the context of an organizational struc
ture defining functional roles and relationships" 
and proposes to distinguish between manual and 
workflow activities. Activities are the work units 
of a process that have an objective and change 
the state of the objects. Resources are consumed 
to perform activities. Relationships between the 
entities may be specified using control flow (con
secutive, parallel, or alternative execution) and/ 
or hierarchical decomposition. 

There is an important distinction between 
the conceptual and the actual manifestation of a 
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Figure 2. Recording scheme of a surgical process model as an E/R diagram 

process: the term "process" refers to a conceptual, 
or abstract, way of organ izing work and resources 
whereas process executions, or "instances", in
volving real resources and actors are the actual 
manifestation of a business process (Reijers, 
2003). An example from the medical domain 
could be a surgery of type discectomy. Abstract 
process description of discectomy is "removal of 
all or part of an intervertebral disc (the soft tissue 
that acts as a shock absorber between the vertebral 
bodies)" (SRS, n.d.). This description may further 
define a typical cause of a surgery, major work 
steps, and the types of instruments and devices 
used at each step. Instances of discectomy as a 
surgical process are actual surgeries carried out 
by particular surgeons. 

Another distinction has to be made between the 
concepts process and workflow. While these two 
terms are used interchangeably by some authors 
(Aalst& Hee, 2002), diverse workflow definitions 
can be found in the literature. One popular inter
pretation is that business processes output products 
while workflows deliver services (Reijers, 2003). 
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Another use of the term "workflow" is to denote 
the control flow, i.e., dependencies among tasks 
during the execution of a business process (Sharp 
& McDermott, 2001). In this work, we adopt the 
differentiation in the levels of abstraction proposed 
by Muth, et al. (1998): while business processes 
are mostly modeled in a high-level and informal 
way, workflow specifications serve as a basis for 
the largely automated execution and are derived by 
refining the business process specification. Figure 
3, adopted from (WfMC, 1999) with some adjust
ments, summarizes the relationships between the 
basic terms related to business processes. 

Coexistence of different workflow specifica
tion methods is common in practice. We restrain 
ourselves to naming a few techniques and refer 
the interested reader to the book of Matousek 
(2003) for a detailed overview. Net-based, or 
graph-based, methods enjoy great popularity 
due to their ability to visualize processes in a 
way understandable even for non-expert users. 
Especially the activity and state charts are fre
quently used to specify a process as an oriented 



Figure 3. Relationships in the basic business process terminology 
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graph with nodes representing the activities and 
arcs defining the ordering in which these are 

performed. Logic-based methods use temporal 

logic to capture the dynamics of the system. Fi

nally, Event-Condition-Action rules are used for 
specifying the control flow between activities in 
the conditional form. 

MULTIDIMENSIONAL DATA 
MODELAND OLAP 

OLAPtechnology draws its analytical power from 

the underlying multidimensional data model. The 
data is modeled as cubes of uniformly structured 

facts, consisting of analytical values, referred to 
as measures, uniquely determined by descriptive 
values drawn from a set of dimensions. Each 

dimension forms an axis of a cube~ with dimen
sion members as coordinates of the cube cells 

storing the respective measure values. Figure 4 
shows a simplified example of a 3-dimensional 
data cube, storing 'instrum"ent usage statistics 

(measure number of instruments) determined by 

Work Items 
(tasks allocated to a 
workflow participant) f 

Invoked Applications I 
t,. (uCsOemdPtuotesrutpopOoISr/taaPnPa'ica,tiOtn)s ! t C IVI Y ! 

~' ''i#'»A\f 4WliJ;WiMhlf Qi!4,8iAQIiij#HilGij_W;' 

dimensions Surgeon, Treated Structure, and Date. 
Besides the original cube storing the data at the 

finest granularity, Figure 4 also displaysthe results 
of two "roll-up" operations t~taling the measure 
over all treated structures and, subsequently, over 

all dates. In real-world applications, data cubes 
may have arbitrarily many dimensions, and are 

therefore denoted hypercubes. 
Membervalues within a dimension are further 

organized into classification hierarchies to enable 
additional aggregation levels. For example, dates 

can be aggregated into months, quarters, years, 
and so on. Dimension hierarchies are strictly struc

tured, i.e., values at each hierarchy level must be 

ofthe same category. Multiple hierarchies may be 

defined within a dimension and can be mutually 
exclusive (e.g., dates can be aggregl;lted by month 
or by week, but not both), denoted alternative, 
or non-exclusive, or parallel (e.g., surgeons can 
be grouped by qualification and, subsequently, 
by the level of expertise, or vice versa). Within a 

dimension, the attributes that form the hierarchy 
are called dimension levels, or categories. Other 

descriptive attributes belonging to a particular 
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Figure 4. A sample 3-dimensional cube (fragment) storing surgical instrument usage statistics (left) and 
its aggregated views (right) 
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category are property attributes. For instance, 
Hospital and City are categories of the dimension 
Location, whereas hospital name and city code are 
properties of the respective categories. Categories 
along with parent-child relationships between 
them represent the intension, or scheme, of a 
dimension whereas the hierarchy of its members, 
i.e., the actual data tree, forms its extension. 

Desired subsets and views for analysis can be 
retrieved from the "raw" data by applying OLAP 
operations, such as slice-and-dice to reduce ·the 
cube, drill-down and roll-up to perform aggre
gation and disaggregation, respectively, along a 
hierarchical dimension, drill-across to combine 
multiple cubes, ranking to find the outlier values, 
and rotating to see the data grouped by 9ther 
dimensions (Pedersen& Jensen, 2001). 
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BuSiNESS PROCESS DATA 
WAREHOUSE DESIGN: 
CHALLENGES 

Transformation of semantically rich business pro
cess models into multidimensional data structures 
can be seen as a reduction of the complete set of 
extensible process elements, such as various types 
of flow objects and relationships between them, 
to a rigid format, which forces the former to be 
decomposed into a set of uniformly structured 
facts with associated dimensions. 

Three abstraction levels recommended by 
ANSIIX3/SPARC, namely conceptual, logical 
and physical design, are widely accepted as a 
sound framework to guide the database model
ing process. There is a general acknowledgement 
of this framework's validity for data warehouse 



design (Hilsemann, et aI., 2000). In addition to 
the above three phases, Golfarelli & Rizzi, (1998) 
identify two phases preceding the conceptual 
design, namely, i) analysis oj the information 
system for obtaining the (conceptual or logical) 
scheme of the pre-existing information system, 
and ii) requirement specification for defining the 
type of analysis and indicating the preliminary 
workload. Back to the Surgical Workflows sce
nario, the E/R scheme in Figure 2 may be taken 
as a model of the pre-existing system, whereas 
the expected types of queries and applications 
given in Section 3 correspond to the output of 
the requirement specification phase. 

STAGES OF THE 
CONCEPTUAL MODELING 

The convergence of the business process model 
and the multidimensional data model takes place 
primarily at the conceptual level. Therefore, the 
conceptual design phase is the central issue ofthis 
work. Conceptual modeling provides a high level 
of abstraction for capturing relevant relationships 
in the application domain and the data to be stored 
and analyzed, in an implementation independent 
fashion. The output of this phase is a set ofjact 
schemes and the prevailing techniques are based 
on graphical notations, such as E/R diagrams, 
UML and their variants, understandable by both 
designers and target users. 

According to Hilsemann, et aI., (2000), con
ceptual data warehouse design process evolves 
in the following consecutive phases: 

1. Context definition of measures, 
2. Dimensional hierarchy design, 
3. Definition of summarizability constraints. 

The versatility offeasible application areas and 
analysis tasks of BPI imposes multiple challenges 
on the conventional data warehouse design meth
odology. Back to the kinds of queries in the SWA 

context, the same data field may serve as a measure, 
i.e., input of an aggregate function, in one query 
and as a dimension, i.e., a grouping criterion for 
aggregation, in another query. As an example, let 
us consider entity types SURGERY and PATIENT 
in Figure 2. In order to decide whether those entity 
types should be mapped to facts or to dimensions, 
one has to consider the types of queries referring to 
those elements. However, some scenarios, such as 
hospital utilization assessment, may define number 
of surgeries as a measure with hospital as one of 
its dimensions, whereas other scenarios, such as 
surgical discipline analysis, may be interested in 
the number of hospitals offering surgical support 
in a specified discipline. This example shows the 
necessity of symmetric treatment of measure and 
dimension roles. Similarexamplescan be specified 
for virtually any other entity of the case study. In 
order to support all kinds of expected queries, the 
detailed data, i.e., without pre-aggregation to any 
of the expected measures of interest, should be 
available in the data warehouse. 

Apparently, the classical approach to designing 
multidimensional schemes based on the three pre
viously mentioned phases is not adequate for BPI. 
Kimball proposes a slightly different approach to 
structuring the conceptual design process, which 
appears more applicable in the context of BPI. 
According to Kimball (1996), the design process 
undergoes the stages of: 

1. choosing a business process, 
2. choosing the grain of the process, 
3. identifying the dimensional 

characteristics, 
4. defining the measured facts. 

One major advantage of the latter approach 
is its ability to abstract the data model from the 
expected measures of analysis , This abstraction 
is realized by proposing to reason in terms of the 
business process itself and its grain and by putting 
measure definition into the last stage ofthe design. 
At this final step, the transformation of the "raw" 
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process data into cubes of specified measures takes 
place. It is by "pushing" the measure definition 
from the initial step, as proposed by Hilsemann, 
et al. (2000), to a final step, as in the approach of 
Kimball (1996), that the support of operational 
BI scenarios can be achieved. 

Quantitative queries represent just a fraction of 
SWA. Some BPI tasks go beyond mere aggrega
tion and may address more complex issues, such 
as pattern recognition, relevance assessment, and 
process discovery. These tasks require the original 
process data in the warehouse to be stored without 
aggregation. 

FUNDAMENTAL CONSTRAINTS 
OF THE MULTIDIMENSIONAL 
DATA MODEL 

Further modeling challenges come from the 
inherent constraints of the mu ltidimensional 
model itself, such as prohibition of many-to-many 
relationships and NULL values, homogeneity of 
the fact's characteristics and their grain, and a 
requirement of summarizability for all dimen
sion hierarchies. Many of these constraints are 
fundamental and, as such, may not be violated or 
trivially overcome. We proceed by enumerating 
some of such fundamental issues that aggravate 
straightforward applicability ofOLAPto business 
process data: 

• "Rolls-up-to" as the only relationship 
type. This relationship expresses inclusion 
between facts and dimensions as well as 
between hierarchy levels. It is impossible 
to explicitly model any other relationship 
types. 
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Any many-to-many relationship must be 
modeled as a fact. This "law" of Kimball 
(1996) prohibits non-strict hierarchies and 
many-to-many relationships between facts 
and dimensions. 
Fact homogeneity implies that all fact 

• 

• 

• 

• 

• 

• 

• 

• 

entries fully adhere to the fact scheme, 
i.e., have the same dimensional charac
teristics and uniform granularity in each 
dimension. 
Homogeneous aggregation requires that 
all entries within the same fact type roll up 
along the same set of aggregation paths. 
This requirement implies prohibition of 
partial "roll-up" relationships. 
Prohibition of NULL values is an impor
tant guarantee for correct aggregation 
behavior. 
Duality of facts and dimensions forces to 
distinguish between fact and dimension 
schemes and statically assign each charac
teristic to a particular scheme. 
Absence of object-oriented features, such 
as generalization or inheritance. 
Isolation of fact schemes means that each 
scheme is modeled separately from other 
schemes. Whenever multiple fact or dimen
sion schemes have identical or semantical
ly related attributes, those are maintained 
redundantly. Besides, scheme isolation 
prevents from supporting advanced OLAP 
operators, such as drill-across, at the con
ceptuallevel. 
Summarizability requires distributive ag
gregate functions and dimension hierarchy 
values, or informally, that i) facts map di
rectly to the lowest-level dimension values 
and to only one value per dimension, and 
ii) dimensional hierarchies are balanced 
trees (Lenz & Shoshani, 1997). 
Duality of measure and dimension roles. 
Measures reflect the focus of the analysis 
and, therefore, they should be known at de
sign time and be explicitly specified in the 
fact scheme. 
Duality of category and property roles. A 
dimension category consists of a single 
category attribute and may have further at
tributes, called properties. Properties may 
not be used as aggregation levels, even 



though the relationship between a category 
attribute and its property is equivalent to 
"roll-up" . 

In the next section we present our approach 
to mapping business process schemes to multi
dimensional schemes and show how the above 
limitations of the multidimensional data model 
can be handled. 

CONCEPTUAL DATA WAREHOUSE 
DESIGN: TERMINOLOGY 
AND FORMALIZATION 

In the previous section we showed that the clas
sical data warehouse design approach, based on 
identifying the measures of interest and their 
dimensional context, is not adequate for mod
eling business process schemes. Instead, we 
propose to derive a multidimensional scheme 
from a pre-existing conceptual model of the pro
cess, available as E/R or UML class diagrams. 
Entity-Relationship model structures data in 
terms of entity types and their attributes as well 
as relationship types between entity types and the 
cardinality of each entity type 's participation in a 
given relationship. UML class notation uses the 
concepts of a class, property, relationship and 
multiplicity to express the same concepts as entity 
type, attribute, relatior.ship type, and cardinality, 
respectively. Therefore, it is sufficient to provide 
a mapping for either of these two models. We use 
E/R model as the input graphical notation and 
consider the model depicted in Figure 2 to be the 
starting point of the data warehouse design for our 
usage scenario. The transformation task consists 
in mapping semantic constructs ofthe E/R model 
to those of the multidimensional data model. 

Two major components of semantic models 
are formalization and graphical notation. Exist
ing multidimensional data models tend to focus 
either on the formalism or on the graphical 
toolkit, but not both. Formal models either adopt 

some existing notation (e.g., ER, UML or their 
variants) or do not employ any. For the purpose 
of completeness, we provide both the formalism 
and the graphical model that is fully aligned with 
the proposed formal concepts, i.e., that correctly 
captures its semantics. 

Our conceptual model relies on the popu
lar Dimensional Fact Model (DFM) proposed 
by Golfarelli, et al. (1998). DFM is based on 
a pragmatic scientific approach, in which the 
graphical framework emanates from the formal 
conceptual framework. The authors' also provide 
a methodology for deriving multidimensional 
schemes from E/R diagrams. In the abundance of 
notations proposed in the literature, DFM stands 
out for its simplicity, elegance, and expressive
ness for representing the concepts introduced in 
our work. However, we use an extended variant 
of DFM, called X-DFM (e~tended Dimensional 
fact Model), which provides an adequate map
ping for a broader set of semantic elements. The 
formalization is adopted from our previous works 
(Mansmann & Scholl, 2007; Mansmann, et aI., 
2007a) with some modifications and buiids upon 
the semantic models of Pedersen, et al. (200 1 ) and 
Golfarelli, et al. (1998). 

A UNIFIED MULTIDIMENSIONAL 
SPACE 

One fundamental definitional issue in the con
ceptual model is whether global semantics, i.e., 
relationships across fact schemes, should be cap
tured. A conventional approach would be to design 
each n-dimensional data cube in its own isolated 
n-dimensional space. The output of such model 
is a set of unrelated fact schemes. However, ad
vanced models, such as DFM, support inter-factual 
semantics by allowing f acts to share dimensions. 
The major advantage of the latter approach is given 
by the explicit support for a drill-across operation, 
which allows to compare measures of related data 
cubes or even to derive new measures. 
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A set of dimensions is merged into one shared 
dimension, ifthey are defined on a related semantic 
domain For example, dimensions StartTime and 
StopTime, both of type date, could be modeled as 
a common dimension time, containing the union 
of values from both dimensions. In addition to 
such full dimension sharing, our model recognizes 
further types of sharing by considering semantic 
com patibility at category level. The resulting con
ceptual schema is called inter-stellar, or galaxy. 
Inter-factual relationships are useful not only for 
the analysis, but also for the design itself as their 
recognition helps to reduce maintenance overhead 
and automatically detect val id operations. To fu Ily 
capture these relationships, our model employs 

the concept of a unified multi-dimensional space, 
in which categories with semantically related 
value domains are represented in a non-redundant 
fashion. 

FACTS AND DIMENSIONS 

The outputofthe conceptual data warehouse design 
is a multidimensional scheme, i.e., a set of fact 
schemes composed offacts, measures, dimensions, 
and hierarchi~s . Golfarelli, et al. (1998) define a 
fact scheme to be a structured quasi-tree, which 
is a directed, acyclic, weakly connected graph, in 
which mu ltiple directed paths may converge on the 
same vertex. Path convergence is the resu It of non
redundant dimensional modeling enforced by the 
constraint of the unified multidimensional space. 

Definition 1. AfactFis a collection of uni
formly structured data entries over a fact 
scheme F. Ann-dimensional fact scheme is 
defined as a pair F = (MF, OF), where MF = {MJ' 
j = 1, ... , m} is a set of measures and OF = {OJ' 
i = I, ... , n} is a set of corresponding dimen-
sion schemes. 

Definition 2. A dimensionDis defined by its 
aggregation scheme (intension)Dand the as .. 
sociated data set (extension) E, so thatType(E) 
=D. 
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The samle data cube from Figure 4 can 
now be formally defined as a fact scheme 
INSTRUMENTS-CUBE with a set of measures 
M1NSTRUMENTS-CUBE = { n urn_instruments}, charac
terized by a set of dimensions OINSTRUMENTS-CUBE = 
{S urgeon, Treated Structure, Date}. 

A dimension scheme is a connected, directed 
graph, in which each vertex corresponds to an 
aggregation level and each edge represents a full 
or partial roll-up relationship between a pair of 
levels, or formally: 

Definition 3. A dimension scheme is a qua

druple 0 = (CD, !;D' T D' 1.- D)' where CD = {Ck, k 
= 1, ... ,p} is set of category types, or dimension 

levels, in 0, !;Dis a partial order in C, and T nand 
1.- Dare distinguished as the top and the bottom 
element of the ordering, respectively. 

1.- D corresponds to the finest grain of 0, i.e., 
the one at which 0 is connected to the fact scheme. 
T D corresponds to an abstract root node of the 
dimension's hierarchy that has a single value 
referred to as ALL. 

Relation!;D captures the containment relation
ships between category types. This containment 
may pe full, denoted !;D(fUII), or partial, denoted 

!;D(part). Therefore, relation!;D indicates the union 
ofthe two orders. Admission of partial containment 
between category types is crucial for specifying 
heterogeneous dimension hierarchies. Predicates 
!; and !;* specify direct and transitive contain
ment relationship, respectively, between a pair 
of category types in CD. Partial and full direct 
containment predicates are denoted !;(part) and 
!;(fUII), respectively. Thereby, predicates!; and !;* 

without fullness/partiality indication implythatthe 
containment is either full or partial, or formally : 
C, !; C , => (C, !;(fulI) C , v C , !;(part) C). Partial 

J J J .I 
containment between two categories C, !;(part) C

j 

occurs when members of C; are not required to 
have parent members in C . 

J 
A pair of partial containment relationships of 

the same category C, (i.e., C; !;(part) C
J 

/\ C, !;(part) 

Ck) are exclusive, if each member of C, rolls up 



either to C
j 

or Ck' but never to both. A set of ex
clusive partial roll-up relationships is denoted C, 
~(part) (C

j 
I C

k
). 

Cj is said to be a category type ih C, denoted 
C

j 
E C. Dimension scheme defines a skeleton of 

the associated data tree, for which the following 
conditions hold: 

1. '\IC
j 

E Co \{To}: C
j 

~·(rull)..L D (a non-top 

category type is fully contained in the top 
category type). 

2. '\ICj E CD \{..L o} : ..L D ~* C
j 

(bottom cat
egory rolls up, fully or partially, to all upper 
category types). 

3. 3C. E CD: C. ~ ..L D (the bottom category 
J J 

type is childless). 

In the simplest case, a dimension consists solely 
of the bottom and the top category types. Ascheme 
of a single hierarchy is a la,ttice, whereas dimen
sion schemes of multiple or parallel hierarchies 
may result in rather complex graph structures. 
Multiple hierarchies in D exist whenever there 
exists a category type at which at least two paths 
converge, or formally: ~C" Ci' C

k 
E D: C, ~(full) 

C
k 

/\ C. ~(rull) C
k

• 
} . 

Definition 4. A dimension category type i~ a 
pair C = (AC, A) where ACis the distinguished 
dimension level attribute and A = {Ar' r = 1, 
... , x} is a set of property attributes associated 
with AC. 

Definition 5. An aggregation path in D is 
given by a pair of category types C" Cjsuch 
that (C" C) E CD /\ C, ~* C/ 

Having defined the scheme elements of the 
model, we proceed to dimension instances and 
their properties. 

Definition 6. An instance, or extension, E 
associated with dimension scheme D is a pair 
(CE, ~E)' where CE= {S, j = 1, ... , m} is a set 
of categories such thatType(C) = Cjand ~ Eis a 
partial order on uPi' the ~nion of all dimen
sional values in the individual categories. 

Definition 7. A dimension categoryCof type 

C is a set of member values {e" i = 1, ... , n} such 
thatType(e) = C. 

Distinction between the concepts category and 
category type is made in orderto support modeling 
offully and partially shared dimensions, in which 
the same category type, e.g., city, may b~ used as 
categories patient city, hospital city, etc. 

Partial order C E on uc. is understood as fol-
- } J 

lows: given(e
l
, e

2
) E upj,e

l 
~ e

2
, ife

l 
is logically 

contained in e2• Predicates ~ and ~ * specify 
direct and transitive containment relationship, 
respectively, between a pair of meinber values. 
Apparently, containment relationships at the in
stance level are always full. The total number of 
members in category C. is denoted Ic/. 

} J 

Figure 5 demonstrates the use of X-DFM for 
graphical modeling of multidimensional schemes. 
In this example, fact scheme SURGERY contains 
single surgical interventions as its fact entries. InX
DFM, each fact scheme is mapped to a box-shaped 
node holding the scheme's name, its measures, 
and degenerate dimensions. Dimension schemes 
are shown as directed graphs with categories as 
nodes and containment relationships between 
them as edges. Labeled circles represent dimen
sion level attributes, while property attributes are 
terminal nodes shown as labeled I ines and attached 
to their respective categories. Each dimension's 
graph finally converges at its top category (shaded 
circular nodes). A directed edge connecting a pair 
of nodes represents a many-to-one, i.e. , a roll-up, 
relationship between them . Optional properties 
of a category, such as degree with in the category 
diagnosis, are marked by placing a dash across 

their edges. 
X-DFM provides unambiguous graphical 

constructs for all semantic elements of the model. 
An overview of the X-DFM constructs is given 
in the Appendix. Explanations of the constructs 
not yet mentioned will be provided as we proceed 
with the definitions of the corresponding formal
isms. Further details of X-DFM can be found in 
(Mansmann & Scholl, 2008). 
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Figure 5. Multidimensional schemejragment in X-DFM 

~dlagnOSIS 6dlSCIPline ~herapy 

1d''''''''OO therapy 

f" group 

discipline therapy 

ADVANCED ELEMENTS OF 
THE CONCEPTUAL MODEL 

Classical designation offacts is to contain relevant 
measures of a business process. Normally, facts 
are modeled by specifying the measures ofinterest 
and the context (dimensions) for their analysis. 
Consequently, facts schemes are expected to have 
a non-empty set of measures. 

Definition 8. A fact scheme F is measurable, 
if it has a nOn-empty set of measures, i.e., MF 
=1-0. 

Technically, a fact type is given by a many
to-many relationship between a set of attributes. 
Accordingto Kimball (1996), any many-to-many 
relationship is a fact by definition. Some sce
narios require storing many-to-many mappings in 
which no attribute qualifies as a measure. Typical 
cases include recording of some events, where 
an event is given by a combination of simulta
neously occurring dimensional characteristics. 
Such scenarios result in so-called factless fact 
tables - a term introduced by Kimball (1996). 
However,fact table is a logical design construct 
corresponding to the semantic concept of afact 
type. We define a conceptual equivalent of fact
less fact tables. 
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Definition 9. A fact scheme F is non-mea
surable, 'if its set of measures is empty, i.e., 
MF=0. 

As explained in the previous section, non
measurable fact schemes are crucial for warehous
ing business process data as the former provide 
support for event tracking and coverage fact types. 
Event tracking facts model events as a robust set 
ofmW\y-to-many relationships between multiple 
dimensions, whereas coverage facts are used to 
track events that were eligible but did not happen 
(Kimball, 1996). Back to the fragment depicted 
in Figure 5, SURGERY is an example of a non
measurable event tracking fact type. 

Wheneverthe fact's grain corresponds to actual 
events, there may exist a dimensional attribute 
with identifier properties, i.e., whose values are 
unique for each fact entry. For example, each 
SURGERY instance has a unique SurgeryID. Kim
ball, R. (1996) uses the concept of a degenerate 
dimension to handle such id-like attributes, while 
DFM treats them as non-dimension attributes of 
a fact. Fact identifier attribute is a special case 
of a degenerate dimension. 

Definition 10. Dimension D is degenerate, if 
it has a single category C consisting of a single 
attribute, i.e., CD = {C, TD} /\ C = {AC, 0}. 



Definition 11. A degenerate dimension 0 is 
a fact identifier in F, if all values of D in Fare 
unique. 

Since a degenerate dimension is only valid in 
the context of its fact, X-DFM places the former 
inside the fact's node as shown in Figure 5. Fact 
identifiers, shown with a double-underlined name, 
provide the foundation for modeling multi-fact 
schemes, as discussed later in this section. 

TYPES OF MULTI-FACT SCHEMES 

There may exist a many-to-many mapping of a 
fact with some of its dimensional characteristic 
or even with another fact. Giovinazzo (2000) 
proposes a concept of a degenerated fact, defined 
as a measure recorded in the intersection table 
of a many-to-many relationship between a pair 
of facts or a fact and a dimension. We suggest 
distinguishing between the following types of 
fact degeneration: 

• Satellitefact scheme F 'extracts a many-to
many relationship between a fact scheme 
F and a dimension scheme 0; along with 
the corresponding measure characteristics 
of this relationship into a separate fact. 
Thereby, F acts as a dimension of F '. The 
term satellite reflects the accompanying 
nature of this fact with respect to its base 
fact. 

• Association fact scheme F " extracts a 
many-to-many relationship between a pair 
of fact schemes F and F ' along with the 
corresponding measure characteristics of 
this relationship into a separate fact. 
Self-association fact F ' extracts a recur
sive relationship within a fact scheme F, 
converting the latter into two different di
mensions in F ' . 

Consider a many-to-many relationship be
tween SURGERY and PARTICIPANT in the E/R 

diagram (Figure 2). An attemptto map this relation
ship to a multidimensional scheme would yield a 
satellite fact SURGERY-PARTICIPANT, shown 
in Figure 6(a), with fee as a measure referring to 
that mapping. As an example of an association 
fact, consider a trigger relationship between the 
facts of type EVENT and ACTIVITY (e.g., event 
X triggered activity Y). Figure 6(b) shows the re
sulting EVENT-ACTIVITY association fact and 
its base facts acting as dimensions of the former. 
Similarly, a self-association of EVENT can be 
defined to store a trigger relation'ship between 
pairs of events and is also represented in Figure 
6(b) as EVENT-EVENT scheme. 

Similarly to dimension levels, facts may dis
playa roll-up behavior, i.e., be in a many-to-one 
relationship with each other. 

Definition 12. A pair of fact schemes F and 
F ' form a fact hierarchy, or a fact roll-up, F 
!;;* F " if F has a dimension containing fact 
identifier of F ' as one of its categories at any 
level of the hierarchy. 

Intuitively, fact schemes form a roll.-up if they 
represent different grains of the same process. Fact 
roll-up is direct, iffact identifier ofF' serves as a 
bottom category in F, and is transitive otherwise. 
Hierarchical relationships between facts typi
cally arise between event tracking schemes that 
model events at different grain. In our example, 
there is a transitive fact roll-up of ACTIVITY to 
SURGERY depicted in Figure 7(a), as category 
phase of ACTIVITY rolls up to SurgerylD, which 
is a fact identifier of SURGERY. 

An object-oriented concept of inheritance 
is helpful for dealing with heterogeneity of fact 
entries. A surgical process consists of different 
types of components, such as activities and events, 
which have a subset of common properties as 
well type-specific ones. Afact generalization is 
obtained when heterogeneous fact types are ex
tracteq into a superclass fact type in part of their 
common characteristics. 

In our example, EVENT and ACTIVITY are 
made subclasses of COMPONENT, as shown 
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Figure 6. Examples of satellite fact schemes 
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o 
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o 
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(a) SURGERY-PARTICIPANT as a 
satellite fact of SURGERY 

(b) EVENT-ACTIVITY as an association and EVENT-EVENT 
as a selj-association fact 

in Figure 8. The superclass extracts all those di
mensions, which are shared by all its subclasses. 
Moreover, fact generalization enables modeling of 
the degenerate facts, common for all subclasses, 
at the superclass level. In our example, COMPO
NENT-DATA could be modeled as a satellite of 
the generalized fact scheme COMPONENT. 

Finally, fact types can be divided into homo
geneous and heterogeneous. A fact scheme is 
homogeneous, if it disallows partial roll-up rela
tions between the fact and any of its dimensions, 
and is heterogeneous otherwise. Heterogeneous 
fact types result from mapping non-uniformly 
structured fa.cts to the same type, i.e., avoiding 
specialization. Figure 7(b) shows a variant of 
COMPONENT modeled as a heterogeneous fact 
scheme storing all characteristics of both subclass-

es EVENT and ACTIVITY. Relationships with 
dimensions, not common for all subclasses, have 
to be modeled as optional (dashed-line edge). 

Fact types considered so far are calledprimary 
as they store non-derived data. Facts derivable 
from other facts are called secondary. The latter 
can be further categorized according to the way 
they were obtained: 

Summary fact type contains measures from 
the base fact type, aggregated to a coarser 
gran u larity. 

• Drill-across fact type contains measures 
obtained by combining multiple related 
fact types. 

• Partition fact type contains a subset offact 
entries from its base fact type. 

Figure 7. Examples of hierarchical relationships between fact schemes 
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(a) Fact rollup of ACTIVITY to SURGERY 
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Figure 8. Fact generalization of classes EVENT and ACTIVITY as a superclass COMPONENT 
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• Conversion fact type is obtained by apply
ing a push andlor a pull operator. 

MODELING DIMENSION 
HIERARCHIES 

In the context of OLAP, only structured data 
hierarchies, i.e., those whose instances adhere to 
a certain scheme, qualify as dimensions. Values 

in a dimension may be organized into one or 
multiple hierarchies to provide additional levels 

of ag~regation. 
Definition 13. A hierarchy scheme H within 

D is a 5-tuple (CH, ~c' ~D' TD, ..1 D) for which 
holds: tl(C

i
, CJ' C

k
) E CH: C, ~(full) C

j 
/\ C

i 
~(full) C

k
, 

i.e., no category has more than one full roll-up 
relationship. 

Definition 14. A hierarchy instanceHassoci
ated with hierarchy scheme H is a pair (CH, ~ H)' 
where CH = {Cli = 1, ... , m} is a set of categories 

such thatType(C) = C
j
, C

j 
E CH, and ~ His a par

tial order on u.c, the union of all dimensional 
} } 

values in the individual categories. 

Decomposition of complex dimension schemes 
into their constituting hierarchy schemes is crucial 

for determining valid aggregation paths within 
a dimension. Consider the dimension scheme 

patient in Figure 9(a). Apparently, it is composed 
of multiple hierarchy schemes with the following 
sets of category types: 

1. { ..1 patient' sex, T patient} , 

, ACTIVITY* 
stop 0 'O~pOne6t!Q 

actionO 

instrument 
Obody part 
Otreated structure 

2. 

3. 

4. 

5. 

{ ..1 . ,birth date, birth year; T , }, 
pattent patient 

{..l patient' birth date, age, age group, 

Tpatient} , 
{ ..l address, city, state, country, patient' 
Tpatient} , 
{ ..1 . ,address, city, country, T , }. patient patient 

Multiple hierarchies inadimension exist when
ever its scheme contains a category that rolls up to 
more than one destination. We distinguish between 
heterogeneous and truly multiple hierarchies. In 

heterogeneous hierarchies, multiple paths result 
from partial related roll-up edges, such as in patient 

address hierarchy, in which the members of city 
have parent members either in state or directly 

in the state's parent category country. Therefore, 
the last two hierarchies in the above enumeration 
can be considered parts of a single heterogeneous 
hierarchy. Further elaborations on heterogeneous 
hierarchies can be found in (Mansmann & Scholl, 

2007; Malinowski & Zimanyi, 2006; Hurtado & 
Mendelzon, 2002). 

Multiple hierarchies in adimension are oftype 

alternative or parallel with respect to one another. 
Multiple alternative hierarchies are based on the 
same analysis criterion with at least one shared 

level in the dimension scheme. Time dimension 
is a classical example of multiple alternatives. In 
start time dimension in Figure 9(a), alternative 

paths emerge from the category date: date values 
can be grouped by month or by week. However, 
these two aggregation levels may not be used in 

combination due to an implicit many-to-many 
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Figure 9. Modeling shared dimensional elements in X-DFM 

&tart time dnd time 6patient J;loCatiOn 

quapr6\ qua~~ 'u~ountrY ~ountry 
d;start time Jend time 6patlent ~Iocallon 

/ ~country 
± weekt bWeekday ± week ~ 6Weekday state6\ state6 'I 

mon~0 t mon~~ t age group t ~/ city~/. 

age group .fI';: 
. yea state 'i) 

weekday !"'oquarter d ,/ 

date~ date~ birth yearO CitY~l co ~ 
hourO houro ! Ohospital 

. + j birth date ~sex address + building 
minute 0 mlnut 6 

~ 
co e r 

week . ' 
month . ~ 

start6 end patient. nrame 6room 

~S~.RGE~Y. 
_O~.lQ 

, . ' i 

(a) A jact scheme without dimension category sharing 
categories 

relationship between the members of those cat
egories: each month consists of multiple weeks 
and a week belongs to one or two months. Parallel 
hierarchies in a dimension account for different 
analysis criteria, such as the following patient 
hierarchies from the above list: the first hierarchy 
is based on the sex criterion, the third one groups 
patients by age, whereas the forth one is a hierarchy 
of patients' addresses. These three criteria have 
no relation to one another and, therefore, can be 
used in com bination for aggregation. For instance, 
patient members can be first group.ed by sex, and 
then by birth year, or vice versa. 

Another important concept in the dimensional 
modeling is that of derived categories and dimen
sions. New categories may be derived as functions 
of the existing ones. For example, category age in 
Figure 5 is derived from birth year (by subtract
ing the birth year from the current year). Derived 
categories can be used in dimension schemes on 
the same term s as bas ic categories, as they prov ide 
additional aggregation levels. A category, derived 
from a bottom category or a set of bottom catego
ries in a fact scheme, qualifies to be treated as a 
derived dimension of that fact scheme, since the 
former represents a derived characteristic of the 
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(b) Ajact scheme with shared 

fact itself. For instance, dimension duration in 
Figure 5 is a derived one, as its bottom category 
delay is derived from the bottom categories start 
and end (by subtracting start values from those 
of end). 

UNI·FICATION OF THE 
MULTIDIMENSIONAL SPACE 

A set of dimensions of any given fact scheme rep
resents the multidimensional space ofthat scheme. 
Intuitively, the common multidimensional space of 
a set offact schemes encompasses all dimensions 
of those schemes. For proper modeling of multi
fact relationships as well as of the convergence of 
dimension hierarchies, isolated multidimensional 
spaces have to be unified by replacing each set 
of redundant categories with a single shared 
category. Our approach to the unification of the 
multidimensional space is based on distinguishing 
between the concepts of a dim ens ion category and 
a category type. Since a category type describes 
the value domain of a category, it is possible 
to define multiple categories of the same type. 
In terms of the unified space S, categories are 



considered redundant, if they belong to the same 
category type. To formalize the above idea, we 
introduce the concepts of compatible, conformed, 
and related elements. 

Definition 15. CategoriesCandCare com-
I J 

patible, if they belong to the same category 

type:Compatible(C" C) <= (C, *- C
j 

/\ Type(C) 
= Type(C). 

Top-level categories are considered distinct for 
each dimension to account for the fact that com
patible dimensions may have different member 
sets and that the abstract root value ALL covers 
only the respective dimension's data subset. 
Therefore, top level categories are exem pteafrom 
the compatibility test. In a unified space S, each 
set of compatible categories is modeled as one 
shared category type. 

Definition 16. Compatible categoriesC,and
Cjare conformed, if they roll up along the same 

paths:Conjormed(C" C) <= Compatible(C" C) 
/\ (VCrn, C, !;; Crn: 3Cn, Cj

!;; Cn /\ Conjormed(C
m

, 

Cj). 
Conformed categories are fully compatible 

because they roll-up along the same path. Back 
to Figure 9(a), start and end categories in start 
time and end time, respectively, are conformed, 

whereas date in start time and birth date in patient 
are compatible (the same value domain), but not 
conformed (different roll-up paths). 

From category compatibility, the notions of 
related dimensions and related jact schemes are 
inferred: 

Definition 17. A pair of dimensionsD,and
D.are related, if their schemes share at least 

J 

one category type:Related(D" D) <= 3Crn ED" 
3Cn E OJ: Cm = Cn' 

Definition 18. A pair of fact schemes F and 
F ' are related, if they have at least one pair of 
related dimensions:Related(F, F 'J <= 3D, E F, 
3D

j 
E F ': Related(D" D) . 

With respect to dimension sharing, X-DFM 
can be used in different modes, such as (a) non
shared, (b) partially shared, and (c) fully shared 
mode. In a non-shared mode, categories are not 

examined for compatibility, i.e ., each category is 
presented by a distinct node, as in a scheme shown 
in Figure 9(a). In the partially shared mode, only 
conformed categories are considered shared. This 
mode was applied in the scheme shown in Figure 
5, where compatible yet non-conformed categories 
birth date and date along with their aggregation 
paths were not merged. In the fully shared mode 
all com patible categories are represented as shared 
nodes, thus complying with the requirements of 
the unified multidimensional space. 

In the fully sharedX-DFM mode, compatible 
categories are represented as follows: 

1. Proceeding from the bottom-level categories 
upwards, ea,ch set of conformed categories 
is merged into a single category type node. 
Subsequently, the same is done for the re
maining compatible categories. 

2. Shared nodes are labeled by the name of 
their category types. 

3. The actual names of single categories behind 
the shared node are shown as labels of the 
respective incoming roll-up edges. 

4. Edge labels are obligatory in the existence 
of multiple unrelated incoming roll-up edges 
ofa node and may be omitted otherwise. In 
the latter case, the category name is equal 
to its category type name. 

5. To resolve ambiguities, fully qualified 
edge labels can be used (or displayed on 
demand). Such labels follow the naming 
convention <fact-name>. <dimension 
name>. <category-name>. 

Figure 9 pictures the concept of modeling 
shared dimensions at the example of the fact 
scheme SURGERY. Figure 9(a) shows the ini
tial state of the model, in which each category 
is represented by a distinct node in the scheme. 
Applying the above rules of presenting shared 
categories ina unified multidimensional space, we 
derive a scheme depicted in Figure 9(b). Dimen
sions start time and end time now appear fully 
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merged as their schemes are identical. The bottom 
categories are merged into a node of type time, 
whereas category names start and end are shown 
as edge labels. Dimensions patient and location 
are partially shared as both of them contain a 
category of type city. 

In case of conformed categories, the entire 
roll-up graphs rooted at those categories can be 
merged in a single step. In case of non-conformed 
categories, graph merging may appear less trivial. 
Let us consider the example of merging birth date 
and date. Originally, birth date was modeled with 
the only parent category birth year of type year. 
Category date also rolls up to year, however via 
multiple alternative hierarchies. At this stage, the 
designer has to decide, whether these roll-up rela
tionships should also be made available for birth 
date. In that case, the category birth year is simply 
mapped to year, as shown in Figure 9(b). 

Category age group, however, which is a par
ent of year in patient, does not appear feasible 
as an aggregation level in start time or stop time 
dimensions, and, therefore, it is not added to their 
schemes. 

With respect to the degree of convergence, 
three levels of dimension sharing can be identi
fied, namely,(a) conformance, (b) inclusion, and 
(c) overlap. Any of these patterns may occur 
between dimensions belonging to the same or to 
different fact schemes. 

Definition 19. A pair of dimensionsDandD' 
are conformed, if their bottom categories 
are conformed:Conformed(D, D') <= ::lC

I 
E 

D, Type(C) = ..1 D' ::lCj E D', Type(C) = ..1 D' : 

Conformed(C" Cj ). 

Since category conformance is defined as 
a recursive property, dimension conformance 
implies the identity of the respective dimension 
schemes, or formally : Conformed(D, D') <=> C \ 
{T D} = C ' \{T D' } /\ !;;D = !;;D" As an example of 
conformed dimensions, consider start time and 
end time of SURGERY in Figure 9(b). 

Kimball & Ross (2002) introduced the term 
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conformed dimensions to refer to dimensions, 
which are not physically centralized but w hich 
have identical schemes. Our definition differs from 
the latter one in that we do not regard logical de
sign issues (e.g., centralization and normalization) 
at the stage of conceptual modeling. Therefore, 
in our model, a unified multidimensional space 
approach does not impose any particular logical 
or physical design scheme. On contrary, this ap
proach is beneficial for generating semantically 
rich metadata to support advanced OLAP opera
tors and data navigation options in frontend tools 
irrespective of the implementation. 

Inclusion pattern of dimension sharing occurs 
when some category in a dimension fully rolls-up 
to the bottom-level category of another dimension, 
i.e., when two dimensions represent different 
grain of the same characteristic. In our scenario, 
this is the case with the dimensions patient of 
SURGERY and treated structure of ACTIVITY. 
Bottom-level category of patient serves as an 
upper aggregation level in treated structure. As 
a result, ACTIVITY facts, if grouped by treated 
structure, can be further aggregated · along the 
entire dimension scheme of patient. 

/" 
Definition 20. DimensionDis included in 

dimensionD' , if its scheme is a sub-graph in 
the scheme oW':Included(D, D') <= C \{TD} C 

C' \{TD·} /\!;;D C!;; D" 

Dimensions are said to be overlapping, if their 
schemes converge only partially. 

Definition 21. A pair of dimensionsDandD' 
are overlapping, if they are related via a category, 
non-bottom for either ofthem:Overlapping(D, 

D')<= ::lC,E C\{ ..1 D}, ::lCj E C' \{TD'} : C,= Cj' 
Overlapping dimensions may belong to the 

same or to different fact schemes. The latter pro
vides inherent support for a drill-across operation. 
Dimensions patient and location in Figure 9(b) 
overlap as they contain hierarchies that converge 
in city. 

Notice how presence of distinct top-level cat
egories helps to distinguish between seem ingly and 



truly converging paths. The former case occurs 
in case of category sharing between dimensions. 
F or instance, even though country is the highest 
aggregation level in both location and patient, 
each ofthese dimensions ends at its own top-level 
node. True path convergence occurs in mUltiple 
and heterogeneous hierarchies within a dimension, 
as in the case of start time and end time, where 
mUltiple paths converge in year. 

"FADING" DUALITY OF FACT 
AND DIMENSION ROLES 

Throughout this section we encountered mtiltiple 
examples of fact schemes acting as dimensions 
in other fact schemes. That might seem paradox, 
but it has its legitimacy. Structurally, both facts 
and dimensions are given by a graph of "rolls
up-to" relationships between their categories. 
The difference is that the aggregation graph of 
a dimension depends on its proper semantics, 
while the aggregation graph of a fact depends on 
the aggregation hierarchies of its analysis dimen
sions (Abello, Samos, & Saltor, 2001) . Fact and 
dimension roles are fixed only in the context of 
isolated fact schemes. What happens to those 
roles in the context multidimensional multi-fact 
schemes? Apparently, these roles are determined 
by the focus of a given analytical task, which may 
vary from one query to another. For example, a 
query focusing on a measure of an association fact 
treats the base fact schemes of this association 
as dimensions. Altogether, multidimensionality 
implies that what is considered a fact in one task 
could be considered a dimension by another one, 
and vice versa. 

The first interchangeability case is concerned 
with a fact scheme acting as dimension of another 
fact scheme. Fact scheme F can be treated as a 
dimension in fact scheme F ' while querying its 
measures when F' contains the fact identifier 
dimension ofF. This relationship may be encoun
tered in satellite facts and hierarchies of event 

tracking facts. One implication ofthis interchange
ability is that it results in multiple focus-de pendent 
conceptual schemes for the same data fragment. 
Figure 10 illustrates the example oftwo conceptual 
views of the satellite fact relationship between 
SURGERY-PARTICIPANT and SURGERY. A 
focus-independent view of both fact schemes is 
shown in Figure 10(a) and a perspective focused 
on SURGERY-PARTICIPANT and its valid ag
gregation paths is given in Figure 1 O(b). 

Thereby, fact scheme SURGERY is trans
formed into a dimension surgery, in which all 
dimensions of the original fact scheme turn into 
parallel hierarchies, diverging from the bottom 
category SurgerylD. The validity of treating the 
fact identifier ofS URGERY as a bottom category 
in surgery is given by the fact that the latter has the 
same grain as SURGERY fact entries, and thus, 
has a many-to-one (i.e., a rolls-up) relationship 
to all other dimensions. 

Another kind of interchangeability is related to 
treating dimensions as measures, and vice versa. 
Support of advanced OLAP operators, such as 
push for converting a dimension category into a 
measure and pull for converting a measure into a 
dimension, as well as drill-across for combining 
measures from multiple related fact schemes, is a 
challenge not handled by conventional conceptual 
models. The output of these operators is a new 
conceptual multidimensional scheme. ·Our solu
tion for supporting scheme-transforming opera
tors at the conceptual level is straightforward - to 
explicitly model their output schemes. Figure 11 
exemplifies this idea by showing the conceptual 
consequences of "pushing " a dimension category 
hospital in SURGERY (see Figure 9(b)) into 
a measure attribute (e.g., to query a measure 
COUNT(DISTINCT hospital)). 

The "pushed" category hospital itself as well 
as all categories below it are removed froin the 
output dimension scheme of location as their 
granularities become available. Dashed lines 
connecting the measure attribute hospital with all 
dimensions indicate its non-additivity. 
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Figure 10. Fact SURGERY as a dimension in its satellite fact SURGERY-PARTICIPANT 

(a) Focus-independent view of a satellite fact scheme 

OBTAINING A MULTIDIMENSIONAL 
SCHEME OF A PROCESS 

In the two preceding sections we formalized the 
properties of the advanced multidimensional 
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(b) A base fact as a dimension of its satellite fact 

conceptual model that overcomes the restrictions 
of the conventional OLAP technology. The pre
sented formalisms were illustrated using relevant 
multidimensional fragments from the cases study. 
However, we did not elaborate on how those frag-

Figure 11. Transformation of the originalfact scheme SUR-6ERY caused by apush operation 
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ments had actually been obtained. The algorithm 
of acquiring the multidimensional model of a 
process is the subject of this section. 

The idea of developing methods for systematic 
acquisition of multidimensional models from E/R 
diagrams is well represented in the data ware
house research. Most of the existing business 
information management systems are relational, 
and, therefore, it appears feasible to derive the 
conceptual model of a data warehouse from that 
of the existing system, typically available in form 
ofE/R or UML class diagrams. Outstanding con
tributions in this field were made by Cabibbo & 
Torlone (1998), Golfarelli, et al. (1998), Franconi 
& Sattler (1999), Tryfona, et al. (1999), Phipps & 
Davis (2002). Some of the approaches, such as the 
ones proposed by Cabibbo & Torlone (1998) and 
Franconi & Sattler ( 1999), are based on "encoding" 
the multidimensional semantics into the original 
E/R constructs, while others provide extended 
variants of the E/R model. Prominent examples 
of the latter class are are starER ofTryfona, et al. 
(1999) and Multidimensional Entity Relationship 
(MEIR) Model of Sapia, et al. (1999). Yet another 
group of works provides mapping ofE/R schemes 
to ad-hoc multidimensional models. The DFM 
approach ofGolfarelli, et al. (1998), which is the 
predecessor of our proposed X-DFM model, is an 
example of such methodology. 

The above methods proceed by determining 
the facts and subsequently refining their dimen
sional context. However, none of those methods 
is directly applicable in our scenario due to their 
fundamental assumption that the measures of in
terests are known at design time. Dealing with a 
"factless" event-tracking data warehouse applica
tion scenario implies the necessity for a different 
procedure of identifying the facts. 

Our approach to identifying candidate fact 
entities in an E/R scheme is based on analyzing 
the set of each entity 's relationships with other en
tities by looking at the cardinalities and structural 
constraints of those relationships. From the basic 
definitions of facts, dimensions, and dimension 

hierarchies provided in Section 6, as well as the 
definitions of degenerate facts and dimensions in 
Section 7, the following cardinality information 
with respect to the fact scheme structure can be 
deduced: 

A fact scheme is given by a set of dimen
sion categories that have an n-ary relation
ship to each other or where a distinguished 
category, representing the grain of the fact, 
has a binary relationship with each other 
category in the set. 

• In measurable schemes, each measure at
tribute has an n: 1 relationship with any of 
its dimensions. 
Non-measurable schemes correspond to 
an entity type that represents some event, 
along with the set of entity types, related to 
the former via a l :n relationship. 

With respect to dimension hierarchies, the 
cardinality constraints are straightforward: 

Each category corresponds to an entity type 
and a set of its single-valued attributes. 
A homogeneous dimension hierarchy is 
given by a lattice of categories, in which 
each category is connected to at most one 
parent category via an n: 1 relationship. 
Heterogeneous hierarchy contains catego
ries involved in a generalization relation
ship, with the subclass as a parent category 
of the subclasses. 

The above observations provide valuable 
guidance for automatic recognition of fact and 
dimensions candidates in E/R schemes, subject to 
the condition that the input scheme accurately and 
fully maps all required attributes as well as rela
tionships and dependencies between attributes. 
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VERIFICATION AND REFINEMENT 
OF THE E/R SCHEME 

In most cases, pre-existing conceptual models of 
the system are tailored towards specific applica
tion needs and are thus focused on the properties 
and relationships relevant in the application 
context. Besides, the level of detail, accuracy 
and completeness of the model may not be ad
equate to meet the requirements of the analysis. 
Therefore, the actual transformation of the E/R 
scheme into a multidimensional one is preceded 
by the transformation of the E/R scheme itself. 
This transformation evolves in two phases: (a) 
pruning I enriching the data set and (b) refining 
the relationships in the data. 

The data set is pruned as to eliminate parts of 
the model, irrelevant for the analysis. For instance, 
private data ofthe patients, such as name, address, 
and birth date, may have to be removed to comply 
with data privacy regulations. Subsequently, the 
model is enriched to include further data available 
forthe analysis. This data is obtained by integrating 
additional data sources. Most of the enhancements 
are concerned with enabling additional granularity 
levels. For example, a geographic database may 
be added to be able to aggregate address data by 
zip code, city, region, and so on. 

The aim of the refinement phase is to have an 
accurate mapping of all relationships between all 
entities and attributes in the scheme. There is a 
fundamental difference in the way the E/R model 
and the multidimensional data model handle re
lationships: the former admits relationships only 
between entity types, whereas the latter specifies 
relationships between attributes. In the E/R model, 
each attribute is associated with a single entity or 
relationship type implying a one-to-many relation
ship in the general case, a one-to-one relationship 
in case of an identifier property, and a many-to-one 
ormany-to-many relationship in caseofamultival
ued attribute. Thereby, it is impossible to specify 
dependencies between attributes. A legitimate way 
to overcome this penalty is to re-arrange attributes 
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into additional entities and explicitly specify the 
relationships between the newly defined entities. 

The only constructs of the multidimensional 
model that fully correspond to that of an attribute 
in the E/R model, are dimension level attribute, 
property attribute, and measure as each of them 
is related to one element in the scheme. Other 
constructs, such as facts, dimensions, and dimen
sion categories, participate in relationships and, 
therefore, have to be represented by entity types. 
As for relationship types, it is insufficient to 
specify cardinalities as simple ratios (1: 1, 1 :n, or 
m:n) as this notation does not reveal whether the 
relationship is optional for any of participating en
tity types. Therefore, representation of cardinality 
by structural constraints in (min, max) notation is 
a crucial requirement ofE/R scheme refinement. 
The above considerations ofthe multidimensional 
mode I ing constraints with respect to attributes and 
relationships are fundamental for formulating the 
ultimate goal of approximating an E/R scheme to 
a multidimensional one. 

Definition 22. An E/R scheme is accurate, if 
the structural constraints are fully specified for 
each relationship typeRand each entity typeEpar
ticipating inR, if all generalization I specialization 
relationships are made explicit, and if for each 
attributeAin the scheme holds: 

I 

1. A/s simple (i.e., non-composite), 
2. A/s single-valued, 
3. Ajis either a key property (ora part of the 

key) or is functionally dependent on the 
key property, 

4. A/s not related (i.e., Ilas no functional 
dependency) to any otller attribute apart 
from tile key of its entity type. 

To achieve the above accurate state, we pro
pose the transformation procedure that evolves 
as follows: 

I. Identify impl icitly composite attributes (Le., 
consisting of multi pIe data fields) and replace 



Figure 12. ExamplesoJ presenting complex attributes as composite ones and re-modeling multivalued 
attributes into related entity types 

them by explicit composite attributes. 
2. Similarly, re-shape explicit composite attri

butes into entity types consisting of simple 
attributes. 

3. Multivalued attributes are reshaped into en
tity types, related to that attribute's original 
entity type. 

4. Identify dependencies and relations between 
attributes, not explicit in the scheme. Each 
attribute, involved into such relations, is 
transformed into an entity type and the 
relationship between newly created entity 
types is specified. 

5. Identify implied generalization/specializa
tion relationships and make them explicit in 
the scheme. 

6. Redundant fragments of the scheme are 
merged into shared fragments. 

7. Elements ofthe scheme that became obsolete 
are eliminated. 

The above sequence of steps is chosen as to 
complete the transformation of the scheme in a 
single iteration. As an example of refining the 
E/R scheme according to the above procedure, 
let us consider the case of SURGERY attributes 
in Figure 2. 

In the first step, attribute Location was identi
fied as implicitly compos iter as its values are full 
addresses of respective operating theatres speci-

fied as the room~ the building, the name of the 
hospital and its full address. The address values, 
in their turn, are also decomposable into multiple 
fields. Similarly, attributes of type date and time 
should be decomposed into their constituent fields. 
Figure 12 shows the results ofre-structuring im
plicitly composite attributes Location, StartTime, 
and StopTime. 

In the second step, composite attributes are 
transformed into related entity types. Figure 13 
shows the results of translating composite attri
butes Location, StartTime, and StopTime into a 
set of entity types and aggregation relationships 
between them. Notice that both tern poral attributes 
could be represented by the same entity type 
TIMESTAMP due ~o their identical structure. As 
a result, these two attributes are replaced by two 
respective relationships between SURGERY and 
TIMESTAMP. 

Multivalued attributes are handled in the third 
step. Each multivalued attribute is transformed into 
an entity type linked to the hosting entity type of 
that attribute via a I:n or an m:n relationship. As 
an example, consider the result of transforming 
Discipline attribute into an entity type, depicted 
in Figure 12. 

The fourth step of identifying "hidden" rela
tionships between attributes is primarily concerned 
with revealing candidate roll-up, or "part-of', rela
tionships . Explicit modeling ofthose relationships 
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Figure 13. Transforming composite attributes into related entity types 

facilitates recognition of dimension hierarchies at 
a later stage. Back to our example, aggregation 
relation'ships exist between Room and Building, 
between B u i Id ing and Hospital, between Hospital 
and City, and so on. Figure 14 shows the results 
of revealing the hierarchical structure behind the 
attributes of surgery location. 

In the next step, the scheme is verified with 
respect to implied generalization/specialization 
relationships. Our original model (see Figure 2) 
already contains a general ization of heterogeneous 
process components, such as ACTIVITY, EVENT, 
and STATE into a superclass COMPONENT. 
However, the scheme can be further refined by 
adding a specialization relationship to the entity 
type SYSTEM. In our scenario, the notion of a 
system is heterogeneous and may refer to an in-

strument, a,body part of a participant, or a treated 
structure of a patient. Figure 15 shows the affected 
part of the scheme. 

The last two transformation steps finalize the 
refined scheme by identifying redundant frag
ments, merging them, and removing obsolete ele
ments. Redundant fragments emerge in the course 
of transforming attributes into entity types. For 
instance, decomposition of the Address attribute 
in PATIENT will yield the same scheme as the one 
produced by transforming the Address attribute 
in HOSPITAL. This redundancy is eliminated by 
relaffng all entity types, which have an address 
property, with the same entity type ADDRESS. 
Some elements become obsolete at different stages 
of refinement. For example, entity type LOCA
TION (Figure 13) gets dissolved into ROOM and 

Figure 14. Transforming attributes into entity types to reveal implied roll-up relationships between 
them 
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Figure 15. Adding specialization to the heterogeneous entity type SYSTEM 

BUILDING along with a "part-of' relationship 
between them (Figure 14). In the final step, the 
scheme is verified to ensure that it contatn's no 
obsolete elements. 

IDENTIFYING FACTS 
AND DIMENSIONS 

Once the transformation of the E/R scheme is 
complete, a cardinality-based transformation 
into a multidimensional scheme can be applied. 
Essentially, the task consists in determining 
for each entity type whether it maps to a fact, 
a bottom-level or an upper level dimension 
category. 

Since facts build the focus of a multidimen
sional scheme, the first step is concerned with 
identifying fact candidates. Remember that, 
technically, a fact structure is a collection of 
properties, which have many-to-many relationship 
to each other and a one-to-many relationship to 
the fact's measure(s). Therefore, there exist just 
three structures in terms of the E/R model, which 
satisfy this cardinality constraint: 

• 

an entity type that has n: 1 relationships 
with multiple other entity types, 
an n-ary relationship between a set of en
tity types, 
an m:n relationship between a pair of entity 
types. 

For the sake ,of simplicity, the first two cases 
can be merged into one, since any n-ary relation
ship is convertible into an entity type by replacing 
each branch with a binary relationship towards the 
respective participating entity type. Besides, the 
concept of an entity type is generally superior to 
that ofa relationship as the former may participate 
in other relationships. The third case is typical 
for a fact degeneration, i.e., an m:n relationship 
between a fact and a dimension, but may also 
occur in a non-strict dimension hierarchy. 

IDENTIFYING FACTS 

Generally, a fact is given by an entity type E
f 
in~ 

volved into multiple n: 1 relationships with other 
entity types (whereas existence of 1 :n, m:n or 1: 1 
relationships b~tween E

f 
and other entity types 

is not prohibited). E
f 

corresponds to the fact's 
granularity, and the set of the related entity types 
along with the attributes of E

f 
define the fact's 

dimensional context. To investigate the properties 
of Efas a candidate fact scheme, all relationships 
of E

f 
are arranged into the following mutually 

disjoint sets: 

E<rec>(E
f
) is a set of recursive (i.e., connect

ing the entity type to itself) relationships of 

Ef' 
E<nl>(Ef) is a set of Els candidate dimensions, 
i.e., a set of its non-key attributes and entity 
types with which Efhas an n: 1 relationship, 
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Figure 16. Transforming entity type STEP (left) to a fact scheme (right) 

• 

• 

E (<'fII"er»(E
J
) is a set of superclasses, i.e., di

rect generalizations, of Ef' 
E (<'fllh»(E

J
) is a set of subclasses, i.e., direct 

specializations, of Ef' 
E <I:I>(EJ) is a set of Els identifier dimen
sions, i.e., a set of entity types and attri
butes with which E

J 
has a 1: 1 relationship, 

E <1:1I>(EJ) is a set of E/s candidate sub-facts, 
i.e., a set of entity types with which EJhas a 
l:n relationship, 
E <IIIII>(E) is a set of Els candidate degen
erate facts, i.e., a set of entity types with 
which E

J 
has an m:n relationship. 

Convergence of an E/R scheme into a multi
dimensional one evolves in a bottom-up fashion, 
starting with entity types that qualify as terminal 
facts, i.e., the elements of the finest grain, and 
proceeding t6 coarser grained elements. 

Definition 23. Entity typeE
J 

corresponds 
to a terminal fact, if it is not involved into any 
decomposition or specialization relationship, 
i.e., E <I:II>(E) = E «""b»(E) = 0. 

A l :n relationship between EJand some other 
entity type Ek indicates a composition or an ag
gregation relationship and, thus, existence ofa fact 
roll-up pattern (E

k 
rolls up to E). A specialization 

relationship of EJimplies that each subclass inher
its all characteristics of E

J 
and may have further 

characteristics of its own. 
In our surgical workflow model, entity types 

STEP, EVENT, and STATE qualify as terminal 
facts. Figure 16 shows the part of the E/R diagram 
referring to STEP and its relationships types 
as well as its mapping to a 4-dimensional fact 
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scheme. For consistency, n: 1 relationship with 
full participation, i.e., with (1,1) and (1,*) as its 
structural constraints, are all renamed to "rolls-up
to". The transformation appears straightforward 
as the only non-empty set of related categories 
E<III>(STEP) = {INSTRUMENT, BODY PART, 
BODY STRUCTURE, ACTIVITY} ml;lps seam
lessly to a set of the fact's dimensions. 

As an example of a more complex fact candi
date at a coarser granularity level, let us consider 
the entity type ACTIVITY, depicted in Figure 
17, with its non-empty sets E<II:I>(ACTIVITY) = 
{TIME-OFFSET,ACTION}, E<SIl'Je1'>(ACTIVITY) 
= {COMPONENT}, and E<I:II>(ACTIVITY) = 
{STEP}. As STEP has already been mapped to 
a fact scheme, the l:n relationship is interpreted 
as fad roll-up. COMPONENT as a superclass of 
ACTIVITY is also represented as a fact, yielding 
a fact generalization pattern. 

Finally, let us consider an example of iden
tifying and modeling degenerated facts. Once 
entity type E

J 
has been converted to a fact, its 

degenerated facts correspond to the relationships 
in E<lIIn>(E) (satellite facts and fact associations) 
and E<rec>(EJ) (fact self-associations). Figure 18 
shows a fragment of the E/R diagram modeling 
a generalized entity type COMPONENT and its 
relationships. COMPONENT's m:n relationship 
with D ATAand a recursive relationship triggers are 
converted to a satellite fact COMPONENT-DATA 
and a self-association COMPONENT-TRIGGER, 
respectively, as depicted in Figure 18. 

Having considered various examples of iden
tifying parts of the E/R scheme that qualify to be 
converted into facts, we are ready to provide an 



Figure 17. Transforming entity type ACTIVITY (left) to afact scheme (right) 

algorithmic description of acquiring fact schemes 
from accurate EIR schemes. Algorithm 1 (Figure 
19) is invoked on each "terminal" entity type 
Ef' outputting a set of fact schemes, obtained by 
recursively applying itself to each entitytype 
identified as a fact candidate. Sets E«sub»(E

j
) and 

E«'II»(E
j
) used for identifYing "terminal" entity 

types become obsolete inside the algorithm as it 
proceeds in the bottom-up fashion. In the first step, 
Algorithm 1 (Figure 19) creates an empty fact 
type and converts the attributes of the underlying 
entity into measures and degenerate dimensions, 
as shown in the subroutine Algorithm 2 (Figure 
20). 

IDENTIFYING DIMENSIONS 

Fact schemes produced by Algorithm 1 (Figure 19) 
are incomplete in a sense that fact's dimensions are 
defined solely in terms oftheir bottom categories. 
Therefore, the next step consists in constructing 
complete dimension hierarchies implied by the E/R 
scheme. Once the E/R scheme has been brought 
into an accurate state, as defined in the previous 

phase slarllime 
O+-~~~~~--~O 

subsection, dimension hierarchies become easily 
identifiable: each category corresponds to an entity 
type and the partial order on the category types 
is given by the hierarchical, I.e., many-to-one, 
relationships between categories. Similarly to the 
fact conversion procedure, dimension schemes 
are constructed in a bottom-up fashion by rooting 
the dimension's graph at the bottom category and 
recursively adding roll-up relationships until the 
top level is reached. In the presence of multiple 
and heterogeneous hierarchies, the resulting 
dimension scheme will contain diverging and 
converging paths. 

Roll-up behavior of an entity type is determined 
by its relationships. As dimension categories are 
identified bottom-up, the set of relevant relation
ships is reduced to 1: 1, n: 1, and m:n. Let us consider 
the process of hierarchy model ing at the exam pie 
of phase dimension in COMPONENT. The cor
responding partofthe E/Rdiagram (simplified for 
presentation purposes) is given in Figure 2l. 

From the perspective of a candidate dimension 
category given by the entity type Ed' possible 
roll-up behaviors of Ed can be categorized based 
on the number of its relevant relationships, their 

Figure 18. Transforming m:n and recursive relationships of COMPONENT (left) to degeneratedfacts 
(right) 

Slarllime 

-t9~~=o 
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structural constraints and inter-dependencies: 
Homogeneous (non-)ltierarclty emerges in the 

existence of at most one relevant relationship: 

Figure 19. Algorithm 1 

Algol'it lun I : COl1vcnToFact 

• Non-hierarchy is given, if Ed is not in
volved into any relevant relationship. In 
Figure 21, RECORDER would be a non-

[)utll : Emily type l~·r . Sct of prc.viollsly identified fact schemcs .J' 
Rcsult : Updaled Slot of facl sl'h~JllcS .J: 
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(.,' <'''" p'' l'> ~ 0 : 

I
' ~; : ::: II : = %:: 
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('nd 
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otherwise 

IClrclIl'h 1:,', E t ' I : I .' do 
L, ()(Id I Jim.c/l8i 011. ( I~', . :F, "s!uul./JIi!"): 
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IClrclIl'h l:,' , E £ <', "' :1, > do 
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L II.rldJ) i lll.en"illll.(i:.;,.:F. "11111'11/111 " ): 

apP'-"lId {F , J ): 
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Figure 20. Algorithm 2 

Algorithm 2: COl1vertAttributes 

Dnta: Entity type bI 
Result: Fuct type :F corresponding to /:;1 
begin 

end 

:F <-- C1'(>'n./; e P C/ r.l (I~'.1 ); 
A/;/.1' = y(~ I. A/" ,.i {yIJ.l p.s (L~·.r): 
Ihrenrh A E An,. dll 

if L~M I? II 811.'J'(::(A ) then 
I (1ddM e(L,~ l1,/' (! (A , :F): 

else if '/s ldl!.'l1tif',:e1'(A ) then 
I rul£LLJ'i'llwTls ion,(A , T . "idrm l .. ifir!/." ); 

else 
L adclD'imen s'ion (A , T. "deg(' oe'rnl ed"): 

return ,r;: : 

hierarchical dimension in the fact scheme 
WORKFLOW. 
Simple hierarchy is given by an n: 1 rela
tionship between Ed and some other entity 
type E, with (1,1) as the structural con
straint on E/s participation as this relation
ships produces a full roll-up of Ed to E;, For 
instance, PHASE and WORKFLOW yield 
a simple hierarchy. 
Non-strict hierarchy is given by an m:n 

relationship between Eel and some other 
entity type. 

Heterogeneous hierarchy emerges in the 
existence of an optional roll-up or a single set of 
relevant mutually exclusive relationships: 

Optional hierarchy is given by an n: 1 re
lationship between Eel and some other 
entity type E; with (0,1) as the structural 

Figure 21. Fragment of the EIR scheme relevantfor building the dimension scheme phase in COM

PONENT 
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Figure 22. Multiple alternative and parallel hierarchies in DATE dimension 

constraint on E,/s participation as this rela
tionship produces a partial roll-up of Ed to 

E;, 
• Non-covering hierarchy results from a 

set partial related n: 1 relationships. The 
partial ity is given by (0,1) as the struc
tural constraint on Ed'S participation in 
each relationship. Besides, the diverging 
roll-up paths of Ed ought to converge at a 
later stage. Example of such partial related 
roll-up is the relationsh ip between CITY, 
STATE, and COUNTRY in Figure 14. 
Specialization hierarchy emerges from a 
specialization relationship of Ed into mul
tiple subclass categories. As an example, 
consider a generalized category SYSTEM 
in Figure 15. 

Multiple hierarchies correspond to multiple 
relevant relationships that are mutually nonex
clusive. Figure 22 shows the relationships of 
the category DATE as an example of multiple 
hierarchies. 

• 
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Alternative hierarchies result from multi
ple ro ll-up relationships towards mutually 
related entity types. For instance, the re
lationships of DATE with CAL_MONTH 
and with CAL_WEEK are alternative, 
since the latter two categories have a many
to-many relationship with each other. 
Parallel hierarchies correspond to multiple 

roll-up relationships towards mutually un
related entity types. For instance, the rela
tionship of DATE with CAL_MONTH is 
parallel to that of DATE and WEEKDAY. 

Figure 23 shows the results of converging the 
fragment of the E/R model from Figure 21 into a 
dimension . Additionally, the structure of the hier
archical category DATE is shown corresponding 
to the E/R model shown in Figure 20. 

Once the construction of the dimension scheme 
is complete, an abstract top-level category is added 
as a root node at which all dimension's hierarchies 
converge. In case of a unified multidimensional 
space, redundant elements of dimension schemes 
have to be eliminated by merging compatible 
categories. 

Since dimension hierarchy modeling tech
niques are well highlighted in the dat~ ware
housing literature, we omit further details of the 
methodology for obtaining dimensions from the 
E/R schemes. 

EVALUATION OF THE 
PROPOSED DESIGN 

In the previous sections we focused on the con
ceptual data modeling for BPI applications. The 
data warehouse is implemented by transforming 
the conceptual scheme into a logical and, finally, 
a physical one. Once the data warehouse is set 



Figure 23. The resulting dimension scheme of the PHASE dimension in COMPONENT 
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up and running, end-users access the data using 
so called OLAP tools. Advanced tools offer a 
user-friendly visual interface for interactive data 
analysis by implementing OLAP operators in form 
of interactive events, s,uch as browsing, clicking, 
marking regions of interest, drag-&-drop, zoom
ing, panning, etc., and by providing a set visual 
layouts (pivottables, business charts, scatter-plots, 
dash boards, etc.) for convenient exploration of 
the retrieved data. 

IMPLEMENTATION REMARKS 

OLAP tools do not indicate how the data actually 
has to be stored. Hence, there exist multiple ways 
to implement a data warehouse, with the following 
two prominent architectures: 

Relational OLAP (ROLAP) systems store 
data in relational DBMS and employ 
SQL extensions and specialized access 
structures to efficiently implement OLAP 
operations. 
Multidimensional OLAP (MOLAP) sys
tems directly store data in specialized 
multidimensional data structures (such as 
arrays or cubes) and implement OLAP op
erations over these structures. 

Apart from the fundamental distinction in data 
storage and processing capabilities, there is a con
ceptual difference between MOLAP and ROLAP , 
databases: MOLAP pursues a top-down approach 

0-----J.0----+0 cal_week year 
room building hospital 

by first focusing on business problems, then iden
tifying measures and dimensions Qf interest, so 
that the metadata model may be built prior to the 
acquisition of the relevant data sources; ROLAP, 
in contrast, encourages a bottom-up analysis to 
identify candidate facts and dimensions in the 
relational data models of existing data sources 
(Dodds, et aI., 1999). Both paradigms have their 
benefits and weaknesses - the latter, however, be
ing rapidly addressed by the respective vendors. 
Currently, data warehouses are predominantly 
built using ROLAP, especially when dealing with 
very large data volumes. ROLAP attributes its 
success to the established and proven technol
ogy, good scalability in terms of the number of 
facts and their dimensional ity, flexibi I ity for cube 
redefinitions, and support for frequent updates 
(Pedersen & Jensen, 2001). 

Considering the complexity of the conceptual 
modeling for BPI applications, the relational tech
nology appears an adequate option. Especially the 
bottom-up design approach relyingon the existing 
models and data sources and the ability to adjust 
and modify cube definitions at runtime make RO
LAP an attractive option. Besides, the relational 
data model with its normalization techniques, 
integrity constraints and object-relational features 
has the necessary flexibility to adequately map 
advanced concepts of the semantic model. 

The classical way to obtain a logical model 
is by means of mapping the conceptual model 
to logical constructs, such as relations, keys, and 
constraints. Star schema and snowflake schema
both introduced by Kimball (1996) - are the two 
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options of the relational data warehouse design. 
Both schemata are composed of a/act table and 
a set of associated dimension tables . Star schema 
places the entire dimension hierarchy into a single 
relation by pre-joining all aggregation levels, while 
snowflake schema decomposes complex dimen
sions into separate tab les accord ing to the relational 
normalization rules. Snowflake schema becomes 
the only option when dimensional hierarchies 
are prone to irregularities, such as heterogeneity, 
non-strictness, missing values, mixed granularity 
etc. Multiple facttables with dimensions modeled 
using either star schema or snowflake schema may 
be arranged into a galaxy (Kimball, et aI., 1998), 
also referred to as/act constellation. This schema 
is constructed by alIowing dimension tables to be 
shared amongst many fact tables: each fact table 
is explicitly assigned to the dimensions, relevant 
for that fact table. This solution is very flexible 
and powerful as it offers a logical equivalent of a 
unified multidimensional space. Acomprehensive 
methodology for obtaining a fact constelIation 
schema from semantic schemes was proposed by 
Lechtenborger (2001). 

Relational concepts of virtual tables (known 
as "views") and materialized views are helpful 
for model ing. derived elements in fact and dimen
sion schemes. Foreign key constraints are used to 
link related schemes. Object-relational feature of 
inheritance enables. intuitive handling of hetero
geneous facts and dimensions. 

VISUAL ANALYSIS 

Visual exploration has evolved into the prevailing 
method of modern data analysis at end-user level. 
Therefore, the ultimate value of the proposed 
conceptual and relational model extensions is 
determ ined by the easiness of incorporating those 
extensions into visual OLAP tools. In this subsec
tion we sketch a prototypical implementation of an 
end-user interface for multidimensional business 
process analysis. 
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Analysts interact with data in a predom inantly 
"drill-down" fashion, i.e., gradually descending 
from coarsely grained overviews towards the 
desired level of detail. Queries are specified 
interactively via a navigation hierarchy, as the 
one depicted in Figure 242(b): a cube (i.e ., fact 
table) is a navigation object that can be expanded 
to access its dimensions and measures. Complex 
dimensions are represented as hierarchical nodes 
that can be expanded to access their aggregation 
levels (child levels are nested in their parent 
levels). Compulsory elements of any analytical 
query are I) a measure specified as an aggrega
tion function (e.g., sum, average, maximum etc.) 
and its input attribute and 2) a set of dimension 
categories defining the granularity of the aggrega
tion. In addition to the pre-configured measures, 
the navigation hierarchy supports derivation of 
user-defined measures from any attribute of the 
scheme at query time. 

New measures are defined through a wizard, 
as depicted in Figure 24(a), by providing the fol
lowing input: 

1. The aggregation function is selected from 
the drop-down menu; 

2. The attribute of the measure is dragged from 
the navigation into the wizard. 

3. The DISTINCT option allows activating 
duplicate elimination. 

4. The newly defined measure may be supplied 
with a user-friendly name. 

Each new measure has to be detinedjust once 
and remains available for further analysis. Let us 
consider an example of analyzing the distribution 
of hospitals by discipline. Intuitively, the measure 
of interest is the number of hospitals that has to be 
created from the category Hospital of the dimen
sion Location. Figure 24(a) shows the process of 
creating this measure by dragging Hospital node 
into the wizard. Obviously, to supportthis measure,. 
fact entries in SURGERY need to be aggregated 
to the Hospital level, the category Hospital and 



Figure 24. Example of interactively defining a new measure (i.e., invoking PUSH operator) © 2009 
University of Konstanz. Used with permission. 

(a) Defining a measure 

all categories below it, i.e., Room and Building, 
must be removed from the navigation tree of the 
dimension Location, as they are invalid in the 
context of the specified measure. The navigation 
fragment of SURGERY containing a new measure 
is shown in Figure 24(b). 

SAMPLE USAGE SCENARIOS 

We demonstrate the use of the proposed analysis 
framework by considering an application case 
from the area of instrument usage analysis in 
surgical interventions of type discectomy, which 
is an intervention at the spine. The intervention 
goal ofa discectomy is the partial removal of the 
herniated intervertebral disc. The objective ofthis 
sample analysis itself is to estimate the potential 
benefit of modifying the surgery by introducing 
an alternative surgical assist system. Typical ex
pert queries in this scenario focus on the use of 
different conventional surgical instruments that 
have the same surgical objective. 

During a discectomy, parts of the vertebra are 
removed to assess the underlying intervertebral 
disc. Figure 25 should give the reader some in
sight into the affected anatomic structure. The 

SURGERY 

tg DIMENSIONS 
(;j SurgeryID lp, 

... ~ Discipline 

... ~ Participant 

... ~ Patient 

.... ~ Start Time 

.... ~ Workflow 

.. ~ Location 
.. t~·. Country (tJ. 

w City "0, 
• MEASURES 
~ Number of hospitals 

(b) Data cube navigation 

main elements of vertebra are depicted in Figure 
25(a), adopted from WikimediaCommons (2007), 
and Figure 25(b) shows a computer-tomographic 
image of a rapid prototyping model of the human 
spine (cross-section). The intervertebral disc is 
hidden from surgical access in the center angle 
under the bone material (white segments in Figure 
25(b )). The red-marked area represents the volume 
of the vertebra to be removed by the surgeon to 
gain access to the intervertebral disc in order to 
remove it. 

To minimize invasiveness atthe patient's body, 
the access area to the spine is spatially restricted. 
The two steps of ablating vertebra material and 
removing the disc are performed iteratively, i.e., 
the surgeon ablates on Iy a small part of the ver
tebra, subsequently removing as much tissue of 
the intervertebral disc as he can reach, and then 
decides whether further access is needed. If so, 
he ablates the next portion of the vertebra and 
removes the tissue again, and so on. 

The conventional bone ablation at the vertebra 
is performed using different surgical instruments, 
such as surgical punch, trephine, and/or surgi
cal mallet/chisel. Each of the instrument types 
are available in different sizes and has different 
properties regarding invasiveness or handedness. 
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Figure 25. Human spine as the treated structure of a discectomy 
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(a) Annotated diagram of vertebra 

Instrument usage patterns in terms of frequency 
and duration of usage during a discectomy can be 
obtained by aggregating the corresponding data 
from the protocols of surgical intervention. 

In a visual OLAP tool, end-users can obtain 
the required aggregates in few simple interaction 
steps. Figure 26 contains the results of the first 
two of the following four queries, arranged into 
a pivot table.Query I. For each intervention of 
type discectomy and each of the specified bone 
ablating instruments, return the number of those 

Figure 26. Instrument usage statistics as a pivot table 

I -

(b) Spine cross-section view 

work steps, in which the respective instrument 
was used by the surgeon. 

The query is answered by specifying a new 
measure Occurrence, defined as COUNT(*), 
i.e., simple counting of qualifying fact entries, 
in fact table STEP. The aggregates are then com
puted by a roll-up of Occurrence by Surgery and 
Instrument with selection conditions on Instru
ment Type ('bone ablating') and on Participant 
(,surgeon').Query II. For each intervention of 
type discectomy and each of the specified bone 

Measures 

iG) Occurrence Average duration -_ ..... " .. ,. 
Dimensions SurgerylD 

Instrument Group Instrument A B C D A B C D 

- bone ablating malleVchlsel 0 3 1 1 00:00 00:23 00:34 00:50 
- 1-._-- 1--. -- --

punch 9 22 10 9 02:38 00:35 00:46 01 :27 --
trephine 3 0 7 0 02:18 00:00 00:43 00:00 

bone' ablating Total' . ~, ,.~' , 
.,' 12 25 18 10 02:33 00:33 00:45 01 :24 
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Figure 27. Occurrence and duration of bone ablation work steps in discectomy interventions as bar
charts 

SurgerylD 

(a) Total number of bone ablation steps (Query III) 

ablating instruments, return the average duration 
of a work step, in which the respective instrument 
was used by the surgeon. 

The query is answered by specifying a 
new measure Average Duration, defined as 
AVG(Duration), in fact table STEP and perform
ing the same roll-up as in Query I.Query III. For 
each intervention of type discectomy, return the 
number of those work steps, in which a.surgeon 
used any bone ablating instrument. 

The result of this query is obtained from the 
results of Query I as a rollup step (by removing 
Instrument from the GROUP BY clause). The 
results of the query, arranged into a bar-chart,. 
are shown in Figure 27(a).Query IV. For each 
intervention of type discectomy, calculate the 
total time span between the begining of the 
first and the end of the last 'bone ablating' 
activity. 

The query is answered by specifying a new 
measure Timespan, defined as MAX(StopTime) 
- MIN(StartTime), in fact table ACTIVITY. The 
aggregates are computed as a roll-up of Times pan 
by Surgery with a selection condition on Action 
('bone ablation'). A bar-ch'\.rt with the results of 
this query is shown in Figure 27(b). 
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SurgerylD 

(b) Total timespan of bone ablation phase (Query IV) 

The above queries describe a real-world ex
ample from the field of medical engineering. The 
aggregates obtained in the above queries reveal 
the usage pattern for bone ablating instruments 
and provide crucial information for predicting 
the success of a new surgical instrument in this 
field (Neumuth, et aI., 2007). This new system is 
a power driven milling system, whose evolution 
speed is controlled by its spatial position in rela
tion to the patient's body (Jank, et aI., 2006). This 
system is intended to replace the conventional bone 
ablating instruments and to enable the surgeon to 
perform the entire removal procedure in a single 
work step. 

CONCLUSION 

Motivated by the growing research interest to the 
evolving area of business process intelligence, 
we proposed a conceptual framework for provid
ing OLAP support to business process analysis. 
Conventional BPMS are rather limited in the 
types of supported analytical tasks, whereas the 
data warehousing techniques appear more suit
able when it comes to managing large amounts 
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of data, defining various business metrics and 
running complex queries. As a challenging real
world application, we chose a case study from 
the innovative and promising domain of Surgical 
WorkflowsAnalysis, aimed at design ing a record
ing scheme for acquiring process descriptions 
from surgical interventions for their subsequent 
analysis and exploration. 

We demonstrated the deficiencies of the stan
dard relational OLAP approach with respectto the 
requirements of our case study and proposed an ex
tended m u Itid imensional data model that addresses 
multiple challenges, such as non-quantitative and 
heterogeneous facts, many-to-many relationsh ips 
between facts and dimensions, full and partial 
dimension sharing, dynamic specification of 
new measures, and interchangeability off act and 
dimension roles. We also presented a prototypi
cal implementation of the enhanced conceptual 
model in a relational OLAP system where the 
data is stored according to the fact constellation 
schema and can be queried with standard SQL. 
The work is concluded by presenting a relevant 
analytical task from the domain of the case study 
and its sample solution, obtained interactively us
ing an advanced visual OLAP frontend tool that 
supports dynamic measure definition. 
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APPENDIXA. 

Figure 28. Graphical node type constructs ofX-DFM 

Element 

FACT NAME 

degenerated dimensions 

measures 

I FA~T fJAME 
degenerated dimensions 

measures 

o attribute name 

@ attribute_name 

@measure_name 

o attribute name 

@) categorY .. )lame 

E> T category _n;'lme 

o attribute_name 
(!) T category_name 

attribute name 

attribute name 

172 

I 

Description 

A fuet is a box-shaped node labeled by the fact name and containing two sets of 
elements: I) degeneruted dimensiolls and 2) mensurcs. Both sets are allowed 
to be empty. 

A degeneruted fact is a many-to-many fact-dimensional mapping extracted into 
a scparate fad. shown by placing a double-lined frame around the cell of the fact 
name. 

A measure attrihute is shown as a black circle-shaped node labeled by the 
mcasurc's namc. Measurc nodes appeal' in the dcsignated area of the fact node. 

A dimension cntegory corresponding to a non-abstract hierarchy level is a 
circle-shaped node labeled by the category's name. 

A derived dimension/measure attribute is shown as a double-lined circle
shaped node. Optionally. a dashed-line (ulIlotated with the derivation formula 
connccts the derived clement with its base element(s). 

A f~lct identifier is a degenerated dimension with a one-to-one relationship to 
the fact. shown by underlining the alt'ribute 's name with a double line. 

An ~lbstnld dimensioll c~lteg()ry is a circle-shaped node filled with grey color 
and labeled by the attribute's name. In case of a top-level cHtegory, the nHme is 
shown as a subscript of the T symbol. 

A t()tull)' ordered dimension cutcgory is marked by a dot in the node's cen
ter. A totally ordered dimension can be specified by placing a dot in the top 
category 's node. 

A property uttrihute is a dHu'acteristic associated with some dimension cate
gory. shown as an underlined attribute's name, connected by an undirected edge 
to its category node. 

A "degree-or-belonging" ~IUribute is a property associated with a child cate
gory of a non-strict weighted roll-up relationship. 



Figure 29. Graphical node type constructs of X-DFM 

Element 

role ~ 
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Description 

An nssociutioi1 relationship is an undirected edge connecting a property attribute \vith 
its category or connecting a fact with a dimension in case of a one-to-one relationship 
between the two. 

An optionnl association relationship is shown by putting a dash across the edge. 

A full strict roll-up is a many-to-one relationship between a fact ancl a category or be
tween a pair of categories. shown as a 'edge dirccted towards the parent catcgory. In case 
the same category is a target of multiple roll-up relationships. each roll-up edge cun be 
labeled by the respective role of that category. 

A complete roll-up is a many-to-one relationship within a complete hicrarchy, shown by 
a diamond at the outgoing end of the roll-up edge. 

A fuzzy ron-up relationship, in which child elements are assigned to parent clements 
dynamically based on some rules, is marked as a double-pointed arrov,l . 

. MuUiple alternative roll-up relntionships are alternative, i.e., mutually incompatible, 
aggregatiori paths of the same child category, shown by bundling the roll-up edges ii1to a 
common edge at the outgoing end. 

A numy-to-many relationship between categories is shown as a bi-directed edge. In case 
of a non-strict roll-up relationship, the direction of the roll-up is indicated by a stronger 
arrowhead. 

A partial roll-up is an optional roll-up relationship of the child category. shown as a 
directed dotted-line edge. 

Related partial roll-ups are a set of mutually exclusive roll-up relationships in a het
erogeneous hierarchy, shown by bundling the outgoi ng parts of the edges into a single 
solid- line edge. 

Generalization / speciali~atioll is shown as a solid-line edge with a hollow triangle at 
the superciass end. The edges of related specializations arc shown in a shared-target style. 
By default. specialization is disjoint. Overlapping subclasses are specified by placing a 
diamond with "0" symbol onto the edge at the point where it branches into subclass edges. 

Derivutioll relationship is a dotted-line connecting a derived element to its input ele
ment(s) . 

Non-aggregability/non-additivity edge is adopted from DFM. 
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