

UNIVERSITY
OF TRENTO

 DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL’INFORMAZIONE

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.disi.unitn.it

SERVICE INTEGRATION THROUGH STRUCTURE-PRESERVING
SEMANTIC MATCHING

Fiona McNeill, Paolo Besana, Juan Pane, and Fausto Giunchiglia

March 2009

Technical Report # DISI-09-015

.

Service Integration through Structure-
preserving Semantic Matching

Fiona McNeill1, Paolo Besana1, Juan Pane2, Fausto Giunchiglia2

1 School of Informatics, University of Edinburgh, EH8 9LE, Scotland

f.j.mcneill@ed.ac.uk, p.besana@sms.ed.ac.uk
2 Dept. of Information and Communication Technology, University of Trento, 38050,

Povo, Trento, Italy
{pane,fausto}@dit.unitn.it

Abstract. The problem of integrating services is becoming increasingly pressing. In large, open
environments such as the Semantic Web, huge numbers of services are developed by vast
numbers of different users. Imposing strict semantics standards in such an environment is
useless; fully predicting in advance which services one will interact with is not always possible as
services may be temporarily or permanently unreachable, may be updated or may be superseded
by better services. In some situations, characterised by unpredictability, such as the emergency
response scenario described in this case, the best solution is to enable decisions about which
services to interact with to be made on-the-fly. We propose a method of doing this using
matching techniques to map the anticipated call to the input that the service is actually expecting.
To be practical, this must be done during run-time. In this case, we present our structure-
preserving semantic matching algorithm (SPSM), which performs this matching task both for
perfect and approximate matches between calls. In addition, we introduce the OpenKnowledge
system for service interaction which, using the SPSM algorithm, along with many other features,
facilitates on-the-fly interaction between services in an arbitrarily large network without any
global agreements or pre-run-time knowledge of who to interact with or how interactions will
proceed. We provide a preliminary evaluation of the SPSM algorithm within the
OpenKnowledge framework.

BACKGROUND

The problem of automated integration of services is key to the successful realisation of
the Semantic Web, or any other system where services interact with one another. So far,
this has proved difficult. Global ontologies allow different services to be expressed using
the same terms, which are thus understandable to all. But there are significant difficulties
with the notion of a global ontology: both the relevance of terms and appropriate
categorisation of those terms is very context dependent. An ontology that included all
terms that could be relevant to any situation is impossible to build, impossible to reason
with and would allow no flexibility for different interpretations of situations.

However, integration of services using different ontologies is difficult. The difficulties
arise at two levels: in the structure of the invocation to the service and in the values

passed with the invocation. A service will expect some input parameters and will return
an output. Consider for example, the web service measurement, whose WSDL
description is shown in Figure 1. Its purpose it to provide the level of water registered by
a particular sensor on a grid of sensors on a particular river-side area, which can be used
during an emergency to assess the conditions. It expects as the input message the
location, defined as the node identifier in the grid, and the id of the sensor, and returns in
the output message the measured water level and the timestamp of the measurement.

The structure, or signature, provided by input parameters and output values must be
respected by a process invoking the service. However, the invoking process may have a
different signature for the caller function (parameters may have different names or

<wsdl>

 <xsd:element name="locationtype">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="reporterID" type="string"/>
 <xsd:element name="node" type="string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="datetype">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="month" type="int"/>
 <xsd:element name="day" type="int"/>
 <xsd:element name="hour" type="int"/>
 <xsd:element name="minute" type="int"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <message name="measurementRequest">
 <part name="term" type="locationtype"/>
 </message>

 <message name="measurementResponse">
 <part name="level" type="int"/>
 <part name="date" type="datetype"/>
 </message>

 <portType name="sensor">
 <operation name="measurement">
 <input message="measurementRequest"/>
 <output message="measurementResponse"/>
 </operation>
 </portType>

</wsdl>

Figure 1. WSDL code for a web service returning the water level measured by a sensor
in a grid of sensor for preventing flooding.

they may have a different structure). For example, a caller process could be a BPEL
workflow, originally developed to invoke a service called reading, that does not have
the concept of location, but only of the reporter and node identities, and expects the level
to be named differently. The invocation needs to be adapted to the new called service.

Even after the structural adaptation has been performed, the terminology used in the
parameters may be defined in different ontologies in the caller process and in the service.
This may cause misunderstandings or failure: for example, the water level can be
returned in meters, and the caller expected feet. Translation is required.

This case focuses on the problem of matching the signature of service invocation with
that of the service when they are expressed in different ontologies. It is perfectly possible
to solve this problem by manually matching the expected inputs and outputs of two
services – the one that the caller expected and the one that is actually called – prior to
interaction. For example, Altova MapForce1 is a system which facilitates this manual
mapping. However, performing this is time consuming and not scalable. Additionally,
this presupposes that one knows in advance what calls will be necessary. This is perhaps
feasible in a small, static system, but in a large, dynamic system where services may be
temporary, may be updated, may suffer from occasional communication breakdown, and
so on, we do not wish to limit the number of services with which it is possible to interact.
A better solution in this sort of environment is to automatically integrate services on-the-
fly as the need becomes apparent.

Using our matching approach we are able to map between the invocation of the service,
written in the ontology of the caller, and the call the service is expecting, written in the
ontology of the service. The goal of the matching is two-fold:
• to establish whether these services (the expected and the called) are similar enough: if

the service is being asked to perform an action that is too different to the function it is
equipped to perform, then the correct response is to refuse to interact;

• if the call is judged to be similar enough, then an adaptor is generated to bridge beween
the caller and the invoked service .

Our technique is designed to work at run-time, without user interaction and without any
pre-alignment of ontologies, as we believe that in a Semantic Web kind of environment,
such an approach is vital. This is therefore a lightweight and flexible approach that can
be employed on-the-fly if – and only if – the need arises.

SETTING THE STAGE

Structure-preserving Semantic Matching

We have developed the Structure-preserving Semantic Matching (SPSM) technique,
which allows us to find a map between two service descriptions and returns a score in [0
1] indicating their similarity.

The SPSM maps trees structures; we therefore first need to transform web services into
trees. The name of the service becomes the root of the tree, while the parts in input and

1 http://www.altova.com/products/mapforce/data_mapping.html

output messages become the children. As the WSDL description in Figure 1 shows, parts
can contain complex structures (such as Location in the input message and Date in the
output): the part itself becomes a subtree. For compactness, we will represent trees as
formulae. The WSDL in Figure 1 can therefore be represented as:

measurement(location(ReporterID, Node), Level,
date(Month, Day, Hour, Minute))

Note that in such formulae and in diagrams such as Figure 2, the names of the variables
indicate the types expected. For example, the second level argument Level indicates that
the argument is a variable that should be instantiated with a value of type level.

SPSM is a two-step process. Firstly, we make use of adapted conventional ontology
matching techniques to investigate relationships between the individual words in the
nodes of the trees. The second – novel – step matches the structure of the trees to
discover an overall relationship. This is crucial because the structure of the tree itself
contains a lot of semantic information that must be considered if we are determining
whether two service calls are equivalent or similar. SPSM, therefore, needs to preserve a
set of structural properties (e.g., vertical ordering of nodes) to establish whether two trees
are globally similar and, if so, how similar they are and in what way. These
characteristics of matching are required in web service integration applications, see, e.g.,
(Kluch et al, 2006; Li and Horrocks, 2006; Gooneratne and Tavi, 2008).

Moreover, SPSM allows us to detect not only perfect matches – which are unlikely to
occur in an unconstrained domain – but also good enough matches. SPSM returns both a
mapping between two trees and a numerical score in [0 1] indicating the degree of global
similarity between them. A match between two trees is considered to be good enough if
this degree of global similarity exceeds some threshold value. Since the concept of good
enough is very context dependent – in safety critical situation perhaps only a near-perfect
match will do but in other situations a much weaker match may suffice – this threshold is
set by the user according to the particular interaction (Giunchiglia et al, 2008b). This
approach greatly increases the range of services it is possible to interact with. This
solution is lightweight enough to be done quickly on-the-fly, during run-time, so that we
need have no expectations of which services we will want to interact with in advance of
run-time.

Figure 2.Two approximately matched web services as trees – T1:
reading(ReporterID,Node,date(Time,Day,Month,Year),Water_level) and T2:

measurement(Level,location(ReporterID,Node),
date(Month,Day,Hour,Minute).

Functions are in rectangles with rounded corners; they are connected to their arguments by
dashed lines. Node correspondences are indicated by arrows.

Service descriptions that are not written in WSDL will need to have the conversion step
to turn them into trees built for them, but we believe that it is possible to view most
service descriptions as tree structures and that this conversion process will generally be
straightforward. An example of two service descriptions, which have been converted into
trees, being approximately mapped, can be seen in Figure 2.

Once the conversion to tree has taken place, the SPSM algorithm consists of two stages:

 Node Matching – this matches the nodes in one tree to the nodes of another tree. This

will often be matching single words to one another, although nodes may be more
complex (for example, they can be composed of more than one word) and our
techniques are able to deal with this. These terms may be annotated with
references to ontologies so that it is easier to determine their semantic meaning
and, if so, our matching techniques take advantage of this. If there is no additional
information then our matching techniques rely on syntactic properties of the terms
(for example, suffixes and prefixes) and standard ontologies such as WordNet

(Fellbaum, 1998). This step is performed using the S-Match system (Giunchiglia
et al, 2007). For example, in matching a tree
reading(date(Day,Month,Year),water(Level)) to a tree
measurement(Liquid,Level,date(Month,Day)), this step would discover that
the words Date, Day, Month, Level and Reading in the first term all have
equivalent words in the second term (in the case of the first three, these are
identical, whereas Reading is matched to the semantically equivalent
Measurement).

 Tree Matching – once we have the correspondences between the nodes of the trees,

the next step is to match the whole trees and determine the global similarity
between them. This is achieved by considering the relationships, within the trees,
of nodes identified as similar in the previous step. For example, if we were
matching reading(Water,Level) and reading(Liquid,Level), we would
expect the similarity score to be high, but the relationship between
reading(water(Level)) and reading(Liquid,Level) to be much lower: the
different structure of these trees indicates a difference in meaning. For this step,
we make use of a tree-edit distance algorithm. Tree-edit distance algorithms are
designed to determine the cost of translating one tree into another through the
application of three operations: (i) vertex deletion, (ii) vertex insertion, and (iii)
vertex replacement (Tai, 1979). However, tree-edit distance algorithms do not
consider the semantics behind these operations: for example, according to the
standard algorithm, replacing a vertex Water with a vertex Liquid would cost the
same as replacing Water with Sandwich, although it is clear that a far greater
change is occurring in the second case.

We have therefore augmented a standard tree-edit distance algorithm so that the
cost of performing each operation is dependent on the expense of performing the
change: that is, a smaller semantic change costs less than a large change. To do
this, we make use of Giunchiglia and Walsh’s theory of abstraction (Giunchiglia
and Walsh, 1989; Giunchiglia and Walsh, 1992), which provides a formal theory
of how two first-order terms may be related and yet non-identical. For example,
the number of arguments of predicates may be different; the types of these
arguments may be more or less general; the name of the predicate may be more or
less general. Since it is trivial to convert first-order terms into trees, this theory is
applicable to our tree matching step.

Thus the node matching step tells us in what way the node terms are related and the
combination of the tree-edit distance algorithm and the abstraction operations tell us how
similar two trees are by combining the steps that are necessary to convert one tree to
another (which is functionally identical to providing a map between the two) with the
costs that should be assigned to each of these steps. Taking one example from Figure 2,
the node matching tells us that Water_level from Tree 1 is a more specific type of
Level from Tree 2 (or Water_level is a subclass of Level), and the augmented tree-edit
distance algorithm will map these two together (as part of the process of mapping the
whole tree) and, using the abstraction operations, determine that the cost of this map

should be low due to the relationship identified in the node matching step. Therefore, by
combining semantic matching with structural matching, we obtain the SPSM (structure-
preserving semantic matching) algorithm.

Of all the potential maps between two trees, the tree-edit distance algorithm will return
the map with the least overall cost (calculated through the application of abstraction
operations). The cost of the overall map is calculated by

Cost = min k
i∈S
∑ i * Costi (1)

where S stands for the set of the allowed tree edit operations; ki stands for the number of
i-th operations necessary to convert one tree into the other and Costi defines the cost of
the i-th operation. Our goal here is to define the Costi in a way that models the semantic
distance. We can then define the similarity between two trees T1 and T2 to be:

TreeSim = 1 −
Cost

max(T1,T 2)
 (2)

This case is intended to outline the ideas and motivation behind our ideas; for full
technical details of this process, together with implementation information, see
(Giunchiglia et al, 2008a).

The OpenKnowledge Framework

Matching service descriptions is only one aspect of service integration: another important
aspect is service selection: how a potentially suitable service is located, how a particular
one is chosen from potentially many, and so on. In this section, we introduce the
OpenKnowledge framework within which the SPSM algorithm was originally designed,
in order to describe how this framework allows the full process of service integration to
take place, and to show SPSM in action within a specific context. Note that although
SPSM was designed within this context, it is nevertheless very widely applicable: in fact,
it does not need to be restricted to matching service descriptions but can be used for
matching any two artifacts that can be expressed as a tree.

The OpenKnowledge framework facilitates interactions between disparate peers or
services, which generally do not share an ontology or have prior knowledge of one
another. The key technology that makes this possible is the use of shared choreographies
called Interaction Models (IMs). These IMs can be designed by any user on the network,
and can then be shared across the network, so that determining an IM for a particular
interaction is usually a case of finding the appropriate one for reuse rather than writing
one from scratch. Note that in the OpenKnowledge context, services are proactive,
signing up to IMs in which they wish to play a role. Calls to services therefore do not
come out of the blue, from an unknown caller, but occur when that IM is enacted and are
of the form described within the IM.

The OpenKnowledge framework enables this through providing an API that can be used
by an application to become a peer in a network. The API exploits:

• a distributed discovery service, which searches for suitable IMs for a particular
interaction;

• a matching service, which uses the SPSM algorithm to map between requirements
in IMs and abilities in the peers to determine how similar they are;

• a trust component to allow users to assess with which peers they wish to interact
with;

We will not address these components, other than the matching service, in any detail in
this case. Further information about OpenKnowledge can be found on the project
webpage2.

Describing Interactions

An Interaction Model (IM) specifies the interaction between different peer in tasks that
require their coordinated activities. Interaction Models are written in LCC (Robertson,
2004), a compact, executable language based on process calculus. An IM is composed by
a set of role definitions: a peer enters an interaction by taking a role, and follows the
unfolding of the interaction as specified by the role definition. The definition prescribes
to a peer in a specific role what messages to send, which messages to expect and what
other roles to adopt later if necessary. The coordination of the peers is obtained through
message exchange between the roles they have adopted, while the behaviour of peers is
defined by constraints on messages. Through constraints it is possible to set preconditions
for sending a message and for changing role as well as describing the effects of receiving
a message. A peer must solve the constraints in order to proceed. The IM makes no
assumptions at to how constraints are solved and the operation is delegated to the peer. In
LCC constraints are expressed as first order predicates, which can be easily transformed
into trees for matching.

a(querier,Q)::
 request(RepId,Nd) => a(sensor,S) ← needLocation(RepID,Nd)
 then
 level(Lvl,Date) <= a(sensor,S)

a(sensor,S)::
 request(RepID,Nd) <= a(querier,Q)
 then
 level(Lvl,Date) => a(querier,Q) ← reading(RepID,Nd,Lvl,Date)

Figure 3. A simple Interaction Model for querying a sensor about the water level.

Figure 3 shows a simple IM for querying a sensor. The IM is performed by two peers,
one taking the querier role and the other taking the sensor role. The querier needs
first to satisfy the constraint needLocation(RepID,Nd) to select the interested reporter
ID and the node, then send the request message to the sensor and wait for the reply. The

2 www.openk.org

sensor receives the request, satisfies the constraint reading(RepID,Nd,Lvl,Date) and
sends back the reply. The IM execution is then concluded. Note that in an IM, there are
no semantics in the message: the name of the message is merely a placeholder and the
meaning of the arguments is determined within the constraints. Thus the ability to play a
role depends on the ability to satisfy the constraints on the messages in that role. Any
peer using the OK infrastructure can trivially pass any message if the constraints on that
message are satisfied.

A constraint in an IM can be compared to the call to a web service in a BPEL workflow.
In order to solve a constraint a peer needs to map it to its own local knowledge base,
provided by an extensible set of plug-in components (Besana et al, 2007). The plug-in
components expose methods, which can be simple wrappers for web services, or can be
self-contained java methods. We have developed a tool that generates a wrapper
component from a WSDL file: each operation in it becomes a method in the component.

In the constraint reading(RepID,Nd,Lvl,Date), the variables RepID and Nd are already
instantiated (they are received with the request message), and are the input parameters;
the variables Lvl and Date are instantiated by the peer when solves the constraint and are
the output parameters.

@annotation(@role(sensor), @variable(RepID, reportedID)
@annotation(@role(sensor), @variable(Nd, node)
@annotation(@role(sensor), @variable(Lvl, water_level)
@annotation(@role(sensor), @variable(Date,
date(day,month,year,time))

Figure 4. The annotations of the parameters used by the role sensor in the IM of
Figure 3

While first order predicates are usually untyped, in OpenKnowledge, arguments can be
annotated with their ontological type and, if desired, these types can be annotated with a
reference to an ontology in which the semantics of that type are given. The annotations
are used to create the trees that are then matched by SPSM. Figures 4 and 5 shows
annotations for the parameters in the IM and for the method in the peer's component.

@MethodSemantic(language=”tag”,
args={“location(reporterID,node)”,
 “level”,
 “date(month,day, hour, minute)”}
public boolean measurement(Argument Lc,Argument Lv,Argument D){...}

Figure 5. The annotations for the method measurement in the plug-in component of a
sensor peer

Lifecycle of Interaction in OpenKnowledge

The IMs are published by the authors on the distributed discovery service (DDS)
(Kotoulas and Siebes, 2007) with a keyword-based description. Peers search and
subscribe to roles in IMs in the DDS. The OpenKnowledge kernel provides the
functionality needed to subscribe to a role and the framework for handling the plug-in
components used to satisfy constraints. The peer can be a GUI-based application whose
components interact directly with a user or a server application that solves the constraints
automatically, possibly calling the web services wrapped by the components or accessing
a database.

The lifecycle of an interaction is:

Interaction selection: a peer searches, by sending a keyword-based query to the DDS, for
published IMs for the task it intends to perform. The DDS replies with a list of IMs
satisfying the query. The peer needs to compare the received IMs with its plug-in
components, in order to select the one that best matches its capabilities. This is one
instance – the most important one – where the SPSM algorithm comes into play. In order
for a peer to decide whether it wishes to play a role, it needs to map every constraint on
that role to one of the methods in its plug-in components. For each of these constraints,
the SPSM algorithm will return a numerical score in [0 1] describing how close this
constraint is to one of the peer’s constraint, as well as a map detailing how this
conversion must be done. To estimate how good the peer will be at performing that role,
it must somehow aggregate these scores. The simplest way to do this – and the way that
is current implemented – is to average all scores over the number of constraints to be
mapped. However, more sophisticated mechanisms could be devised which could
incorporate user preferences and context-dependent information. Once this overall score
has been calculated, the peer must decide whether or not to subscribe to the role. This is
entirely up to the peer and it may subscribe even if it gets a very low score. In such a
case, it would not usually be in the peer’s interests to subscribe, as it is very likely to fail
in the execution of the role. If it finds a role in an IM with an acceptably high matching
score, it subscribes on the DDS, indicating its intention to perform the appropriate role in
it. As part of the subscription process, it must declare a matching score.

Peers may subscribe to as many IMs as they wish, to play as many different roles as they
wish. For example, in a vending scenario, a seller peer may subscribe to many
different IMs in the seller role, as it may be content to act as a seller simultaneously in
many different types of purchase interactions. A buyer would more typically only wish
to buy once (though of course this depends on the exact situation), so would only wish to
subscribe once in the role buyer, but may also be subscribed in other roles in different
IMs for quite different goals. A peer may also be subscribed as seller in one purchase IM,
and as buyer in another, as it may be interested in buying supplies for its production as
well as in selling it.

Bootstrap: when all the roles in an IM are subscribed to, the discovery service randomly
selects a peer in the network, asking it to play the coordinator of the interaction. If it
accepts, it becomes the IM coordinator and asks all the subscribed peers to select which

other peers they are prepared to interact with. This matching score provided by peers as
they subscribe is also useful to other peers deciding whether or not they wish to interact
with that peer in that role. However, neither the system nor other peers have any way of
checking this matching score: the peer’s own capabilities and ontology are private. So
peers must use this score with caution, for there are several reasons why it may not be
accurate: the peer may be dishonest and may be trying to exaggerate its abilities; it may
have a poor ontology, so the matching score returned may be a poor reflection of its
actual ability to perform the role. This score is therefore most useful to others when it is
moderated by some kind of trust score examining the peer’s past behaviour: if the peer is
dishonest or inept, it will repeatedly underperform and therefore trust scores are lowered.
We therefore have developed a good enough algorithm, whose role is to moderate the
matching score with respect to a trust score. OpenKnowledge provides a built-in
mechanism for calculating trust, based on prior experience of interaction in the same,
similar or non-similar contexts, and a way to combine this trust score and the matching
score to obtain a single score reflecting how well that peer is likely to behave. This
process is explained in (Giunchiglia et al, 2008b). Peers are free to use this built-in
method or to use their own mechanisms as they please.

After receiving the peers' preferences, the IM coordinator creates a group of peers who
are all willing to interact with one another in their proposed roles. If the group covers all
the roles, it starts the interaction. If there is more than one way of filling roles such that
all involved peers are satisfied, the choice of allocation is made arbitrarily. It is thus
possible that peers subscribed for roles will not be chosen in a particular run of that
interaction. In such a case, they must wait for a subsequent run of the interaction,
perhaps weakening their choice criteria next time, as they may be ruling themselves out
of potential allocations by refusing to interact with many of the other subscribed peers.

Run of the interaction: the IM coordinator runs the IM locally: messages are exchanged
between proxies of the peers, which are contacted in order to solve the constraints.

Follow-up: after the run of the interaction, the IM coordinator sends the log of the
interaction to all involved peer so that they can analyse it if they wish to. The analysis can
be aimed at computing a trust value for the other peers (Giunchiglia et al, 2008b) to be
used in selecting peers in future interactions or to create a statistical model for the content
of the messages, in order to improve mapping (Besana and Robertson, 2007). If,
interaction after interaction, a peer is consistently unreliable it will be selected less and
less frequently by the other peers.

In a more orchestration-oriented model, the invocations to services are normally
grounded at design time by the designer of the workflow. In this model, the peers decide
to take part in interactions: they can look up an interaction for a specific task, they can be
alerted when new interactions are published, or they can be asked to evaluate an
interaction upon the request of another peer, but in all cases they evaluate the IMs they
receive and then select those they want to subscribe to. The task of handling
heterogeneity is therefore distributed among the peers.

CASE DESCRIPTION – Flooding in the Trentino Region

The OpenKnowledge system has been fully evaluated in two testbeds: Proteomics and
emergency response. Here, we explain the emergency response testbed and explain the
role that the SPSM algorithm took in providing the necessary functionality.

Emergency response was chosen as being a particularly knowledge-intensive and
dynamic application domain, with many players and a high potential for unexpected
developments. We briefly outline the general scenario and then describe a specific
interaction in more detail, highlighting where the techniques discussed in this paper will
be utilised.

The general scenario we are exploring is the case of the flooding of the river Adige in the
Trentino region of Italy, which presents a significant threat to the city of Trento and the
surrounding area and which has occurred seriously many times before, most notably on
November 4th, 1966. We have large amounts of data from the 1966 flood, as well as data
concerning the emergency flooding response plans of the Trentino authorities. Around
this data, we have developed scenarios of interacting peers: for example, coordination
centres, emergency monitoring services, the fire brigade, sensor nodes, GIS systems,
route finding services and weather services.

Emergency response is not inherently peer-to-peer: we would of course expect that the
key players would have strategies worked out well in advance and would have
established the infrastructure and vocabulary for communicating with other key players.
However, the chaotic nature of an emergency means that many players who will not have
been able to coordinate in advance, or who were not expected to participate, may become
involved. Additionally, services which were part of an emergency response may be
unexpectedly unavailable or may be swamped by requests, and in such a situation, it is
crucial that the emergency response can carry on regardless. Additionally, services may
develop and change and it is unrealistic to expect these changes would always be known
and accounted for in advance.

The e-Response system we have developed for this testbed is used:

i) to model and execute interactions between peers involved in an emergency
response activity, whether individuals, sensors, web services or others;

ii) to provide feedback about the environment at appropriate moments, in a way that
mirrors the real world (for example, a peer attempting to take a road will be
informed that the road is blocked only when it is actually at that road, and it
can then share this information with other peers through the network).

iii) to visualize and analyze a simulated coordination task through a Graphical User
Interface (GUI).

The developed e-Response system is composed of two major components: the e-
Response simulator and the peer network (and related interaction models). The e-

Response simulator provides the disaster scene and its evolution, thus representing the
“real world” within which all the actors (network peers) acts. The idea is that once the
simulator has been used to aid the development and thorough testing of the approach, it
could be removed and the peer network could instead operate in a real world situation
(using real peers rather than simulated ones).

Every peer (either simulator or network peer) has an OpenKnowledge plug-in component
(the OpenKnowledge kernel) which enables it to publish and search for IMs and be
involved in a coordination task with other participants. Some of the peers in the peer
network interact with both the simulator and network peers: these are the peers that
‘exist’ in the physical location. These peers will usually receive sensory information and
be able to directly influence the simulated world, though some can only do one or the
other (for example, water-level sensors have some sensory ability (they will receive
information about the water-level) but they cannot directly influence the world, they can
only indirectly influence the world by sharing this information across the peer network).
Other network peers communicate among themselves and never connect to the simulator:
these are peers that are not physically involved in the simulation and cannot directly
affect the world, such as geographical-map-provider peers.

The peer network reconstructs (in a limited form) the infrastructure of the emergency
response: for example, the command centre that will control the whole response (except
in unforeseen circumstances such as it becoming uncountable), the fire teams they will be
commanding, the buses that are to evacuate the citizens, and so on. One important job of
the command centre is to keep a picture of the changing environment that is as accurate
as possible and this is done through gathering information from other peers.

Figure 6 illustrates a scenario in which some of the peers in the simulation are interacting
in order to facilitate the evacuation of citizens by bus from the flooding area. The
emergency coordinator (EC) communicates with the buses (Bs), informing them which
area they should pick up from and which area they should evacuate the citizens to. It is
up to the buses to determine an appropriate route for this. To do this, they can
communicate with the route service (RS), which will tell them what possible routes there
are, but since they are in a flooding situation, they must also try to establish which routes
are closed. To do this, they communicate with the civil protection peer (CP), whose role
is to continually poll the water-level sensors (r1, r2, …) as to the water level in their
vicinity, and from this they can calculate whether a route suggested by a bus is
accessible. As long as this process is functioning, it is perhaps reasonable to assume that
there will be no difficulty with integration: this is part of the planned emergency
response, and such service integration should have been calculated in advance (though
even this much cannot be certain as the peers may be constantly evolving – perhaps the
owners of the water-level sensors have upgraded their ontologies since the most recent
coordination effort). However, in such an emergency situation, such structure is not
necessarily reliable. Perhaps the civil protection peer will be swamped with requests
from buses, citizens and others and be unable to respond to some of them; perhaps it will
crash; perhaps it is housed in a building that is itself being flooded. If a bus peer cannot
reach the civil protection peer, they must still do their best to reach their given

destination. The OpenKnowledge system allows the seamless change from a centralised
system to a decentralised one: instead of interacting with the civil protection peer, a bus
can communicate with the water-level sensors directly and calculate for themselves
which routes are possible. However, it is highly unlikely that such a scenario has been
planned for in advance, and we are therefore forced to perform service integration on-the-
fly.

Figure 6. Interactions of peers in evacuation scenario.

We repeat the lifecycle of interaction described above for this particular interaction.

Interaction selection: both the bus peer and the water-level sensor peers must be
subscribed to an appropriate IM to play their relevant roles. Since the bus peer is taking
the initiative here, this is most likely to happen through the bus peer searching for and
subscribing to an IM in which many water-level sensor peers are already subscribed. A
well-organised water-level sensor should subscribe to many such IMs so that it is ready to
perform its role whenever requested. There may be many sensors at a single node, so in
order to determine the water level at that node, it is necessary to choose one of potentially
many with which to interact. The IM used in such a situation could be the one described
in Figure 3, and let’s imagine the process by which these water-level sensors have
subscribed to their role. Since they wish to play the role sensor, they have only one
constraint to satisfy: reading(RepID,Node,Level,Date). Imagine six sensors wish to
sign up, and they describe their abilities in the following ways:

i) measurement(RepID,Node,Level,Date)

ii) reading(ReporterID,Level,Node,Date)
iii) reading(RepID,Level,UnitMeasure,Node,Date)
iv) reading(RepID,Water_level,Node,Date)
v) output(Level,Node)
vi) measurement(location(ReporterID,Node),Level,Date)

They would each use the SPSM algorithm to map their abilities to the constraint. Sensor
i) would discover that had a perfect match; all that is necessary is to consider
measurement to be equivalent to reading and the node matching step reveals this is
permissible. Sensor ii) would have less than perfect matching because it has to infer a
match between RepID and ReporterID. Analysis of these terms would indicate a high
similarity but it is not certain, in the absence of further information, that they are intended
to refer to the same thing. The adapter returned would also switch the two central
arguments, matching Level to Level and Node to Node. This mapping would not
influence the similarity score, as the order of nodes is assumed not to be semantically
significant. Sensor iii) would have a high but less than perfect matching score as it has an
extra argument that would not be used: UnitMeasure, which is intended to make explicit
the units in which the measurement is given. Sensor iv) would also have a lower
matching score, losing points through the match between Water_level and Level. In
this particular situation, we can see that these are functionally equivalent because what is
meant by Level is the level of the water. However, the water-level sensor does not have
this high-level view and therefore cannot be sure of this. Sensor v) would receive a very
low score: the naming of its predicate is unintuitive and does not describe what it actually
does, and it misses out key information such as its ID and the Date. Sensor vi) is a
slightly simplified version of the one discussed earlier in the case and illustrated in Figure
2. There is a significant structural difference here, also illustrated in Figure 2, in that an
extra predicate location is included, and the arguments ReporterId and Node become
children of that predicate, and grandchildren of the top-level predicate measurement.
The similarity score would be lower due to this: in fact, this is an ‘organisational’ detail
and does not really affect the meaning of the arguments, but it is an indication that this
meaning may be different. Nevertheless, every argument in the constraint can find a
similar or exact argument to match to in ability, albeit in a different structure. Therefore
the similarity score would be reasonable but not as high as for sensors i) - iv).

These sensors will all subscribe to play the role sensor and the bus peer will subscribe to
play the role querier.

Bootstrap: If these sensors are all for at the same node, then, when the coordinator asks
the bus peer which peer it wishes to interact with, it need only chose one. Unless it has
any information to the contrary, and assuming the sensor peers are all honest, it will
probably choose sensor i), as it has the highest matching score. However, if it has
previously interacted with sensor i) and found it to be unreliable, it will have a low trust
score, and so the GEA score, formed by combining its matching and trust scores, may be
lower than the GEA scores of other sensors. The bus peer would normally choose the
peer with the highest GEA score to interact with. Assuming the chosen sensor is happy
to interact with the bus peer, the interaction will proceed.

Run of the interaction: The appropriate messages are passed.

Follow-up: The bus peer will update its trust model according to the outcome of the
interaction. If the interaction was successful, the bus peer’s trust in the sensor peer will
increase. If it fails, it will be lowered. For example, sensor v) may claim to have a very
high matching score and may come out top in the GEA calculation. However, it will fail
to satisfy the constraint on its role and so will not be able to pass the message, leading to
failure. The next time this interaction occurs, it is much less likely to be chosen even if it
reports a high matching score, as the trust score will be low. Alternatively, the
interaction may run smoothly – if, for example, sensor i) was chosen – but if sensor i) is
faulty it will report a false level, leading to a successful interaction but an unsatisfactory
outcome. This will not be as obvious as a breakdown of the interaction, but once it has
been noticed by the bus peer (perhaps when it finds its route unexpectedly flooded), the
bus peer will update its trust model accordingly. The bus peer is also free to share its
trust model with other peers if desired.

Evaluation

There are many reasons why heterogeneity can become a problem, even amongst services
that were originally designed to interact. For example, drifting can cause heterogeneity
between components and IMs: components that were designed for a particular interaction
could be used in other interactions and can change over time to adapt to these, when they
are reused in the original interaction, matching is required. Similarly, interactions
designed for a specific context may be used for different aims and therefore adapted to
better suit these aims. Moreover, new interactions or components can be developed by
copying others.

Starting from these assumptions, we tried to evaluate how the matching mechanism,
described previously, could cope with these sort of heterogeneity. The evaluation aimed
at exploring the robustness of the SPSM approach towards both typical syntactic
alterations (i.e. replacements of node names, modification of node names and
misspellings) and typical meaning alterations (i.e. usage of related synonyms, hyponyms,
hypernyms) of node names.

Since the tree alterations made are known, these provided the reference results. This
allows for the computation of the matching quality measures, such as Precision (which is
a correctness measure) and Recall (which is a completeness measure). The alterations are
applied probabilistically on each node of the original tree: increasing the probabilities of
the modifications it is possible to obtain trees that are statistically more and more distant
from the original one. The tree alteration procedure has been inspired by the work in
(Euzenat and Shvaiko, 2007) on systematic benchmarks.

Figure 7. Recall results for syntactic and meaning alterations

Figure 7 shows how recall behaves when the probabilities of syntactic and semantic
alterations are increased. Recall decreases slowly: only when both semantic and syntactic
changes are extremely likely, recall drops to 0.1. In our experiments, precision was
always very high. This is not uncommon in matching scenarios, where recall is often the
problem.

The evaluation is done by comparing the output of the SPSM algorithm with the output
of a standard tree-edit distance algorithm, which does not consider the semantics. The
fact that SPSM performs better, whilst a reassuring validation of the approach, is
therefore not particularly surprising. A more powerful approach would be to compare
our work against a ‘state-of-the-art’ system. However, as far as we believe there is no
other approach currently existing that can be used to perform the same task as SPSM:
matching trees whilst considering the semantics. Systems that perform semantic-free tree
matching can be compared to SPSM in such experiments, as they are at least capable of
performing the necessary tree matching. Other semantic-based approaches cannot do
this, and therefore will fail completely in the task.

We are currently undertaking a much more thorough evaluation of the whole process of
service integration within OpenKnowledge. These results may lend themselves more
naturally to comparison with other service integration approaches because the scope will
not be so limited as in the current experiments. We intend to publish these results
shortly.

RELATED WORK

Our work builds on standard work in tree‐edit distance measures, for example, as
espoused by (Shasha and Zhang, 1997). The key difference with our work is the
integration of the semantics that we gain through the application of the abstraction
and refinement rules. This allows us to consider questions such as what is the effect
to the overall meaning of the term (tree) if node a is relabelled to node b?, or how
significant is the removal of a node to the overall semantics of the term? These
questions are crucial in determining an intuitive and meaningful similarity score
between two terms, and are very context dependent. Altering the costs assigned to
the tree‐edit distance operations enables us to provide different answers to these
questions depending on the context, and we are working on giving providing even
more subtle variations of answers reflecting different contexts.

Work based on these ideas, such as Mikhaiel and Stroudi’s work on HTML
differencing (Gligorov et al, 2005), tends to focus only on the structure and not on
the semantics. This work never considers what the individual nodes in their HTML
trees mean and only considers context in the sense that, for example, the cost of
deleting a node with a large subtree is higher than the cost of deleting a leaf node;
the semantic meanings of these nodes is not considered.

Many diverse solutions to the ontology matching problem have been proposed so
far. See (Shvaiko and Euzenat, 2005) for a comprehensive survey and (Euzenat and
Valtchev, 2004; Euzenat and Shvaiko, 2007; Noy and Musen, 2003; Ehrig et al, 2005;
Gligorov et al, 2007; Bergamaschi et al, 1999; Kalfoglou and Schorlemmer, 2003;
Straccia and Troncy, 2005) for individual solutions. However most efforts has been
devoted to computation of the correspondences holding among the classes of
description logic ontologies. Recently, several approaches allowed computation of
correspondences holding among the object properties (or binary predicates) (Tang
et al, 2006). The approach taken in (Hu and Qu, 2006) facilitates the finding of
correspondences holding among parts of description logic ontologies or subgraphs
extracted from the ontology graphs. In contrast to these approaches, we allow the
computation of correspondences holding among trees.

The problem of location of web services on the basis of the capabilities that they
provide (often referred as the matchmaking problem) has recently received
considerable attention. Most of the approaches to the matchmaking problem so far
employed a single ontology approach (i.e., the web services are assumed to be
described by the concepts taken from the shared ontology): see (Klusch et al, 2006)
for example. Probably the most similar to ours is the approach taken in METEOR‐S
(Aggarwal, 2004) and in (Oundhakar, 2005), where the services are assumed to be
annotated with the concepts taken from various ontologies. Then the matchmaking
problem is solved by the application of the matching algorithm. The algorithm
combines the results of atomic matchers that roughly correspond to the element
level matchers exploited as part of our algorithm. In contrast to this work, we

exploit a more sophisticated matching technique that allows us to utilise the
structure provided by the first order term.

Web services composition follows two alternative approaches: orchestration or
choreography. Their primary difference is their scope. An orchestration model provides
a scope specifically focussing on the view of one participant. Instead, a choreography
model covers all parties and their associated interactions giving a global view of the
system. The OpenKnowledge system is closer to the choreography approach, since all
services involved know – and can choose – with whom they are interacting and what
these interactions will involve (once they have signed up to IMs; prior to run‐time this
may not be known). Other important service composition languages are BPEL3 and
YAWL (van der Aalst and ter Hofstede, 2005) (orchestration languages) and WS‐CDL4 (a
choreography language). BPEL and YAWL benefit from the simplicity of the
orchestration approach, but the OpenKnowledge system has advantages: services
choose to take part in interactions and they know in advance both what these
interactions will involve and which other services they may be interacting with, allowing
them to make informed decisions as to whether this is in their interests and which other
services they would prefer to participate with. Additionally, the interactions are not
owned by any particular service and are therefore not biased towards any one service
but rather allow free interaction for all. Crucially, this approach is also scalable, allowing
a network of arbitrarily large size to interact on the OpenKnowledge system. WS‐CDL is
closer to the OpenKnowledge approach but, unlike OpenKnowledge, it is merely a
specification and is not executable.

In summary, much work has been done on structure‐preserving matching and much
has been done on semantic matching, and our work depends heavily on the work of
others in these fields. The novelty of our work is in the combination of these two
approaches to produce a structure‐preserving semantic matching algorithm, thus
allowing us to determine fully how structured terms, such as web service calls, are
related to one another.

CURRENT CHALLENGES

The current implementation of the SPSM algorithm, though it has proved effective in
practice, does not have the full scope we believe to be necessary. For example, it
assumes that matching between the abilities of a peer and the requirements of a role can
be performed by considering a one-to-one relationship between arguments. If, for
example, we were to match:
reading(RepID,Node,Date,Level)

3 Web Services Business Process Execution Language Version 2.0, http://docs.oasis‐
open.org/wsbpel/2.0/wsbpel‐v2.0.pdf
4 Web Services Choreography Description Language Version 1.0,
http://www.w3.org/TR/2005/CR‐ws‐cdl‐10‐20051109/

to
reading(RepID,Node,Day,Month,Year,Level)
then, once RepID, Node and Level had been matched, a choice would need to be made
as to whether to map Date to Day, Month or Year. In reality, a mapping of date to all
three of these arguments would be the best solution. We would therefore like to include
one → many, many → one and many → many mappings in the algorithm.

Another way in which the algorithm could be improved is to make the scoring system
more sophisticated. Currently, there is a single score assigned for mapping one node to
another where one node is an abstraction of the other node. For example, the
relationships between tiger and feline and tiger and animal are both abstraction
relations, as tiger is a sub-class of both feline and animal, and they would therefore
score the same. However, there is clearly a closer degree of kinship in the first relation
than in the second, and a scoring system that could reflect this would provide a more
accurate notion of similarity. In addition, allowing user-set weightings to affect the
scoring would provide a much more accurate estimation of whether a service would
perform a job satisfactorily. For example, if the constraint to be satisfied is:
reading(RepID,Node,Date,Level),
the services
reading(RepID,Node,Date) and
reading(RepID,Node,Level)
would both receive the same (low) score because they both omit an argument. However,
perhaps the querier is very concerned to receive a value for Level but is not very
bothered to receive a value for date (maybe the call is done in real time and the querier
assumes that the date on which the reading is returned is the date on which it is made, so
that this value becomes obsolete). In this case, we would like to allow the user to give a
high weight to the Level argument and a low weight to the Date argument, meaning that
the first mismatched service would score very low, whereas the second mismatched
service would have quite a high score, reflecting that the fact that is could, despite
mismatches, satisfy the querier.

These are the challenges we have currently identified with the SPSM algorithm; perhaps
more will become apparent as the evaluation continues.

For the OpenKnowledge system as a whole, the largest challenge is to provide a complete
and thorough evaluation done on a large scale. This is difficult due to the bootstrapping
problem: proper evaluation depends on large numbers of services acting as OK peers in a
natural and organic way – i.e., not set up by us solely for the purpose of evaluation.
However, we cannot expect large numbers of services to become OK peers before we
provide a full evaluation of the system. This problem is currently being made much more
tractable as there are already many users of the OK system, and we intend to perform
evaluation on their experience. Details of these early adopters can be found on the
project webpage.

RUNNING THE OK SYSTEM

The full OpenKnowledge system, complete with full instructions and demonstrations, is

available to download free from the project webpage5. Details of the emergency response
testbed and simulator can also be found, together with complete documentation for the
project. Once the full evaluation is completed, the results will be posted here as well as
in the relevant publications.

CONCLUSIONS

The key contributions of this case are two-fold:

i) the introduction of the SPSM algorithm, which is broadly applicable and can be
used in any situation where semantic tree-matching is necessary, making it
applicable for service integration in most circumstances but also for many
other forms of matching such as database integration;

ii) the introduction of the OpenKnoweldge system, which itself provides a major
contribution to the problem of service integration by providing a complete
framework in which this integration can occur, and also provides a
demonstration of SPSM in action.

We have described a scenario in which both the full OpenKnowledge system and the
SPSM algorithm have been demonstrated in action and evaluated. We briefly described
an evaluation of the SPSM algorithm; further evaluation is currently taking place.

We believe that our approach offers a solution to a problematic and important issue: that
of automatically integrating services in the many situations where hard-coding service
calls is impractical or impossible. Whilst any solution to this problem that does not
depend on a shared ontology must be an imperfect solution, it is nevertheless a solution
that can be used in real-world, large-scale situations where the use of fully shared
semantics is impossible.

Acknowledgements. We appreciate support from the OpenKnowledge European
STREP
(FP6-027253).

References

van der Aalst, W.M.P., and ter Hofstede, A.H.M. (2005) YAWL: Yet Another Workflow
Language. Information Systems 30(4) pages 245-275.
Aggarwal, R., Verma, K., Miller, J. A., and Milnor, W. (2004) Constraint driven web
service composition in METEOR-S. In Proceedings of IEEE SCC.

5 www.openk.org

Bergamaschi, S., Castano, S., and Vincini, M. (1999) Semantic integration of
semistructured and structured data sources. SIGMOD Record, 28(1).
Besana, P., and Robertson, D. (2007) How service choreography statistics reduce the
ontology mapping problem. In Proceedings of ISWC.
Ehrig, M., Staab, S., and Sure, Y. (2005) Bootstrapping ontology alignment methods with
APFEL. In Proceedings of ISWC.
Euzenat, J., and Valtchev, P. (2004) Similarity-based ontology alignment in OWL-lite. In
Proceedings of ECAI.
Euzenat, J., and Shvaiko, P. (2007) Ontology matching. Springer.
Fellbaum, C. (1998) WordNet: an electronic lexical database. MIT Press.
Giunchiglia, F., and Walsh T. (1989) Abstract theorem proving. In Proceedings of "11th
international joint conference on artificial intelligence (IJCAI'89)", pages 1372-1377,
August 1989.
Giunchiglia, F., and Walsh, T. (1992) A theory of abstraction. Artificial Intelligence,
57(2-3).
Giunchiglia, F., Yatskevich, M., and Shvaiko, P. (2007) Semantic matching: Algorithms
and implementation. Journal on Data Semantics, IX.
Giunchiglia, F., McNeill, F., Yatskevich, M., Pane, J., Besana, P., Shvaiko, P. (2008a)
Approximate Structure-Preserving Semantic Matching. In Proceedings of "ODBASE
2008", Monterrey, Mexico, Nov 2008.
Giunchiglia, F., Sierra, C., McNeill, F., Osman, N., Siebes, R. (2008b) Deliverable 4.5:
Good Enough Answers Algorithm. Techincal Report, OpenKnowledge. Retrieved
November 2008 from www.openk.org.
Gligorov, R., Aleksovski, Z., ten Kate, W., and van Harmelen, F. (2005) Accurate and
efficient html differencing. In Proceedings of the 13th IEEE International Workshop on
Software Technology and Engineering Practice (STEP), pages 163–172. IEEE Press.
Gligorov, R., Aleksovski, Z., ten Kate, W., and van Harmelen, F. (2007) Using google
distance to weight approximate ontology matches. In Proceedings of WWW.
Gooneratne, N., and Tari, Z. (2008) Matching independent global constraints for
composite web services. In In Proceedings of WWW, pages 765–774.
Hu, W., and Qu, Y. (2006) Block matching for ontologies. In Proceedings of ISWC.
Kalfoglou, Y., and Schorlemmer, M. (2003) IF-Map: an ontology mapping method
based on information flow theory. Journal on Data Semantics, I.
Klusch, M., Fries, B., and Sycara, K. (2006) Automated semantic web service discovery
with OWLS- MX. In Proceedings of AAMAS.
Kotoulas, S., and Siebes, R. (2007) Deliverable 2.2: Adaptive routing in structured peer-
to-peer overlays. Technical report, OpenKnowledge. Retrieved November 2008 from
www.openk.org.
Li, L., and Horrocks, I. (2003) A software framework for matchmaking based on
semantic web technology. In Proceedings of WWW.
Noy, N., and Musen, M. (2003) The PROMPT suite: interactive tools for ontology
merging and mapping. International Journal of Human-Computer Studies, 59(6).
Oundhakar, S., Verma, K., Sivashanugam, K., Sheth, A., and Miller, J. (2005) Discovery
of web services in a multi-ontology and federated registry environment. Journal of Web
Services Research, 2(3).
Robertson, D. (2004) A lightweight coordination calculus for agent systems. In

Declarative Agent Languages and Technologies, pages 183–197.
Shasha, D., and Zhang, K. (1997) Approximate tree pattern matching. In In Pattern
Matching Algorithms, pages 341–371. Oxford University Press.
Shvaiko, P., and Euzenat, J. (2005) A survey of schema-based matching approaches.
Journal on Data Semantics, IV.
Straccia, U., and Troncy, R. (2005) oMAP: Combining classifiers for aligning
automatically OWL ontologies. In Proceedings of WISE.
Tai, K.-C. (1979) The tree-to-tree correction problem. Journal of the ACM, 26(3).
Tang, J., Li, J., Liang, B., Huang, X., Li, Y., and Wang, K. (2006) Using Bayesian
decision for ontology mapping. Journal of Web Semantics, 4(1).

