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ABSTRACT

Yam (Dioscorea spp.) is a major staple crop with high agricultural and cultural significance for over 
300 million people in West Africa. Despite its importance, productivity is miserably low. A better 
understanding of the environmental context in the region is essential to unlock the crop’s potential 
for food security and wealth creation. The article aims to characterize the production environments 
into homologous mega-environments, having operational significance for breeding research. Principal 
component analysis (PCA) was performed separately on environmental data related to climate, soil, 
topography, and vegetation. Significant PCA layers were used in spatial multivariate cluster analysis. 
Seven clusters were identified for West Africa; four were country-specific; the rest were region-wide 
in extent. Clustering results are valuable inputs to optimize yam varietal selection and testing within 
and across the countries in West Africa. The impact of breeding research on poverty reduction and 
problems of market accessibility in yam production zones were highlighted.
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INTRODUCTION

The population of West Africa is among those in the world that are increasing most quickly and is 
projected to be over 500 million in 2030 (ECOWAS-SWAC/OECD, 2007). The predicted rise in 
the regional human population poses risks and challenges to food security. Yam (Dioscorea spp.) 
is one of the strategic crops for sustainable food production and supply in Africa and beyond as it 
possesses the potential to produce more food per unit of land and water than some other crops. It is 
a preferred staple food for over 300 million people in West Africa. It provides nutritional benefits in 
the form of starch, protein, vitamins, and micro-nutrients meeting the dietary demands of people in 
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the region (Asiedu and Sartie, 2010). The crop features prominently in the social-cultural activities 
of the people in the region (Obidiegwu and Akpabio, 2017). Yam production in Africa, though 40% 
of the total for cassava, has a value which exceeds all other African staple crops and is equivalent to 
the total value of the top three cereal crops, maize, rice, and sorghum (FAO, 2014). Despite its high 
value, yam productivity in West Africa is miserably low and has remained stagnant over decades. 
The achieved tuber yield of less than 10 t/ha under current production practices is around 20% of its 
potential yield of 50 t/ha (FAO, 2014) and is further constrained by losses of about 30% in storage 
(Mignouna et al., 2014). The low productivity is attributed to a combination of biotic and abiotic 
factors mostly associated with the shortened fallow under current extensive cultivation practices.

International Institute of Tropical Agriculture (IITA) and its partners in West African countries 
have been implementing several research and development initiatives to unlock the potential of the 
yam crop for sustainable food security and wealth creation. Genetic improvement is among those 
initiatives that aim at translating current advances in genetics and plant breeding sciences into more 
resilient, productive, and end-user preferred varieties for West Africa. The genetic improvement 
focuses on two major yam species, white yam (Dioscorea rotundata) and water yam (D. alata). The 
yam genetic improvement effort in the region seeks to build the capacity for breeding to accelerate 
genetic gain and lead to a strong pipeline of products to meet the needs of farmers and the markets.

Better understanding of target environments is essential for a yam breeding effort that is committed 
to developing and identifying improved genotypes that are in some way superior with reference to plant 
production purposes in the region. The target environments composed of a set of farms and seasons 
are often highly variable and the cause of differential phenotypic expressions of plants in a crop under 
cultivation (Hyman et al., 2013). The connection of phenotypic expression of a crop plant (value) 
which depends on environment (effect) often referred as genotype × environment interaction (GEI), is 
one of the major factors limiting the efficiency of plant breeding programs as it influences the nature, 
magnitude, and predictability of the selection response (Cooper, 1999; Ceccarelli and Grando, 2007). 
Although GEI poses a big challenge to breeding program efficiency it cannot be ignored but could 
instead be exploited. Characterizing and defining target sets of environments (TSE) for breeding and 
cultivar recommendation are among the strategies to exploit the space and time dimension of GEI. 
Environment profiling helps to strategically locate the experimental or selection sites with a greater 
power in predicting the breeding trials’ performance in the TSE in a period extending into the future.

Several studies have shown the utility of agricultural zoning for research and development 
based on environmental or biophysical variables. Costantini et al., (2016) applied the approach of 
multivariate clustering for the study of environmental drivers for delineating wine growing zones 
in Italy. Garcıa et al., (2014) used a combination of climate, soil, and terrain data to identify coffee 
growing zones with high potential in Colombia. Similarly, Muthoni et al., (2017) employed the 
method of cluster analysis to delineate sustainable recommendation domains for scaling maize 
technologies in Tanzania. Furthermore, other studies have delineated geographic space by climate 
and soil classification schemes as a basis for extrapolating and applying agricultural information 
and research to a broader spatial scale (Wood and Pardey, 1998; Padbury et al., 2002; van Waart 
et al., 2013). Such environmental clustering schemes have been used to detect yield variability and 
limiting factors for crop growth (Caldiz et al., 2002; Williams et al., 2008), to regionalize optimal 
crop management recommendations (Seppelt, 2000), to determine suitable locations for new crop 
production technologies (Geerts et al., 2006; Araya et al., 2010), and to analyze impacts of climate 
change on agriculture (Fischer et al., 2005).

Generally, the two approaches of matrix and cluster methodologies have been used in 
environmental classification studies. In a matrix classification system each variable used to delineate 
zones is divided into classes or class-ranges. Class cutoff values for each variable can be based on 
expert-opinion or frequency distributions of the variable’s range of values. Zones are then formed by 
the matrix cells of intersecting classes (van Waart et al., 2013). This approach involves some expert 
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opinion in defining the range of variables and hence is subject to some limitations such as subjectivity 
and non-reproducibility (Williams et al., 2008). One of the pioneering examples of a matrix zonation 
scheme is the work of Köppen (1900) that developed a climate classification system based on multiple 
variables related to precipitation and temperature.

The second main approach is that of clustering, sometimes referred to as statistical stratification 
(Hazeu et al., 2011). It relies on multivariate statistical analyses to separate cells into a researcher-
specified number of distinct zones. Cluster analysis aims at identifying natural groups in a given dataset 
in a manner that maximizes within-group similarity and between-group dissimilarity (Goswami et al., 
2014). Ideal clusters should be compact, well-separated, and stable (Brock et al., 2008, Muthoni et 
al., 2017). Multivariate cluster analysis has the advantages of objectivity, explicitness, defensibility, 
and improved transferability (Hargrove and Hoffman, 2004; Williams et al., 2008; Moral et al., 2016).

The advances in computing power and increased availability of improved spatial environmental 
data from the fields of remote sensing, climate modeling, and digital soil mapping have made feasible 
the use of quantitative analytical approaches to characterize crop regions into similar environmental 
clusters (Hyman et al., 2013; Moral et al., 2016). This study sought to characterize and define the 
target sets of yam environments in West Africa based on biophysical environmental variables and 
cluster them into homologous mega-regions using the approach of quantitative spatial multivariate 
cluster analysis. In the study, spatial analysis was used for supporting yam improvement research, 
taking advantage of remote sensing data and better and improved spatial data on soils and climate. The 
specific objective of this study was to delineate the yam growing regions in four West African countries 
into homogeneous environmental clusters for yam cultivar testing and predict their performance in the 
final recommendation domain for wider impact with breeding products. Socioeconomic information 
such as gridded human population, market access and poverty were employed to investigate potential 
impacts of testing and disseminating selected yam cultivars within the delineated yam growing zones.

MATERIALS AND METHODS

The Study Area
The study area covers four West African countries, Nigeria, Bénin, Ghana, and Côte d’Ivoire. Yam 
growing areas of each of these countries were delineated from sub-national yam production data 
for between 10 and17 years and used as the geographic extent of yam characterization with cluster 
analysis (Figure 1). The entire yam growing areas in each country are too large for breeding trials 
to be set up hence some specific target districts/regions in those countries were selected. In Ghana, 
15 yam growing districts were selected and 28 districts were chosen in Bénin. In Côte d’Ivoire, nine 
regions were selected, and eight States were chosen in Nigeria as operational areas of the AfricaYam 
project. Names of districts, regions, and States selected in the four countries are shown in Table 1. 
Mean annual rainfall in the target area ranged from 1000 mm in the north to 2500 mm in the southern 
coastal belt. Occupations in the yam growing region of West Africa are mainly agrarian with over 
60% of the total population of 121 million (WORLDPOP, 2016) engaged in different forms of farming 
activities. Farming systems in the region ranged from root and tree crops mixed in the south to mixed 
cereal-root crop systems in the northern part (Dixon et al., 2001). Dominant soil types in the region 
are Lixisols, Acrisols, Leptosols, and Luvisols (ISRIC, 2016). Soil slope is predominantly flat (< 
5%) in the target region (Authors’ calculation from SRTM elevation data, (Jarvis et al., 2008).

Environmental Data
Owing to advances in the field of remote sensing, climate modeling, and digital soil mapping, a wealth 
of environmental data exists today that can be considered in characterizing yam growing regions 
of West Africa. In this study, 23 bioclimatic variables, 21 soil properties layers, 18 remote sensing 
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vegetation layers, and 5 topographic variables derived from digital elevation model (DEM) data were 
used. In summary a total of 67 environmental layers which comprehensively define the biophysical 
traits of the yam growing zone of West Africa were used in defining homogeneous clusters for yam 
breeding. Socioeconomic variables such as total population, market access, and poverty incidence, as 
well as yam production data were used to estimate the potential impact of yam breeding for the region.

Figure 1. West Africa showing (a) yam production (t); (b) yam harvested area (ha) and (c) average yam yield (t/ha) within 
target countries

Table 1. Africa Yam project target countries and districts, states, or regions

Country Target Districts/States/Regions

Ghana Ejura, Sekyere West, Tachiman North, Sene East, Sene West, Nkoranza North, Sekyere East, Atebubu, 
Sekyere Central, Tian, Kitampo North, Nkoranza South, Kitampo South, Pru, Techiman South.

Bénin
Ketou, Savalou, Djidja, Ouesse, Bante,Glazoue,Save,Dassa,Kandi, Segbana, Kalale, Natitingou,Cobly, 
Boukounbe,Materi,Tanguieta, Tchaourou, Nikki, Sinede,Ndali,Perere,Bembereke, Bassila, Copargo, 
Pehonco, Ouake, Djougou,Kouande

Côte 
d’Ivoire Bouna, Boundoukou, Korhogo, Daloa Zuenoula, Dabakala, Katiola, Ferkessadougou

Nigeria Kwara, Federal Capital Territory, Taraba, Rivers, Ekiti, Niger, Cross River, Edo
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Bioclimatic Variables
A comprehensive list of the 23-bioclimatic variables used in this study is presented in supplementary 
Table 9. These include annual rainfall, annual mean temperature, precipitation seasonality, and 
temperature of the warmest quarter which were obtained from Worldclim version 2 database (Fick 
and Hijmans, 2017). These variables were derived by interpolation of the long-term monthly values 
(1970-2000) of temperature and rainfall. In addition, climatic layers included the long-term value 
for mean sunshine hours (1983-2015). This was obtained from the recently released EUMETSAT’s 
Satellite Application Facility on Climate Monitoring (CM SAF) monthly data described by Kothe et 
al., (2017). The bioclimatic variables describe the important biophysical environmental conditions 
for yam cultivation. Some of these parameters are described below: Annual total precipitation is 
the single most important climatic factor that determines yam cultivation. This represents the total 
water inputs to yam cultivation. Yam grows optimally in areas where annual total rainfall ranges 
between 1000 and 2000 mm (FAO Ecocrop, 2013). Mean annual temperature measured in degree 
Celsius is equally important for yam cultivation as it affects physiological traits. Yam grows best 
in environments where annual temperature is between 20 and 32 °C (FAO Ecocrop, 2013). Since 
yam cultivation can be strongly influenced by variability in the distribution of precipitation during 
the year, precipitation seasonality indicates the percentage of variability where larger percentages 
represent greater variability. Precipitation of the wettest quarter provides information on total amounts 
of rainfall during the wettest three months of the year which can highlight yam performance during 
the main growing season. Precipitation of the driest quarter is an indication of total precipitation 
during the driest three months of the year and can be used to relate how environmental factors may 
affect yam seed preservation and preparation for planting. Mean temperature of the warmest quarter 
is an indication of the hottest temperature conditions of the yam growing area. It provides mean 
temperatures during the warmest three months of the year which can be useful for examining how such 
environmental factors may affect germination and storage. Mean temperature of the coldest quarter 
represents temperatures during the coldest three months of the year and is important to capture yam 
response under low temperature. Apart from the basic 19 bioclimatic variables, other environmental 
factors were considered such as global aridity index and potential evapotranspiration (PET) which 
are also crucial to yam cultivation. PET is a measure of the ability of the atmosphere to remove water 
through evapo-transpiration (ET) processes. The FAO introduced the definition of PET as the ET of 
a reference crop under optimal conditions. Both global PET and the Aridity Index were produced by 
Trabucco and Zomer (2009) and have been downloaded from the CGIAR-CSI GeoPortal (http://www.
csi.cgiar.org). Aridity is usually expressed as a generalized function of precipitation, temperature, 
and PET. An Aridity Index (UNEP, 1997) can be used to quantify precipitation availability for crops 
over atmospheric water demand.

Edaphic Variables
Soil conditions are known to influence crop yield and performance next to climatic factors (Costantini 
et al., 2016). In recent times, the availability of unbiased remotely sensed environmental covariates has 
led to great improvements in the field of digital soil mapping thereby enhancing the availability of more 
detailed layers of soil properties. Gridded soil layers at a spatial resolution of 250 m were downloaded 
from the ISRIC-World Soil Information database (ISRIC, 2016; Hengl et al., 2017). These layers were 
generated using an automated mapping framework based on random forests (Hengl et al., 2017). The 
layers were estimated at six standard depth intervals but in this study, those depths that correspond 
mainly to the topsoil conditions were utilized. Generally, soil property layers were used with depths 
of 0-5 cm, 5-15 cm, and 0-20 cm. In some cases, averages of layers with a depth between 0-5 cm 
and 5-15 cm were taken and used to represent 0-15 cm soil depth. Explicit description of the 21 soil 
property layers used in the study is presented in supplementary Table 10. Among these are content of 
Soil organic carbon (SOC), Total nitrogen, Soil pH, Bulk density, Sand, silt, and clay content. Other 
soil parameters considered are related to the presence of micronutrients and cations such as Cation 
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exchange capacity (CEC), Exchangeable bases, magnesium and potassium. SOC is a proxy for soil 
fertility status (Hengl et al., 2015; Muthoni et al., 2017). Organic matter makes up just 2-10% of the 
soil’s mass but it has a critical role in the physical, chemical, and biological functions of agricultural 
soils. SOC is a measurable component of soil organic matter which contributes to nutrient turnover 
and CEC, soil structure, moisture retention and availability, degradation of pollutants, greenhouse 
gas emissions, and soil buffering. Total nitrogen is the sum of total Kjeldahl nitrogen (ammonia, 
organic and reduced nitrogen) and nitrate-nitrite. It can be derived by monitoring for organic nitrogen 
compounds, free-ammonia, and nitrate-nitrite individually and adding the components together. It is an 
important indicator of fertility status. Bulk density is an indicator of soil compaction and reflects the 
soil’s ability to function for structural support, water and solute movement, and soil aeration (Arshad 
et al., 1996). High bulk density is an indicator of low soil porosity and soil compaction. It may cause 
restrictions to root growth and poor movement of air and water through the soil. Compaction can result 
in shallow plant rooting and poor plant growth, influencing crop yield and reducing the vegetative 
cover available to protect the soil from erosion. Since yam is a tuber crop, bulk density is crucial to 
yield. Soil pH determines plant tolerance to acidity or alkalinity. pH levels range from 0 to 14, with 7 
being neutral, below 7 acidic and above 7 alkaline. The optimal pH range for most plants is between 
5.5 and 7.0; however, many plants have adapted to thrive at pH values outside this range. CEC is 
the total capacity of a soil to hold exchangeable cations. It is an inherent soil characteristic and so it 
is difficult to alter it significantly. It influences the soil’s ability to hold onto essential nutrients and 
provides a buffer against soil acidification. Exchangeable acidity refers to the amount of acid cations, 
aluminum and hydrogen, occupied on the CEC. When the CEC of a soil is high, but it has a low base 
saturation, the soil becomes more resistant to pH changes. Exchangeable bases are commonly defined 
as the alkali and alkaline earth metals (principally calcium, magnesium, potassium, and sodium) 
attached to the clay and organic constituents of soils which can be exchanged with each other and 
with other positively charged ions in the soil solution. Soil electrical conductivity (ECN) is a measure 
of the amount of salts in soil (salinity of soil). It is an important indicator of soil health. In the soil, 
the ECN reading shows the level of ability the soil water has to carry an electrical current. The ECN 
level of soil water is a good indication of the amount of nutrients available for crops to absorb.

Remote Sensing Vegetation Indices and Reflectance Bands Data
A detailed list of 18 environmental covariates derived from remote sensing products such as Moderate 
Resolution Imaging Spectroradiometer (MODIS) and SPOT earth observation satellites used for 
the current analysis is provided in supplementary Table 11. MODIS is a key instrument aboard the 
Terra and Aqua satellites of NASA and SPOT is a commercial high-resolution optical imaging Earth 
observation satellite system of the French Space Agency. Remotely sensed vegetation layers from 
MODIS include normalized vegetation index (NDVI), enhanced vegetation index (EVI), mid-infrared 
reflectance band (MREFB7), blue reflectance band (MREFB1), gross primary productivity (GPP), 
and net primary productivity (NPP). Other layers from MODIS include black-sky albedo and land 
surface temperatures. In most cases MODIS land surface data were long-term averages of monthly 
composites of about 18 years (2000 to 2017). Data from SPOT earth observation satellites included 
the fraction of absorbed photosynthetically active radiation (SPAR) and fraction of green vegetation 
cover (SCOVER). These datasets were downloaded from environmental layers prepared by AfSIS 
(2017) for digital soil mapping in Africa (http://africasoils.net/services/data/remote-sensing/land/). 
NDVI indices result from the complex interaction between vegetation, climate, terrain, soil, and 
hydrology (Langella, 2008; Costantini et al., 2016). The index is a measure of vegetation greenness. 
Where the index is close to 0, vegetation is scarce. Where the index is close to 1, the vegetation is 
more abundant. NDVI varies from medium to high in yam growing regions of West Africa. The 
EVI is an ‘optimized’ vegetation index designed to enhance the vegetation signal with improved 
sensitivity in high biomass regions and improved vegetation monitoring through a de-coupling of the 
canopy background signal and a reduction in atmosphere influences. EVI tends to be more sensitive 



International Journal of Applied Geospatial Research
Volume 10 • Issue 3 • July-September 2019

7

to plant canopy differences such as leaf area index (LAI), canopy structure, and plant phenology 
and stress than NDVI which generally responds just to the amount of chlorophyll present. Where 
the index is close to 0, vegetation is scarce. Where the index is close to 1, the vegetation is more 
abundant. GPP measures the rate at which organisms convert light energy to the chemical energy of 
organic compounds. Hence, the total amount of energy assimilated by plants in an ecosystem during 
photosynthesis (gross primary productivity) varies among environments. Highly vegetated areas 
produce higher levels of energy, resulting in higher GPP. Much of the energy assimilated by plants 
through photosynthesis is not stored as organic material but instead is used during cellular respiration. 
In these processes, organic compounds such as carbohydrates, proteins, and fats are broken down or 
oxidized to provide energy for the cell’s metabolic needs. The energy not used in this process is stored 
in plant tissues for further use and is called net primary productivity (NPP). About 40 to 85% of GPP 
is not used during respiration and becomes NPP. The highest NPP in terrestrial environments occurs 
in swamps and marshes and tropical rainforests; the lowest occurs in deserts. The value represents 
the available energy remaining after photosynthetic activity in an ecosystem. Areas that are highly 
vegetative produce an excess of energy that represents the NPP.

Topographic Variables
Topography is an important determinant of soil moisture distribution and thus drives the functioning 
of terrestrial ecosystems, including vegetation composition and structure (Radula et al., 2018). It 
affects soil erosion and therefore nutrient availability to crops. It also presents farm management 
complexity especially during mechanized cultivation of crops. In general, the higher the energy of the 
relief and the smaller the valleys and accumulation areas the harsher is the management difficulty and 
the greater the nutrient loss available to crops (Costantini and Barbetti, 2008). Therefore, terrain data 
from Shuttle Radar Topography Mission (SRTM) were obtained from SRTM 90m DEM database 
v4.1 produced by Jarvis et al., (2008) (http://srtm.csi.cgiar.org). Other topographic variables, such 
as slope gradient, aspect, topographic wetness index (TWI) and stream power index (STRPI), were 
derived from the DEM following Reuter and Nelson (2009). TWI quantifies the tendency of soil water 
distribution, which is affected by topography and has been frequently used to model soil moisture 
distribution (Zhu et al., 2014). Slope affects water erosion and nutrient leaching and thereby influences 
fertility of the soil. Topographic variables used in this study are listed in supplementary Table 11.

Socioeconomic Variables
All agricultural activities take place within a socioeconomic context, hence information related to 
socioeconomics were obtained to investigate potential adoption and the impact of improved yam 
technologies of the AfricaYam project. Socioeconomic variables used included gridded human 
population 2015 data downloaded from Worldpop database (WORLDPOP, 2016). The human 
population layer was generated using a random forest method that estimated the number of people per 
pixel with national totals adjusted to match United Nation’s population division estimates (Stevens et 
al., 2015). The human population data are a proxy for availability of markets and labor (Vanlauwe et 
al., 2014; Muthoni et al., 2017). Gridded spatial data representing travel time in hours from a 1 × 1 
km resolution pixel to the nearest town with more than 20,000 inhabitants was used as surrogate for 
access to market (HarvestChoice, 2015). Access to market is crucial for yam production, processing, 
and transportation to the point of consumption as well as access to agro-inputs such as herbicides 
and fertilizer. Data on estimates of the number of people living on less than $1.25 and $2 per day for 
10 km pixel areas, based on estimates derived from combined poverty maps and survey data for the 
entire world, with a base year of 2005 were downloaded from HarvestChoice website (HarvestChoice, 
2012). Poverty prevalence data were used to estimate the impact of the AfricaYam project to the poor 
living in the region. Gridded projected population data for 2050 were downloaded from Data GURU 
(Boke-Olén et al., 2017) and were also used to estimate the future impact of AfricaYam technologies 
for future conditions. To assess yam production within the yam zones of the target countries, the study 
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relied on spatial production allocation model (SPAM) developed by the International Food Policy 
Research Institute (IFPRI) for generating highly disaggregated crop-specific production data. SPAM 
is a spatial model to allocate crop production derived from units reporting large statistics, such as 
country, province, and district, to a raster grid at a spatial resolution of 5 minutes of arc normally 
referred to as a 10 km × 10 km pixel for simplicity. SPAM 2005 version 3 was downloaded from 
HarvestChoice website (You et al., 2014).

Data Analysis
Data Preprocessing
Environmental covariate layers were of diverse spatial resolution as can be seen from supplementary 
Tables 9-11. Hence, before cluster analysis, all layers were re-sampled to a spatial resolution of 250 
m using bilinear transformation in ArcGIS 10.5. Bilinear transformation re-sampling method is an 
interpolation algorithm that determines the new value of a cell based on a weighted distance average 
of the four nearest input cell centers. It is useful for continuous data and will cause some smoothing 
of the data (ESRI, 2017). A spatial resolution of 250 m was chosen for data analysis since most of 
the datasets were of this resolution, especially soil layers and remote sensing vegetation layers. All 
layers were also projected to “Lambert Azimuthal Equal Area projection” using ArcGIS project tool.

Since the variance depends on the scale of the variables, it is customary to first standardize each 
variable to have mean 0 and standard deviation 1. After the standardization, the original variables with 
possibly different units of measurement are all in comparable units (Fodor, 2002). Hence following 
the method of Garcia et al., (2014) all 67 environmental variables were normalized to a scale 0 to 1 
to ensure that the means of the standardized variables were 0 and the variances were equal to 1. This 
is known to guarantee stable convergence of weight and biases of all variables.

Derivation of topographic variables such as slope, aspect, and TWI from SRTM elevation data 
were performed within QGIS 3.0.1 using “SAGA GIS Topographic Wetness Index tool” (QGIS 
Development Team, 2018).

Principal Component Analysis (PCA)
It has been observed that spatial autocorrelation and multicollinearity exist in environmental data 
(Shaker and Zubalsky, 2015; Muthoni et al., 2017). To address this, following the method of Costantini 
et al., (2016) Principal Component Analysis (PCA) was employed separately on the four types of 
environmental data. PCA is one of the most popular dimensionality reduction methods. It is a linear 
method, meaning that the transformation between the original data and the new lower dimensional 
representation is a linear projection. Its main purpose is dimensionality reduction, but it can also be 
used to explore relationships between variables. Often it is used as a preprocessing method either for 
data orthogonalization and eliminating redundancy caused by variable correlation or for dimensionality 
reduction, before employing another statistical method, such as regression or clustering (Fodor, 2002; 
Jolliffe et al., 2003). As principal components (PCs) are orthogonal, regression and clustering methods 
can proceed with data independence guaranteed (Demšar et al., 2013). Moreover, PCA as a multivariate 
analysis technique, allows for identifying of the variables that account for most of the total variance 
in data sets (Gavioli et al., 2016). PCA produces a new set of synthetic variables named principal 
components (PCs), which are uncorrelated among themselves (Johnson and Wichern, 2007). Hence, 
in each of the four sets of environmental data, PCA reduced the dimensions to a few uncorrelated 
latent variables represented by PC axes. Following Kaiser’s criterion (Kaiser and Rice, 1974) as 
utilized by Garcia et al., (2014), only PCA axes with eigenvalues greater than 1 were retained for 
further analysis. This ensured that only PCA axes with a significant contribution are used for further 
analysis. The factor loadings of variables in PCA axes indicated the strength and direction (negative 
or positive) of the correlation between variables and PCA axes. This information was used to infer 
the main contributions of each environmental layer to each significant PCA axis.
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Multivariate Cluster Analysis
PCA layers with eigenvalues greater than 1 resulting from the four PCA performed in the previous 
section were used as input into a multivariate cluster analysis using iterative self-organizing data 
analysis technique (ISODATA) after Metzger et al., (2012). “Iso Cluster Unsupervised Classification 
tool” within Multivariate toolbox of ArcGIS 10.5 Spatial Analyst extension was used to stratify the 
significant PCA layers from soil, climatic, vegetation, and topographic variables into environmental 
clusters. The “Iso Cluster tool” uses a modified iterative optimization clustering procedure, also 
known as the migrating means technique. The algorithm separates all cells into the user-specified 
number of distinct unimodal groups in the multidimensional space of the input bands (Tou and 
Conzalez, 1974). This type of clustering uses a process in which all samples during each iteration 
are assigned to existing cluster centers and new means are recalculated for every class. The process 
is repeated: each cell is assigned to the closest mean in multidimensional attribute space, and new 
means are calculated for each cluster based on the membership of cells from the iteration. Clusters 
are therefore homogeneous groups based on the multivariate inputs. In this case yam target zones are 
divided into homogeneous similarity zones according to covariates specified as inputs. Conceptually 
it would have been desirable to use statistical stopping rules (Gordon, 1996) to determine the optimal 
number of zones, reducing judgment by determining a mathematically optimal number of divisions 
in multivariate parameter space. Such cut-off rules balance high intra-cluster similarity and low 
inter-cluster similarity but such internal criteria for the quality of a clustering do not necessarily 
translate into good effectiveness in an application (Manning et al., 2008).Consequently, based on 
our knowledge of the environment, “Iso cluster tool” was assigned an initial ten clusters from which 
cluster aggregation was performed as in the next section.

Cluster Aggregation
To provide structure and support the development of a consistent nomenclature, as well as to 
facilitate summarizing and reporting, it is useful to aggregate the clusters consistently to a limited 
set of environmental zones (Bunce et al., 2002; Leathwick et al., 2003; Metzger et al., 2012). The 
dendrogram tool in ArcGIS uses a hierarchical clustering algorithm and was used to aggregate 
the initial set of clusters to statistically dissimilar clusters. A dendrogram is a type of tree diagram 
showing hierarchical clustering and provides a visual way to delineate statistically dissimilar classes. 
The dendrogram was then used to determine the aggregation of the 10 clusters into 7 classes for the 
entire West Africa region.

Quantifying the Impact of Yam Breeding Program Using Socioeconomic Analysis
After delineation of clusters, spatial analysis was performed to examine socioeconomic contexts 
and the potential impact of AfricaYam project’s improved technologies. High agricultural potential 
areas that are characterized by dense rural population, significant poverty levels, and high market 
accessibility could be of higher priority for demonstrating the impact of improved agricultural 
technologies (Hyman et al., 2013). Potential impact for improved yam technologies was calculated 
using the following five socioeconomic variables: total human population; poverty levels, projected 
total population in 2050, yam production, and market accessibility. Spatial analytical tools such as 
“overlay”, “tabulate area” and “zonal statistics as table” were employed for this within ArcGIS 10.5.

RESULTS AND DISCUSSION

Principal Component Analysis
Table 2 presents the results of the PCA of the four sets of environmental data: edaphic, bioclimatic, 
topographic, and remote sensing variables. The bulk of edaphic data was summarized by 10 principal 
factors, which together explained 95.4% of the variability in this data set. All 23 bioclimatic variables 
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Table 2. Strongly loaded variables in the Principal Component axes (CVE: cumulative variance explained)

(a) Edaphic Variables

PCA1 PCA2 PCA3 PCA4 PCA5 PCA6 PCA7 PCA8 PCA9 PCA10

TEXMHT
(0.57)

AWCtS
(0.60)

PHIHOX
(-0.62)

BDRLOG
(0.93)

ALUM3S
(0.82)

EMGX
(0.40)

TEXMHT
(0.57)

AWCtS
(0.56)

BDTICM
(0.46)

BDTICM
(0.48)

CLYPPT
(-0.36)

AWCh1
(0.46)

SLTPPT
(-0.35)

PHIHOX
(0.32)

CECSOL
(0.39)

SLTPPT
(0.50)

BLDFIE
(0.47)

NTO 
(-0.41)

EMGX
(-0.42)

PHIHOX
(0.35)

BLDFIE
(-0.41)

SNDPPT
(0.35)

EXBX
(0.35)

SNDPPT
(-0.37)

AWCh1
(-0.42)

EXBX
(-0.38)

NTO
(-0.32)

ALUM3S
(0.31)

NTO
(0.34)

AWCtS
(-0.35)

CECSOL
(0.33)

SNDPPT
(0.30)

CVE(%) 36.4 58.3 69.9 76.5 82.3 86.6 90.2 92.9 94.3 95.4

(b) Bioclimatic Variables

PCA1 PCA2 PCA3 PCA4 PCA5 PCA6 PCA7

Sunhr
(0.35)

BIO16
(0.44)

BIO9
(0.40)

Solarad
(0.57)

Solarad
(0.55)

BIO18
(0.46)

Sunhr
(0.57)

BIO4
(0.34)

BIO13
(0.40)

BIO6
(0.38)

BIO19
(-0.47)

BIO19
(0.40)

Solarad
(-0.39)

BIO4
(-0.39)

BIO15
(0.33)

BIO19
(0.39)

BIO11
(0.33)

BIO13
(0.32)

BIO3
(0.36)

BIO2
(0.38)

PET
(0.33)

BIO15
(0.32)

BIO1
(0.33)

BIO4
(-0.36)

BIO7
(0.33)

BIO7
(0.30)

BIO10
(0.31)

PET
(0.33)

CVE 
(%) 56.0 72.1 82.7 88.7 92.5 95.2 96.7

(c) Remote Sensing Variables

PCA1 PCA2 PCA3

SPAR
(0.44)

SPAR
(-0.42)

NDVI
(0.65)

SCOVER
(0.43)

SCOVER
(-0.45)

EVI
(0.47)

MWNA
(-0.43)

MBNA
(0.31)

MBVA
(-0.30)

MBNA
(0.40)

MBSA
(0.37)

MBSA
(0.37)

MBVA
(0.32)

MWNA
(0.31)

CVE(%) 89.2 97.5 98.5

(d) Topographic Variables

PCA1 PCA2 PCA3

Aspect
(1)

TWI
(0.87)

Elevation
(0.9)

Elevation
(-0.42)

TWI
(0.43)

CVE(%) 91.5 97.3 99.8
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were represented by seven principal factors which accounted for 96.7% of the total variability in the 
data set. Topographic variables were fully explained by three principal factors accounting for 99.8% 
of the total variability. Eighteen remote sensing variables were summarized by only three principal 
axes explaining about 98.5% of the total variance.

PCA1 for the edaphic data accounted for 36.4% of the variability and was mainly dominated by 
soil texture (TEXMHT, 0.57), clay content (CLYPPT, -0.36), and soil pH (PHIHOX, 0.35). Other 
significant loadings on this axis were total nitrogen (NTO), which was strongly loaded at -0.32 and 
sand content (SNDPPT), loaded at 0.3 (Table 2). PCA2 represented 21.9% of the variability of the soil 
data. It was dominated by porosity (AWCts, 0.60), available soil water capacity (AWCh1, 0.46), bulk 
density (BLDFIE, 0.41) and aluminum concentration (ALUM3S, 0.31). PCA3 to PCA6 respectively 
explained 11.6, 6.6, 5.7, and 4.3% of the variation. PCA3 was related to three factors, soil pH, silt, 
and sand content; out of these, only silt content never featured among the dominating variables of 
PCA1. PCA4 was represented by probability of occurrence of depth to bedrock (BDRLOG). PCA5 
and PCA6 featured variables that were related to PCA1 and PCA2 except exchangeable Mg (EMGX), 
CEC of soil (CECSOL), and total exchangeable bases (EXBX). Similarly, PCA7 to PCA10 featured 
variables that were represented by previous PCA axes except absolute depth to bedrock (BDTICM). 
Exchangeable acidity (EACKCL), exchangeable aluminum (EALKCL), and electrical conductivity 
(ECN) were among soil properties which did not exhibit a strong relationship with any of the ten most 
important PCA axes, suggesting they were of less importance in defining yam growing environments.

The major edaphic factors (texture, soil pH, total nitrogen etc.) that featured prominently for the 
delineation of yam environments in West Africa are much as had been expected as soil characteristics 
have been shown to be a very important factor for yam cultivation. Texture is one of the most important 
properties of a soil, and it greatly affects crop production, land use, and management. Soil texture 
is directly related to nutrient retention and drainage capabilities (Brady and Weil 2007). Yam crop 
requires fertile soils rich in organic matter with good drainage and moderate water retention capacity. 
Yields are also observed to be higher in sandy loam and silty loam soils with higher levels of organic 
matter. Although yam cultivars are relatively drought-tolerant they require adequate rainfall evenly 
distributed throughout their growing period, particularly from 14 to 20 weeks after planting when 
tuber bulking occurs rapidly. According to Eruola et al., (2012), moisture variability during growth 
appears to be the critical factor for yam production in the humid tropics. Yam cultivars also require 
temperatures ranging from 25 to 30 0C and are sensitive to length of daylight periods A short daylight 
period promotes tuber formation and a long daylight one favors vine growth.

Of the seven principal components that accounted for 96.7% of the total variability attributable 
to the original 23 climatic variables, 56% was explained by PCA1 (Table 2). Annual sunshine hours 
(Sunhr, 0.35), temperature seasonality (BIO4, 0.34), precipitation seasonality (BIO15, 0.33), potential 
evapo-transpiration (PET, 0.33), and temperature annual range (BIO7, 0.3) were the dominant 
contributors to the variance explained by PCA1. PCA2 represented about 16.1% of the variability and 
the axis was strongly related to precipitation and its derivatives. It was dominated by precipitation 
of wettest quarter (BIO16), precipitation of wettest month (BIO13), precipitation of coldest quarter 
(BIO19), and precipitation seasonality (BIO15). Interestingly, PCA3 which accounted for about 10% 
of the total variation was clearly dominated by temperature related variables (mean temperature of 
driest quarter (BIO9), minimum temperature of coldest month (BIO6), mean temperature of coldest 
quarter (BIO11), annual mean temperature (BIO1), and mean temperature of warmest quarter 
(BIO10)). PCA4 accounting for 6% of the variability was also dominated mainly by precipitation 
variables (BIO19 and BIO13) except annual solar radiation. PCA5 to PCA7 accounted for a total 
of 8% of the variability and were related to variables that had featured in the previous axes except 
isothermality (BIO3), precipitation of warmest quarter (BIO18), and mean temperature diurnal 
range (BIO2). Numerous authors have observed that rainfall and temperature are very crucial to the 
growth and development of crops (Bannayan et al., 2011, Milošević et al., 2015, Nouri et al., 2017). 
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This confirms the indicated relative importance of climatic parameters related to the amount and 
distribution of precipitation as well as temperature observed in this study.

PCA1 to PCA3 explained over 98% of the variability attributable to 18 original remote sensing 
layers. PCA1 accounted for about 89% of the total variation and was dominated by five remote sensing 
variables composed mainly of layers from SPOT and MODIS bands. Fraction of absorbed photo-
synthetically active radiation (SPAR) and fraction of green vegetation cover (SCOVER) from SPOT 
earth observation satellite are among the five. Others are average white-sky NIR albedo (MWNA), 
average black-sky NIR albedo (MBNA), and average black-sky SWIR albedo (MBSA) from MODIS 
satellite. PCA2 explained about 8% of variability and included all dominating variables in PCA1 except 
an additional albedo band (average black-sky VIS albedo (MBVA)) from MODIS satellite. Vegetation 
indices (NDVI and EVI) dominated the last significant PCA3. Other remote sensing attributes such as 
gross primary productivity (GPP), net primary productivity (NPP), land surface temperature for both 
day and night (LSTD and LSTN), and MODIS reflectance bands 1, 2, 3, and 7 (MREFB1 to MREFB7) 
did not exhibit a strong relationship with PCA1 to PCA3 suggesting that they are of less importance 
in characterizing the yam growing environment of West Africa. However, the importance of spectral 
vegetation indices such as NDVI and EVI, as indicator of crop performance is well documented in 
literature. For instance, Gusso et al., (2014) found good correlation between EVI and crop yield in 
Brazil while Kogan et al., (2012) concluded that NDVI is a cumulative indicator of crop growth in 
Kansas, USA. These observations from other researchers confirm the relative importance of satellite 
derived vegetation related products in delineating yam growing environment observed in this study.

The first three components (PCA1 to PCA3) explained about 99.8% of the original five 
topographic data (Table 2). PCA1 accounted for about 92% of the variability and was dominated by 
aspect while PCA2 represented about 5% and was dominated by topographic wetness index (TWI) 
and elevation. PCA3 accounted for about 2.5% of the total variation and was still dominated by 
elevation and TWI. Soil slope did not appear with strong loadings in the three most important PCA 
axes probably because soil slope had been captured by terrain aspect which featured significantly in 
PCA1.Aspect and slope are known to be related as can be seen from its description. Aspect describes 
the direction in which a slope faces and relates to the degree of solar exposure and it is known to 
affect soil properties significantly. Begum et al., (2010) found that soils of the north-facing slope had 
higher SOC content, moisture, faunal abundance and diversity. They also concluded that variations 
due to topographic aspect induced varied microclimates and caused differences in soil temperature 
and soil fertility. Moreover, Geroy et al., (2011) observed that soil porosity, soil organic matter and 
silt content were affected by soil aspect and each contributed to greater soil water retention. The crop 
also usually performs well at low and medium elevation up to 900 masl making elevation an important 
factor contributing to the delineation of a yam environment as observed in this study.

Cluster Analysis
Environmental Clustering Analysis for West Africa
Hierarchical clustering algorithm was employed whereby sum of squared Euclidean distance is 
minimized as proposed by Ward (1963). The result of this is presented in the dendrogram (Figure 
2). Seven distinct clusters were identified for the entire region using the cutoff of R2=0.7 (70% 
dissimilarity). These are presented as seven yam mega-environments (Figure 3 and Table 3), hereby 
referred to as target set of environments (TSE1 to TSE7). TSE1 occupied about 8.1 million ha (6.7%) 
and occurred uniquely in the humid forest ecology of Nigeria while TSE2 (11 million ha) featured 
mainly at the coastal part of Ghana and Côte d’Ivoire with some fractional appearance in the western 
part of coastal Nigeria. TSE3, TSE4, and TSE6 respectively occupied land areas of about 23.4, 32.3, 
and 26.4 million ha and featured across the entire region, suggesting they might be useful in the 
dissemination of advanced yam varieties in West Africa.

Incidentally, the three mega-environments are responsible for about 70% of the current yam 
production in the study area (Table 3). Hence, selection and cultivar testing performed in the three 
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mega-environments could benefit the entire yam belt of West Africa by identifying varieties with 
wider adaptation. TSE 5 obviously represents the mid-altitude environment across countries as it 
featured around the Jos plateau and Adamawa highlands of Nigeria. Patches of this can be seen in 
the highlands of Odienne area of Côte d’Ivoire.

The spatial multivariate clustering approach, applied in this study, considers the inherent 
statistical properties of the input data to delineate yam environmental clusters. This differs with 
previous subjective methods of Notenbaert et al., (2013) and Tesfaye et al., (2015) that rely on expert 
judgement for classification of variables. Common environmental classifications such as ‘lowlands’, 
‘mid-latitudes’ and ‘highlands’ can vary between regions and among researchers depending on the 
level of knowledge and experience (Hartkamp et al., 2000; Muthoni et al., 2017). Such subjective 
classifications have limited potential for spatial extrapolation (Williams et al., 2008). However, our 
method eliminates the issue of subjectivity making it easy to replicate in different ecologies provided 
that appropriate input variables are utilized. The clustering methodology has been used to characterize 
coffee production zones in Colombia (García et al.,2014), agricultural productivity zones in Africa (Yu 
and Guo, 2015) and Iowa (Williams et al., 2008) and to define wine growing zones in Italy (Costantini 
et al., 2016). Recently it has been used in defining sustainable recommendation domains for scaling 
agricultural technologies in Tanzania to address the problem of low adoption (Muthoni et al., 2017).

Figure 2. Dendrogram of 10 clusters using Ward’s minimum distance hierarchical clustering algorithm in the study area. Note on 
class combination according to dendrogram with cut-off at R2= 0.7 (Class 1 = TSE1; Class 2 = TSE 2; Class 3 & 4 = TS3; Class 5 
& 6 = TSE4; class 7= TSE 5; class 8 & 9 = TSE 6 and Class 10 = TSE 7).
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Figure 3. West Africa showing results of characterization of yam growing area into seven mega–environments

Table 3. Yam environmental clusters by area and percentage for West Africa

Country TSE1 TSE2 TSE3 TSE4 TSE5 TSE6 TSE7 Total 
(Country)

Area (million Ha) Under Environmental Cluster

Bénin 0.00 0.03 0.80 3.71 0.02 5.03 1.85 11.44

Côte d’Ivoire 0.00 6.27 11.02 8.41 4.20 1.87 0.00 31.77

Ghana 0.00 4.33 5.33 6.40 0.09 6.63 0.17 22.94

Nigeria 8.12 0.42 6.23 13.68 6.53 12.89 6.57 54.43

Grand Total 8.12 11.04 23.37 32.19 10.84 26.43 8.59 120.59

Country Percentage (%) of Area Under Environmental Cluster

Bénin 0.0 0.3 7.0 32.4 0.1 44.0 16.2 9.5

Côte d’Ivoire 0.0 19.7 34.7 26.5 13.2 5.9 0.0 26.3

Ghana 0.0 18.9 23.2 27.9 0.4 28.9 0.7 19.0

Nigeria 14.9 0.8 11.4 25.1 12.0 23.7 12.1 45.1

Grand Total 6.7 9.2 19.4 26.7 9.0 21.9 7.1 100.0

Yam production (million 
tons) 6.5 2.1 10.5 11.8 2.2 9.6 2.4 45.2

% Yam production 14.3 4.6 23.2 26.2 4.9 21.2 5.4 100.0
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Environmental Clustering Analysis for Nigeria
Results of multivariate clustering analysis for Nigeria are shown in Table 4 and Figure 4. The yam 
production areas are clustered into six mega-environments or TSE covering the seven States with a 
total land area of about 22 million ha. TSE 1 is obviously a cluster of environments within the forest 
ecology as it extended from Rivers, Edo, and Cross River States and covered about 15% of the total 
yam growing belt of Nigeria. TSE 3 is the next cluster with significant occurrence and occupied about 
1.3 million ha representing about 5.8% of the total target area. TSE 4 is another important cluster, 
being the second largest occupied in terms of area (4.7 million ha) after TSE 6 within the study area. 
It covered a major part of Kwara and extends throughout the Middle Belt to the southern part of 
Taraba. TSE 4 covered a total of 13.7 million ha in the yam growing environment and accounts for 
about 25.5% of the current yam production. This implies that about 26% of the total number of variety 
testing trials in Nigeria should be conducted in this cluster distributed across States according to 
their respective proportion. TSE 6 occupied the largest area of about 8.4 million ha within the target 
States and represents about 12.8 million ha of the entire yam growing area of the country. Breeding 
trials carried out in this environment will be representative of about 24% of the total yam area in the 

Table 4. Yam environmental clusters by area and percentage for Nigeria

State
TSE1 TSE2 TSE3 TSE4 TSE5 TSE6 TSE7 Total 

(State)Area (‘000 Ha) Under Environmental Cluster

Cross River 1,679 0.04 157 156 70 - - 2,061

Edo 996 2.81 804 141 13 - - 1,956

Ekiti - - 319 30 174 - - 523

FCT - - 0.03 229 127 378 - 734

Kwara - - 9.72 2,512 94 919 - 3,534

Niger - - 4.69 704 37 5,324 874 6,943

Rivers 739 0.02 - - - - - 739

Taraba 0.01 - 1.93 930 2,454 1,803 806 5,994

Target yam area 3,414 2.87 1,296 4,701 2,968 8,424 1,679 22,485

Country yam area 8,116 415 6,225 13,677 6,534 12,893 6,567 54,427

State Percentage (%) of Area Under Environmental Cluster

Cross River 81.5 0.0 7.6 7.5 3.4 - - 9.2

Edo 50.9 0.1 41.1 7.2 0.7 - - 8.7

Ekiti - - 61.0 5.7 33.3 - - 2.3

FCT - - 0.0 31.2 17.3 51.5 - 3.3

Kwara - - 0.3 71.1 2.6 26.0 - 15.7

Niger - - 0.1 10.1 0.5 76.7 12.6 30.9

Rivers 100.0 0.0 - - - - - 3.3

Taraba 0.0 - 0.0 15.5 40.9 30.1 13.4 26.7

Target yam area 15.2 0.0 5.8 20.9 13.2 37.5 7.5 100.0

Country yam area 14.9 0.8 11.4 25.1 12.0 23.7 12.1 100.0

Yam production (million tons) 6.48 0.23 7.06 8.63 2.08 6.98 2.37 33.82

% Yam production 19.1 0.7 20.9 25.5 6.1 20.6 7.0 100.0
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country. Current yam production within this TSE is equally high at about 7 million t (21%). TSE 7 is 
situated in the northernmost part of Niger and Taraba covering about 1.7 million ha for both States. 
TSE 5 represented about 13.2% of the target area and occurs mainly in the highlands of Taraba with 
some patches in the northern part of Ekiti. This environment will be ideal for testing yam varieties 
for adaptation to high altitude ecologies with cool temperatures.

Dominant environmental clusters varied by State (Table 4). For instance, the dominant 
environments in Cross River were represented in TSE 1 which accounted for over 80% of that State 
while the same cluster was completely dominant in Rivers. Similarly, TSE 3 was prominent in Edo 
and Ekiti, respectively covering over 41 and 61% of the States.TSE4 was most important in FCT, 
Abuja, and Kwara. Niger exhibited the prominent environmental clusters TSE 6 and TSE 7 while 
Taraba was the only State where TSE 4 -TSE 7 were predominant clusters. These results could be used 
to strategically locate and conduct yam trial sites/selection environments and resource allocation for 
each target State in the country. They are equally useful in ensuring that experiments are conducted 
in representative locations within the TSEs which will facilitate scaling out yam breeding results for 
wider impact. Estimates of total yam production were lowest in TSE 2 at about 0.23 million t and 
highest at TSE 4 (8.6 million t, Table 4).

Environmental Clustering Analysis for Bénin
The results of analysis of environmental characterization of yam growing area of Bénin are shown 
in Figure 4 and Table 5. The yam target set of environments comprises the seven départements of 
Alibori, Atakora, Borgou, Collines, Donga, Plateau, and Zou with a total area of about 8.8 million 
ha. The most extensive environmental cluster was TSE 6 with an area of about 4.9 million ha (55%) 
followed by TSE 4 covering about 37% of the whole target area. Within the yam target area TSE 
1- TSE 3 and TSE 5 were non-existent while only TSE 4 and TSE 6 were the two most prominent 

Figure 4. West Africa showing results of clustering analysis within the AfricaYam project’s’ target regions/districts
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environmental clusters covering about 92% of the area. TSE 7 occurred at the northern part of the 
target zone with an area of 0.6 million ha and represents about 16% of the yam producing belt of the 
country. The important yam environment clusters varied by départements. For example, only TSE 6 
and TSE 7 occurred in Alibori while TSE 4 and TSE 6 were predominant in Borgou and Donga. TSE 
4 was the dominant cluster in Zou, Collines, and Plateau with respective percentages of occurrence 
at 96.5, 99.6, and 86.5.

Environmental Clustering Analysis for Côte d’Ivoire
The results of yam environment characterization using spatial multivariate analysis in Côte d’Ivoire 
are shown in Figure 4 and Table 6. Two dominant clusters that emerged are TSE 3 and TSE 4, 
representing respectively 33% and 53% of the target yam area of the current breeding operation in 
the country. Although TSE 2 and TSE 5 occurred in insignificant proportions within the target study 
area, they are representative of about one-third (33%) of the entire yam growing area in the country 
(Table 6). Further examination of environmental cluster distribution among the regions in the target 
area depicted that only four regions - Savanes, Vallée du Bandama, Zanzan, and Sassandra Maraho 
- had significant representation. Two environmental clusters, TSE 2 and TSE 4, were predominant 
in Zanzan and Savanes regions while Sassandra Maraho accounted for the significant size of cluster 
TSE 3 (94%). TSE 2 which was situated mainly in the southern parts of Ghana and Côte d’ Ivoire 

Table 5. Yam environmental clusters by area and percentage for Bénin

Département
TSE1 TSE2 TSE3 TSE4 TSE5 TSE6 TSE7

Total (Département)
Area (‘000 ha) Under Environmental Cluster

Alibori - - - - - 761 555 1,316

Atakora - - - 30 6.38 1,915 112 2,064

Borgou - - 0.04 901 0.99 1,658 - 2,560

Collines - - 5.96 1,395 0.06 0.06 - 1,401

Donga - - 0.58 573 9.86 525 - 1,109

Plateau - - 23.81 156 - - - 180

Zou - - 7.58 211 - - - 219

Target yam area - - 37.98 3,267 17.28 4,859 668 8,848

Country yam area 0.05 29.83 801 3,711 16.62 5,032 1,852 11,443

Département Percentage (%) of Area Under Environmental Cluster

Alibori - - - - - 57.8 42.2 14.9

Atakora - - - 1.5 0.3 92.8 5.4 23.3

Borgou - - 0.0 35.2 0.0 64.8 - 28.9

Collines - - 0.4 99.6 0.0 0.0 - 15.8

Donga - - 0.1 51.7 0.9 47.3 - 12.5

Plateau - - 13.2 86.8 - - - 2.0

Zou - - 3.5 96.5 - - - 2.5

Target yam area - - 0.4 36.9 0.2 54.9 7.5 100.0

Country yam area 0.0 0.3 7.0 32.4 0.1 44.0 16.2 100.0

Yam production (tons) - - 0.04 0.84 0.00 1.24 0.06 2.19

% Yam production - - 2.0 38.4 0.1 56.6 3.0 100.0
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seemed not well captured within the current target area for breeding operations and was represented 
by only 0.3% of the current yam breeding research targets. TSE 2 is an important environment for 
yam cultivation as 33% of total yam production in Côte d’ Ivoire takes place within this cluster, 
indicating under-representation and gaps when study area selection was made. Our result of the yam 
environment clustering could serve as a useful tool to strategically represent and locate the testing 
sites for yam breeding operations for the country.

Environmental Clustering Analysis for Ghana
Environmental cluster analysis for Ghana showed that about 7.1 million ha are within the current 
target areas of the breeding program (Table 7). Out of the seven clusters only three had significant 
proportions within the current target yam area of the breeding program. These are TSE 3, TSE 4, and 
TSE 6 with 15, 51, and 34%, of occurrence respectively. Although TSE 3 covered an area of 1.01 
million ha within the target study area, it is representative of 5.3 million ha in the entire yam growing 
region. This implies that breeding trials conducted in TSE 3 will be representative of a larger area 
within Ghana’s yam growing ecologies as well as the West African region. Similarly, experiments 
conducted within TSE 4 (Table 7) will be representing a larger area of over 6.4 million ha in the 
yam growing region. More detailed assessment of the distribution of environmental clusters among 
regions in the target area revealed that about 89% of clusters occurred within Brong Ahafo region 
(35%) and Northern region (53.6%), leaving only 11% for Ashanti. In Ashanti and Brong Ahafo, only 
TSE 3 and TSE 4 occurred in significant proportions while TSE 6 featured prominently in Northern 
region. Although TSE 2 occupied a significant area of about 4.3 million ha (18.9%) of the entire 
yam growing area, it was not well represented in the project target area, probably owing to its low 

Table 6. Yam environmental clusters by area and percentage for Côte d’Ivoire

Regions
TSE1 TSE2 TSE3 TSE4 TSE5 TSE6 TSE7 Total 

(Regions)Area (‘000 ha) Under Environmental Cluster

Savanes - - 5.0 2,422.1 81.3 1,476.6 1.4 3,986

Vallée Du Bandam - - 939.3 1,870.1 0.3 6.6 - 2,816

Zanzan - - 1,051.9 2,519.6 3.0 229.4 - 3,804

District Autonom - - 171.8 32.0 - - - 204

Sassandra Maraho - 33.4 2,219.5 103.2 4.7 - - 2,361

Target Yam Area - 33.4 4,387.5 6,946.8 89.3 1,712.6 1.4 13,171

Country yam area 1.2 6,272.2 11,016.0 8,407.3 4,203.8 1,869.3 2.1 31,772

Percentage (%) of Area Under Environmental Cluster

Savanes - - 0.1 60.8 2.0 37.0 0.0 30.3

Vallée Du Bandam - - 33.4 66.4 0.0 0.2 - 21.4

Zanzan - - 27.7 66.2 0.1 6.0 - 28.9

District Autonom - - 84.3 15.7 - - - 1.5

Sassandra Maraho - 1.4 94.0 4.4 0.2 - - 17.9

Target yam area - 0.3 33.3 52.7 0.7 13.0 0.0 100.0

Country yam area 0.0 19.7 34.7 26.5 13.2 5.9 0.0 100.0

Total yam production 
(million tons) - 1.7 2.4 0.8 0.1 0.2 - 5.2

% Yam production - 32.8 46.6 15.1 2.5 3.0 - 100.0
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importance in yam production. TSE 2 accounted for only about 3.9% of the total yam production 
in the country. This is not unexpected as it is predominantly an area where cultivation of cocoa and 
other tree crops is predominant.

Socioeconomic Analysis of Yam Growing Zones of Target Countries
The results of socioeconomic analysis of the yam producing areas of the target countries are presented 
in Table 8. A quick overview of these results shows that about 181 million people currently live in 
the yam zones with about 68% living below poverty levels at $2 a day. The projected population of 
the region for 2050 is 366 million. Yam production in the entire region is about 45 million t with 
over 33 million t (75%) produced in Nigeria. Among the target countries, the development indicator 
of poverty varied substantially with Bénin having the worst poverty level of 86% and Côte d’Ivoire 
the lowest, at about 45%. Nigeria ranked second for levels of poverty in the yam producing regions 
(79%) while Ghana ranked third (57%). Poverty levels varied slightly within yam growing clusters of 
the target countries. For instance, TSE 5 and TSE 7 of Bénin displayed the highest level of poverty 
incidence at about 99% while TSE 2 which exhibited the lowest was 72%. In Ghana, poverty level was 
highest at 78 and 82% in the two northernmost clusters (TSE 6 and TSE 7) while it became low at the 
southernmost clusters of environments, TSE 2 to TSE 4. Poverty incidence in these countries revealed 
an increasing gradient from the south to the north. This is probably due to decreasing agricultural 
potential from the coast to the hinterland as agriculture is the mainstay of the populace in the region. 
Moreover, this trend follows the annual rainfall gradient which decreases as latitude increases, and 
consequently production potential equally declines since most agricultural activities are rain-fed.

Total yam production computed from SPAM 2005 Version 3 (You et al., 2014) varied substantially 
among the project countries with Nigeria leading with 33.8 million t owing mainly to larger areas 
of cultivation. Total production in the other three target countries was about 11 million t with Côte 
d’Ivoire producing 5.2 million t, Ghana 3.9 million t, and Bénin the least, 2.2 million t (Table 8). 
Average yam yield in the target area was about 9.3 t/ha. Although yam production varied significantly 

Table 7. Yam environmental clusters by area and percentage for Ghana

Region
TSE1 TSE2 TSE3 TSE4 TSE5 TSE6 TSE7 Total 

(Regions)

Area (‘000 Ha) Under Environmental Cluster

Ashanti - 3.1 461 333 1.2 - - 799

Brong Ahafo - - 617 1,859 0.1 13.3 - 2,489

Northern - - 1.2 1,386 3.1 2,411 - 3,801

Yam target area - 3.1 1,079 3,578 4.4 2,424 - 7,089

Country yam area 0.1 4,327 5,332 6,396 88.6 6,634 167 22,944

Percentage (%) of Area Under Environmental Cluster

Ashanti - 0.4 57.7 41.7 0.1 - - 11.3

Brong Ahafo - - 24.8 74.7 0.0 0.5 - 35.1

Northern - - 0.0 36.5 0.1 63.4 - 53.6

Yam target area - 0.0 15.2 50.5 0.1 34.2 - 100.0

Country yam area 0.0 18.9 23.2 27.9 0.4 28.9 0.7 100.0

Yam production 
(million t) - 0.15 0.96 1.59 0.01 1.20 0.01 3.92

Yam production (%) - 3.9 24.4 40.5 0.3 30.7 0.2
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Table 8. Socioeconomic characteristics of the target clusters of yam production environment in the four West African countries

Total 
Population

No. of Poor 
People Living 
Below $2/Day

Poor 
People 
Living 

Below $2/
Day (%)

Projected 
Population in 

2050

Total Yam 
Production (t)

Mean 
Yam 
Yield 
(t/ha)

Market Access 
(Mean Hour 
of Travel to 

Towns > 20,000 
Inhabitants)

Benin

TSE 1 - - - - - - -

TSE 2 304,830 218,716 71.75 1,042,579 - - 0.9

TSE 3 3,535,249 2,686,059 75.98 4,956,610 43,032 5.8 2.3

TSE 4 3,030,291 2,451,580 80.90 5,159,076 840,994 8.3 2.9

TSE 5 4,603 4,557 99.00 12,137 1,838 12.2 1.9

TSE 6 2,398,018 2,190,876 91.36 3,924,065 1,239,354 11.5 3.5

TSE 7 674,227 667,049 98.94 1,042,276 64,677 10.6 5.8

Bénin Total/Mean 9,947,219 8,218,838 86.32 16,136,743 2,189,895 8.4 2.9

Côte d’Ivoire

TSE 1 57 - - 5,575 - - -

TSE 2 8,599,905 3,533,243 41.08 17,855,217 1,710,063 8.8 5.3

TSE 3 8,837,875 3,565,882 40.35 15,839,021 2,430,641 8.0 3.4

TSE 4 2,837,158 1,060,552 37.38 4,400,581 786,318 7.3 3.1

TSE 5 982,751 438,125 44.58 1,893,518 131,838 6.8 3.2

TSE 6 1,047,842 320,780 30.61 1,292,984 157,889 6.6 2.7

TSE 7 917 673 73.38 6,623 - - -

Côte d’Ivoire Total/
Mean 22,306,506 8,919,255 44.56 41,293,519 5,216,748 7.7 3.6

Ghana

TSE 1 - - - - - - -

TSE 2 6,387,837 2,378,594 37.24 11,264,383 153,520 9.4 2.7

TSE 3 10,938,677 4,311,761 39.42 17,980,772 955,316 7.5 3.1

TSE 4 4,741,111 1,813,659 38.25 6,238,857 1,589,787 8.6 3.8

TSE 5 34,996 22,568 64.49 66,957 10,370 10.0 3.4

TSE 6 3,634,132 2,983,489 82.10 6,032,148 1,204,019 9.8 3.1

TSE 7 478,093 373,996 78.23 378,305 8,851 9.3 2.5

Ghana Total/Mean 26,214,847 11,884,067 56.62 41,961,422 3,921,863 8.9 3.2

Nigeria

TSE 1 36,050,893 27,790,799 77.09 79,558,130 6,475,538 10.0 3.8

TSE 2 1,618,627 1,320,723 81.60 7,455,192 233,886 7.0 3.4

TSE 3 29,251,122 21,785,165 74.48 65,615,067 7,055,282 10.9 2.5

TSE 4 26,770,892 20,060,252 74.93 50,498,141 8,630,461 11.7 3.6

TSE 5 7,230,050 5,569,116 77.03 17,601,654 2,078,062 9.3 5.0

TSE 6 12,456,182 9,836,577 78.97 23,641,143 6,981,449 11.7 3.6

TSE 7 9,483,191 8,450,674 89.11 21,956,086 2,368,779 9.7 3.6

Nigeria Total/Mean 122,860,957 94,813,306 79.03 266,325,414 33,823,457 10.5 3.6

Target countries /
Total /mean 181,329,528 123,835,466 68 365,717,097 45,151,963 9.3 3.5
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among the countries and within yam growing clusters, yield varied only slightly within the target area. 
Average yield was highest in Nigeria at 10.5 t/ha, followed by Ghana (9.0 t/ha) while it was lowest in 
Côte d’Ivoire at 7.7 t/ha. From this analysis, average yam yield of 9.3 t/ha in the region is below the 
attainable yield of 50 t/ha (FAO, 2014). Hence the AfricaYam project seeks to bridge the yield gap 
and produce varieties suitable for sustainable intensification and higher productivity.

Access to markets for inputs and outlets for production is very important for agricultural 
development. Poor access can minimize farmers’ productivity and profitability (Ulimwengu et al., 
2009). Results of market access analysis using travel time to settlements with populations above 
20,000 showed that average travel time in the entire region was 3.5 hours. According to HarvestChoice 
(2015) those places with a travel time less than 2 hour are classified as having good market access; 
and those with 2-4 hours of travel have medium access; those with travel time longer than 4 hours 
have poor access. It is clear from Table 8 that accessibility was generally medium in the whole target 
area with some variations among countries and clusters. Yam production environment TSE 5 of 
Benin Republic was found to have the best market access - about 1.9 hours - while the production 
domain with the worst access - a mean travel time of about 5.3 hours - was found in TSE 2 in Côte 
d’Ivoire where about 33% of the yam is being produced. Accessibility was probably worst due to 
high forest ecology of TSE 2. The problem of market accessibility appeared more pronounced in 
production environment TSE 5 in Nigeria with a mean travel time to markets of about 5 hours. This 
may be probably due to the high-altitude environment of TSE 5. Our results suggest that poor market 
accessibility in the forest zone and high-altitude environments may affect the effectiveness and impact 
of the AfricaYam project’s breeding program.

CONCLUSION AND RECOMMENDATION

Most often trial sites for varietal testing are chosen based on convenience and ease of access. Cluster 
maps provide unbiased guides for site selection for varietal testing to optimally represent the target 
set of production environments. Results of our analysis suggest that the current breeding target areas 
of the yam improvement programs are truly representative of environmental characteristics in over 
90% of the yam growing regions of Nigeria and Bénin but not well represented in Ghana and Côte 
d’Ivoire. This analysis enables us to discover where gaps exist in breeding programs.

This yam production environment mapping also further highlighted the presence of other potential 
areas less targeted by current breeding efforts in the four West African countries where yam variety 
development or testing could help match the varieties onto the target environments through scaling 
up and out the research findings for wider impact. Moreover, the clustering results can be used to 
optimize varietal testing and selection programs within and across the target countries. The result 
of the socioeconomic analysis showed possible impact on poverty reduction in the target area and 
suggested problems of access to market in the production zones.
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APPENDIX

Supplementary Tables

Table 9. 23 Bioclimatic variables and their description

Variable Description
Original 

Resolution 
(m)

Source

solarRad Annual Solar radiation (kJ m-2 day-1) 1000 Fick & Hijmans, 2017

Aridity 
Index Aridity index(fraction) 1000 Trabucco & Zomer, 2009

PET Potential evapotranspiration (mm) 1000 Trabucco & Zomer, 2009

Sunhr Annual Sunshine hour (hour) 5000 Kothe et al., 2017

BIO1 Annual Mean Temperature (°C) 1000 Fick & Hijmans, 2017

BIO2 Mean Diurnal Range (Mean of monthly (max temp - min 
temp)) (°C) 1000 Fick & Hijmans, 2017

BIO3 Isothermality (BIO2/BIO7) (* 100) (fraction) 1000 Fick & Hijmans, 2017

BIO4 Temperature Seasonality (standard deviation *100) (°C) 1000 Fick & Hijmans, 2017

BIO5 Max Temperature of Warmest Month (°C) 1000 Fick & Hijmans, 2017

BIO6 Min Temperature of Coldest Month (°C) 1000 Fick & Hijmans, 2017

BIO7 Temperature Annual Range (BIO5-BIO6) (°C) 1000 Fick & Hijmans, 2017

BIO8 Mean Temperature of Wettest Quarter(°C) 1000 Fick & Hijmans, 2017

BIO9 Mean Temperature of Driest Quarter (°C) 1000 Fick & Hijmans, 2017

BIO10 Mean Temperature of Warmest Quarter (°C) 1000 Fick & Hijmans, 2017

BIO11 Mean Temperature of Coldest Quarter (°C) 1000 Fick & Hijmans, 2017

BIO12 Annual Precipitation (mm) 1000 Fick & Hijmans, 2017

BIO13 Precipitation of Wettest Month (mm) 1000 Fick & Hijmans, 2017

BIO14 Precipitation of Driest Month (mm) 1000 Fick & Hijmans, 2017

BIO15 Precipitation Seasonality (Coefficient of Variation) 
(fraction) 1000 Fick & Hijmans, 2017

BIO16 Precipitation of Wettest Quarter (mm) 1000 Fick & Hijmans, 2017

BIO17 Precipitation of Driest Quarter (mm) 1000 Fick & Hijmans, 2017

BIO18 Precipitation of Warmest Quarter (mm) 1000 Fick & Hijmans, 2017

BIO19 Precipitation of Coldest Quarter (mm) 1000 Fick & Hijmans, 2017
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Table 10. 21 Edaphic variables and description

Variable Description Resolution 
(m) Source

ALUM3S Aluminum concentration (Mehlich 3) 0-20 cm depth 250 ISRIC, 2016, Hengl et al., 
2017

AWCtS Porosity (volumetric fraction) based on PTF 0-20 cm 250 ISRIC, 2016, Hengl et al., 
2017

EACKCL Exchangeable acidity (KCl) 0-20 cm depth 250 ISRIC, 2016, Hengl et al., 
2017

EALKCL Exchangeable Aluminum (KCl) for 0-20 cm depth 250 ISRIC, 2016, Hengl et al., 
2017

ECN Electrical conductivity for 0-20 cm depth 250 ISRIC, 2016, Hengl et al., 
2017

EMGX Exchangeable Mg for 0-20 cm depth 250 ISRIC, 2016, Hengl et al., 
2017

EXBX Exchangeable bases total 0-20 cm depth 250 ISRIC, 2016, Hengl et al., 
2017

EXKX Exchangeable K for 0-20 cm depth 250 ISRIC, 2016, Hengl et al., 
2017

NTO Total nitrogen for 0-20 cm depth 250 ISRIC, 2016, Hengl et al., 
2017

AWCh1 Available soil water capacity (volumetric fraction) 0-15cm 250 ISRIC, 2016, Hengl et al., 
2017

BDRICM Depth to bedrock (R horizon) up to 200 cm 250 ISRIC, 2016, Hengl et al., 
2017

BDRLOG Probability of occurrence (0-100%) of R horizon 250 ISRIC, 2016, Hengl et al., 
2017

BDTICM Absolute depth to bedrock (in cm) 250 ISRIC, 2016, Hengl et al., 
2017

BLDFIE Bulk density (fine earth) in kg / cubic-meter at depth 0-15 
cm 250 ISRIC, 2016, Hengl et al., 

2017

CECSOL Cation exchange capacity of soil in cmolc/kg (0-15cm) 250 ISRIC, 2016, Hengl et al., 
2017

CLYPPT Clay content (0-2 micro meter) mass fraction in % (0-15 
cm) 250 ISRIC, 2016, Hengl et al., 

2017

ORCDRC Soil organic carbon content in g per kg (0-15 cm) 250 ISRIC, 2016, Hengl et al., 
2017

PHIHOX Soil pH x 10 in H2O (0-15cm) 250 ISRIC, 2016, Hengl et al., 
2017

SLTPPT Silt content (2-50 micro meter) mass fraction in % 250 ISRIC, 2016, Hengl et al., 
2017

SNDPPT Sand content (50-2000 micro meter) mass fraction in % 250 ISRIC, 2016, Hengl et al., 
2017

TEXMHT Texture class (USDA system) 250 ISRIC, 2016, Hengl et al., 
2017
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Table 11. 23 Remote sensing vegetation layers and terrain variables

Variable Description Resolution 
(m) Source

SPAR SPOT long-term average (1998–2014) fraction of absorbed 
photosynthetically active radiation 1000 AfSIS, 2017

SCOVER SPOT long-term average (1998–2014) fraction of Green Vegetation 
Cover 1000 AfSIS, 2017

EVI MODIS long-term (2000–2017) average enhanced vegetation index 250 AfSIS, 2017

NDVI MODIS long-term (2000–2017) average normalized difference 
vegetation index 250 AfSIS, 2017

MREFB1 MODIS long-term (2000–2017) average blue reflectance 250 AfSIS, 2017

MREFB2 MODIS long-term (2000–2017) average green reflectance 250 AfSIS, 2017

MREFB3 MODIS long-term (2000–2017) average red reflectance 250 AfSIS, 2017

MREFB7 MODIS long-term (2000–2017) average Mid infra-red reflectance 250 AfSIS, 2017

GPP MODIS long-term average (2000-2010) Gross Primary Productivity 1000 AfSIS, 2017

NPP MODIS long-term average (2000-2010) Net Primary Productivity 1000 AfSIS, 2017

LAI MODIS long-term average (2000-2010) Leaf Area Index 1000 AfSIS, 2017

MPAR MODIS long-term average (2000–2016) fraction of absorbed 
photosynthetically active radiation 1000 AfSIS, 2017

MBNA MODIS long-term (2000–2016) average black-sky NIR albedo 500 AfSIS, 2017

MBSA MODIS long-term (2000–2016) average black-sky SWIR albedo 500 AfSIS, 2017

MBVA MODIS long-term (2000–2016) average black-sky VIS albedo 500 AfSIS, 2017

MWNA MODIS long-term (2000–2016) average white-sky NIR albedo 500 AfSIS, 2017

LSTD MODIS long-term 2002-2017 average day land surface temperature 1000 AfSIS, 2017

LSTN MODIS long-term 2002-2017 average night land surface temperature 1000 AfSIS, 2017

Elevation Shuttle Radar Topography Mission (SRTM) DEM 90 Jarvis et al., 2008

TWI Topographic Wetness Index 90 SAGA GIS*

STRPI Stream Power Index 90 SAGA GIS*

slope Soil Slope 90 SAGA GIS*

Aspect Soil Aspect 90 SAGA GIS*

*SAGA GIS is by Conrad et al., 2015
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