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ABSTRACT

Containers are a key technology in modern cloud environments. They provide a lightweight manner 
to package and deploy service applications compared to virtual machines, with an isolated processing 
approach. The state-of-the-art containers LB algorithms do not take into account efficient mapping 
between container requirements and servers’ capabilities, resulting in wastage of resources and 
increased response time, which negatively impacts the overall QoS. This manuscript proposes a new 
LB algorithm for containers called resource-aware least busy (RALB). RALB not only considers the 
current load of each node (as per the least connection) but also takes into account the current resource 
requirements of containers. It assigns containers to the least busy server with optimal capacity from 
a resource perspective. The authors implemented a prototype of the algorithm, and simulation results 
shows that more even distribution of workload and better utilization of resources across the nodes can 
be achieved, resulting in lower latency and high reliability compared to the randomized algorithm.

KeywoRdS
Capacity-Based Scheduling, Cloud Computing, Containerized Cloud, Distributed Systems, Load Balancing, 
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INTRodUCTIoN

In the realm of cloud computing (CC) architectural design, virtualization serves as a fundamental 
principle, facilitating the transition from on-premise infrastructure to a scalable model of remotely 
connected services. The isolation of machines and applications is crucial to ensuring the delivery 
of computing resources through an on-demand network infrastructure. Traditionally, a hypervisor 
is responsible for creating and managing virtual machines (VMs) that host applications and handle 
client requests. This approach is primarily suitable for conventional monolithic architecture-based 
applications, where all software components are designed, built, deployed, and managed as a single 
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unit codebase (Guo & Yao, 2018). However, a recent paradigm shift has occurred with the introduction 
of container-based microservices. This approach allows applications to be allocated on multiple 
lightweight containers, distributed across a large number of nodes (Thongthavorn & Rattanatamrong, 
2019). Regardless of whether deployment is VM-based or container-based, cloud services providers 
(CSP) are expected to ensure system availability and throughput for different customers under a 
contracted service level agreement (SLA) acceptance criterion. Load balancing (LB) algorithms play 
a vital role in guaranteeing quality of service (QoS) metrics and maximum availability of the cloud 
platform. The primary objective is to prevent any server from becoming overloaded or underloaded. LB 
algorithms aim to distribute tasks as evenly as possible across a set of nodes or computing resources 
(Sahana & Mukherjee, 2020), thereby enhancing business efficiency and reducing the overall makespan 
of the CC system. During the process, priority of each incoming task and its characteristics are 
taken in consideration (Thongthavorn & Rattanatamrong, 2019). When considering LB techniques, 
it is essential to address two key steps: (1) resource allocation and (2) VM/container live migration. 
Resource allocation involves the fair distribution of jobs in the queue to servers, VMs, or containers 
based on the system’s current state and the hardware capability of the hosts. This step ensures that 
jobs to resources are allocated efficiently and effectively. The task scheduling process is considered 
NP-hard problem where state-of-the-art applied strategies need to be improved (Aliyu et al., 2020). 
On the other hand, VM/container live migration enables the real-time transfer of application execution 
contexts, either from one physical host to another or within the same host, without disrupting the 
user experience. Several LB algorithms have been proposed in the literature for the same purposes, 
addressing both use cases of (VM) and container-based cloud systems.

our Contribution
In this paper, our focus is on the container-based approach. We introduced a novel load balancing 
algorithm called Resource-Aware Least Busy (RALB), which aims to efficiently allocate and distribute 
container workloads among servers in the load balancing process. The “Resource Aware” keyword 
incorporates real-time monitoring of server’s resource usage (CPU, memory, and bandwidth) before 
proceeding to any load balancing decision. The term “least busy” highlights the algorithm’s core 
principle of allocating containers to servers with the lowest workload from a resource perspective. By 
considering server resources and allocating containers to the least busy server capable of meeting the 
container’s requirements (CPU, memory, and bandwidth), RALB optimizes resource utilization and 
achieves effective load balancing. This approach sets it apart from the “least connection” algorithm, 
which predominantly considers the number of active connections. The rest of paper is organized as 
follows: Firstly, we will underline the container solution compared to standard virtualization with 
highlight to related LB works in containerization, then follow with a section describing the system 
model of the proposed algorithm. Subsequently, we will present the experimental results for the 
RALB alongside with comparison charts. Finally, we conclude our work and provide directions for 
improvements in the last section.

MoTIVATIoN ANd ReLATed woRK

Containerized vs. Virtualized Cloud
Containerized cloud systems present a new model for designing cloud solutions, using packaging and 
isolation mechanisms to encapsulate services along with their dependencies into atomic-contained 
units called containers. Docker and Kubernetes are widely adopted technologies for development, 
deployment, and load balancing of containerized applications (Nguyen & Kim, 2020, pp. 2-3). Docker, 
an open-source platform, simplifies the process of building and deploying applications within isolated 
containers. In contrast, Kubernetes enables the orchestration of container runtime systems across a 
cluster of networked resources. The workflow typically involves creating and deploying containers 
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using Docker in the initial stage, followed by managing the runtime, scaling, and overall lifecycle of 
these containers using Kubernetes. Figure 1 provides a visual representation of the container states 
or lifecycle within both technologies.

Compared to virtual machines, containers offer a more lightweight approach to virtualization, as 
they operate at the operating system level, while virtual machines virtualize at the hardware level (Tao 
et al., 2019). Another distinguishing factor is the type of isolation achieved. In the case of virtualization, 
isolation is achieved by creating separate virtual machines (VM1, VM2…VMn) using a hypervisor, 
each with its own guest operating system (OS). On the other hand, containers achieve isolation at the 
process level, with multiple containers (C1, C2…..Cn) running in the same environment sharing common 
resources (memory, CPU, and storage). In this scenario, the security and isolation of applications rely 
on the host operating system’s security mechanisms and the underlying containerization technology. 
Figure 2 describes abstraction levels for both VM and container-based cloud architectures.

Overall, there are several key differences between virtual machine (VM) and container-based 
cloud systems:

• Resource utilization: Virtual machines run on a full copy of a guest operating system, resulting 
in heavier resource requirements. Containers, by contrast, share the same host operating system 
and only utilize the necessary resources to run the application and its dependencies.

Figure 1. The container states in docker and kubernetes

Figure 2. VM vs. container abstraction levels
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• Startup time: VM typically takes several minutes to get started, while containers can be initiated 
almost instantly within a few seconds (Zhao et al., 2017).

• Security: VMs provide a higher level of security as virtualization occurs at the hardware level, ensuring 
isolation between the guest operating system and other VMs at the same host, whereas containers share 
the host operating system and rely on it to manage security and priorities for container execution contexts.

• Portability: Containers are more portable compared to VMs. They are lightweight and do not include entire 
OS binaries and libraries except necessary modules for their runtime execution. This makes container migration 
easier across different environments, including different cloud providers and on-premise data centers.

• Management overhead: Containers have less management overhead since they share the same 
operating system.

• Live migration: Live migration of containers is more complicated compared to VMs. Docker-
based containers, with their layered image and shared kernel for scheduling introduce additional 
considerations for migration (Xu et al., 2020).

Related work
Several load balancing algorithms have been proposed in the literature for both the containerized 
and VM-based cloud. We applied a rigorous selection process to filter out similar work and ensure 
the distinctiveness and novelty of our research. Our criteria included a comprehensive review of 
the literature to identify existing load balancing algorithms in containerized cloud environments. 
We specifically focused on algorithms that addressed resource-awareness, workload distribution, 
scalability, or energy-consumption. Publications were evaluated based on their relevance to our research 
objectives and their contribution in terms of novel methodologies or performance improvements in 
the area of workload management in the containerized clouds.

Sureshkumar and Rajesh (2017) proposed an energy-aware processing model to balance load on 
docker containers with energy reduction. They provided a solution to concentrate the workload on a subset 
of docker containers, replicate a new container whenever required for overloading use cases following 
threshold conditions, and then destroy a container when load is decreased by docker API. This solution 
optimizes energy consumption, since the smallest set of servers operates evenly at optimal energy. Based 
on load requirements, a state machine between sleep mode and active mode addresses energy utilization 
criterion for all containers, which improves overall power consumption for the cloud infrastructure.

Guo and Yao (2018) designed a container scheduling strategy based on the neighborhood division 
(CSBND) algorithm, which considers system load balancing and response time to improve overall 
system performance in micro service scenarios, differently to VM-based traditional load balancing 
algorithms. The idea is to consider call dependencies between micro service containers, which are 
allocated to different physical machines (PMs). A weighted graph is used first to build the container 
network cells, then a method of container neighborhood division is performed which is mandatory for 
the processing of the LB algorithm. Optimally, containers and their dependencies are more likely to 
be placed in neighboring hosts. Validation of the algorithm has been performed compared to MOPSO 
and spread algorithms considering workload required. CSBND shows a lower CPU and memory usage 
and a reduced network call among different PMs, with optimization of system performance up to 25%.

Kaur et al. (2019) addressed the optimization of energy utilization as well for data centers (DCs). 
They formulated a multi-objective optimization problem (MOOP) for container placement with the 
aim of balancing workload and minimizing overall energy consumption. Considering that 416.2 
billion KWh of energy was utilized by DCs in 2016, CPU cores, bandwidth, and storage container 
requirements have been considered as attributes for the algorithm. The goal is to attain optimal efficient 
energy utilization while mapping containers to physical hosts. MOOP operates based on a master and 
host, called agents, which monitor energy consumption and workload balancing considering SLA. 
Simulations have been performed comparing MOOP to the first fit decreasing (FFD) approach, and 
experimental results showed that MOOP performs better than FDD in terms of energy utilization and 
SLA violation, at compromise of 10.39% higher load additionally on the hosts.
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Patel et al. (2020) introduced a grey wolf optimization (GWO) algorithm for load balancing addressing 
the overall makespan of the cloud system. Their system model consists of a task manager and task scheduler 
main components. Containers’ specifications have been investigated as a set of memory size (amount 
of RAM in GB) and processing capacity (MIPS). As metrics to determine the overall makespan of all 
tasks allocated to containers considering waiting time WT, execution time ET and completion time CT. 
Additionally, the algorithm also considers the load balance requirements for each container by introducing 
the load variation LV criterion. GWO has been analyzed in comparison to the genetic algorithm and particle 
swarm optimization (PSO) based algorithms. The experimental results indicate that GWO is more effective 
than the other algorithms in terms of load balancing and reducing makespan.

Patra et al. (2020) proposed a randomized algorithm for containerization in cloud environments. 
The algorithm considers jobs as balls and hosts as bins. The idea of the algorithm is split in two phases: 
1) construction of a minimum edge weight graph with fully unidirectional connection of all servers 
and 2) allocation of balls/tasks into servers with minimum load via local search in neighboring servers. 
The edge weight or distance between two servers has been generated randomly in the first phase to 
make the graph fully connected. Experiments have been performed in four uses cases considering 
different numbers of tasks, and results showed that load balancing is performed smoothly.

Lin et al. (2019) proposed an ant colony algorithm for multi-objective optimization in 
microservices used for container-based cloud systems. They considered in their model the resource 
requirements of servers, the number of requests, and the failure rate of the physical nodes. It uses the 
quality evaluation function of feasible solutions to ensure the validity of pheromone updating and 
combines multi-objective heuristic information to improve the selection probability of the optimal 
path. First, network transmission overhead is calculated among all containers between CSP and CSC of 
the microservice. Second, the maximum resource utilization rate is calculated considering the MRLB 
optimization problem. Last, the average number of failures for a microservice request is determined. 
Experimental results showed that the proposed optimization algorithm achieves better results in the 
optimization of cluster service reliability, cluster load balancing, and network transmission overhead.

THe SySTeM ModeL

This section illustrates the system framework of our proposed RALB algorithm. Considering a total 
of N servers, denoted by the set S= {S1, S2, . . . Sn, where (Si) refers to the ith node in the reference 
cloud data center, the variables cpu_usage, mem_usage, and bw_usage present the respective resource 
(cpu, memory, and bandwidth) usage for each server (Si) hosting a set of containerized applications. 
Correspondingly, cpu_cap, mem_cap, and bw_cap denote the maximum amount of resources a single 
node can process. The capacity of each server is utilized by RALB algorithm as a reference point for 
determining which node is currently the “least busy” from a resource perspective and therefore best suited 
for scheduling new containers. Each server (Si) is assumed to host a number x Î {1..M} of containers 
with their known respective resource requirements. Similarly, the notation C refers to the global set of 
containers C={C1, C2, . . . Cm} that are being allocated or migrated. The allocation of the container (Cj) 
to the server (Si) is denoted Cji. Each Container Cji, is specified by its runtime resource requirements 
C(ji)Cpu, C(ji)Mem and C(ji)Bw. The system model of RALB consists of two main components:

• Resource manager (RM): This is responsible for supervising and monitoring the resource usage (RU) 
of each physical machine and submitting the outcome to the container scheduler. RU(Si) denotes the 
current resource usage for a server (Si) and the functional algorithm is specified in the following equation:
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• Container scheduler (CS): This is responsible for analysis RU inputs, sorting data, and allocating the 
containers to servers according to RALB strategy. Both RALB components are presented in Figure 3.

Algorithms 1 and 2 contain the pseudo code for implementation of RALB components.

Algorithm 1: Resource Usage (RU) Calculation Algorithm

Inputs:
Server_Set={Si|i = 1..N} 
S_PARAMS = S(i)CpuCap

, S(i)
MemCap

, S(i)
BwCap

Container_Set ={Cj|j = 1:M} containers running on servers 
C_PARAMS = C(ji)

cpu,
 C(ji)

mem
, C(ji)

bw

Output:
List of sets (Server Si, Resource Usage RU(i)) 
Begin
Initialize S

Cpu
, S

Mem
, S

Bw
 to zero for all servers.

Initialize a blank list for output sets 
Initialize RU, i ¬ 0 
for i = 0; i < N; i++; do
    for Cji {container allocated to Server(i)} do
        S(i)

Cpu
 ¬ S(i)

Cpu
 +C(ji)

cpu

        S(i)
Mem
 ¬ S(i)

Mem
 +C(ji)

mem

        S(i)
Bw
 ¬ S(i)

Bw
 +C(ji)

bw

End for

RU i
S i Cpu

S i CpuCap

S i mem

S i MemCap

S i Bw

S i BwCap
( )

( )

( )

( )

( )

( )

( )
← + +

Insert (S(i), RU(i)) in the output list of resource usage 
End for

Figure 3. RALB components
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Algorithm 2: RALB Load Balancing Algorithm

Inputs:
Server_Set={Si|i = 1..N} 
S_PARAMS = S(i)CpuCap, S(i)MemCap, S(i)BwCap, S(i)cpu_usage, S(i)mem_usage, S(i)bw_usage
Container_Set = {Cj|j = 1:M} containers to be allocated 
C_PARAMS = C(ji)

cpu
, C(ji)

mem
, C(ji)

bw

Output:
RALB Cj to Si mapping 
Begin:
Call resource usage RU for all servers 
Sort the list of sets (Si, RU(i)) regarding RU in ascendant way 
Initialize i ¬ 0 
for container Cj {waiting in the queue for allocation} do
    for i = 0; i < N; i++; do
        if S(i)

CpuCap
 +C(j)

cpu
 £ S(i)

CpuCap

         and S(i)
MemCap

 +C(j)
mem
 £ S(i)

MemCap

         and S(i)
BwCap

 +C(j)
bw
 £ S(i)

BwCap
 then

             Allocate Cj to Si (Cji) 
             S(i)

cpu_usage
 = S(i)

cpu_usage
 +C(j)

cpu

             S(i)
mem_usage

 = S(i)
mem_usage

 +C(j)
mem

             S(i)
bw_usage

 = S(i)
bw_usage

 +C(j)
bw

       else Continue
       end if
    end for
Wait 1000 ms 
Repeat second loop of server local search 
end for

eXPeRIMeNTAL ANALySIS ANd ReSULTS

We performed a simulation of the proposed RALB algorithm in comparison to the randomized 
one. The required input parameters for the experiment have been set to proceed for the analysis as 
follows: a set of 5 servers being considered for the simulation, with their initial runtime resource 
usage S(i)Cpu_usage, S(i)mem_usage, S(i)bw_usage as detailed in Table 1.

CPU capacity (cpu_cap), memory capacity (mem_cap), and bandwidth capacity (bw_cap) are 
considered to be 100 for simulation. Additionally, the pool of allocated containers for balancing 
purposes are being considered for each resource usage (cpu, memory, and bandwidth) use case. The 

Table 1. Experiment servers initial runtime resource usage

Server CPU_usage Mem_usage Bw_usage

Server 1 5 4 8

Server 2 10 4 27

Server 3 7 8 8

Server 4 11 5 30

Server 5 25 8 19
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runtime requirements of containers are described in Tables 2, 3 and 4, and simulation outcomes 
regarding both random distribution and the RALB algorithm are displayed below each use case.

The simulation results clearly demonstrate the efficiency of the RALB algorithm in balancing 
the load distribution among data center servers. We conducted the simulations using a diverse set of 
containers (labeled A-R), each with distinct resource requirements and awaiting to be allocated most 
evenly by RALB. The resource aware load balancing algorithm calls the resource usage function to 
dynamically assess the current load status of servers regarding CPU (1), memory (2), and bandwidth 
(3). Additionally, it takes into consideration the actual resource requirements of the container being 
allocated/migrated to select the least busy server that is best suited to handle the container’s resource 
demands (CPU, memory, and bandwidth).

Figures 4 and 5 demonstrate that the RALB algorithm exhibits a higher level of effectiveness 
in achieving an even distribution of the load among the five servers. The effectiveness is captured 
considering how much load is added to the least CPU loaded hosts before and after compared to the 
random algorithm (RA). The RA fails to consider the capacity of the nodes, resulting in a bottleneck 
scenario for servers 2 and 4. Furthermore, examining the memory usage scenario (as depicted in 
Figures 6 and 7), it can be seen that our proposed RALB algorithm effectively balances traffic based 
on the specific memory requirements of applications. We notice the allocation/migration of containers 
based on their resource requirements to the least busy servers (server 1, server 2, and server 5). In 
contrast, the RA once again fails to address this aspect, resulting in overload situations for servers 2 
and 4 due to inadequate consideration of memory requirements. Last, bandwidth requirements (as 
depicted in Figures 8 and 9) follow the same pattern as CPU and memory, almost no overloaded 
or downloaded server calling for the RALB algorithm in the analysis chart; again, much traffic has 
been allocated to least busy servers from a bandwidth perspective. Referring to the RM component, 

Table 2. CPU load analysis use case container resource requirements

Name CPU Memory Bandwidth

Container A 27 10 5

Container B 30 10 5

Container C 12 10 5

Container D 7 10 5

Container E 37 10 5

Container F 13 10 5

Container G 10 10 5

Container H 9 10 5

Container I 11 10 5

Container J 10 10 5

Container K 10 10 5

Container L 12 10 5

Container M 7 10 5

Container N 17 10 5

Container O 13 10 5

Container P 10 10 5

Container Q 9 10 5

Container R 11 10 5
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nodes are aware of both their resource usage and allocated containers’ resource requirements. This 
awareness improves two major metrics for cloud infrastructure:

• Improved quality of service (QoS): By evenly distributing the workload among the available 
servers, the RALB algorithm can improve the QoS for end-users. No overloaded server means 
no redundant calls and faster response time from back-end servers.

• Better resource utilization: The RALB algorithm helps to optimize the use of resources 
by distributing the workload evenly among the servers considering application resource 
requirements. This metric enables CSP to configure their back-end servers based on their 
resource capabilities and to prioritize server response based on the capabilities of the datacenter 
regarding applications requirements.

CoNCLUSIoN ANd FUTURe woRK

The Resource-Aware Least Busy (RALB) algorithm is a novel load balancing approach specifically 
designed for containerized cloud environments. Through its resource-awareness and capacity-based 
scheduling, RALB effectively addresses the limitations of existing algorithms such as the random 
algorithm and least connection. Unlike previous algorithms, the RALB takes into consideration the 
server’s capability from a resource perspective and also the container’s migration time, achieved 
by the sorting process of the resource usage function. The sorting step of server-resource pairs (Si, 
RU(Si)) in the second algorithm reduces the local time search for the less loaded server, resulting 
in faster migration time and workload balancing. Our research demonstrates that RALB achieves a 

Table 3. Memory load analysis use case container resource requirements

Name CPU Memory Bandwidth

Container A 10 30 5

Container B 10 7 5

Container C 10 12 5

Container D 10 7 5

Container E 10 37 5

Container F 10 11 5

Container G 10 14 5

Container H 10 12 5

Container I 10 13 5

Container J 10 10 5

Container K 10 12 5

Container L 10 7 5

Container M 10 17 5

Container N 10 13 5

Container O 10 10 5

Container P 10 9 5

Container Q 10 10 5

Container R 10 11 5
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Table 4. Bandwidth load analysis use case container resource requirements

Name CPU Memory Bandwidth

Container A 10 5 30

Container B 10 5 7

Container C 10 5 12

Container D 10 5 9

Container E 10 5 27

Container F 10 5 13

Container G 10 5 12

Container H 10 5 10

Container I 10 5 11

Container J 10 5 17

Container K 10 5 13

Container L 10 5 12

Container M 10 5 10

Container N 10 5 15

Container O 10 5 15

Container P 10 5 5

Container Q 10 5 9

Container R 10 5 11

Figure 4. Random LB CPU distribution
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more balanced distribution of workload among servers specifically for each resource type, leading 
to improved performance, enhanced resource utilization, and better quality of service (QoS). The 
algorithm dynamically allocates and migrates containers to the least busy servers with least sufficient 
resource capabilities, resulting in better resource utilization and optimized response time. “Better 

Figure 5. RALB CPU distribution

Figure 6. Random LB memory distribution
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resource utilization” refers to the hosting of the containers by the least sufficient server, and thus 
no wastage of a server’s capabilities if the container is not requiring much hardware configuration, 
since the unutilized computing resources cost unnecessary money, reduce profit, and impact energy 
consumption for CSPs (Kamlesh et al., 2023). The experimental results consistently show the 
superiority of RALB over the random algorithm, as evidenced by the histograms and performance 

Figure 7. RALB memory distribution

Figure 8. Random LB bandwidth distribution
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metrics. RALB’s ability to adapt to changing workloads and server capacities makes it a promising 
solution for modern containerized cloud environments. Further improvements of the algorithm may 
focus on dynamic adjustment for server’s capabilities, since HW resource capacities of backend servers 
are considered statically configured by the cloud administrator, which impacts RALB’s effectiveness 
in the case of a server’s failure. This approach would optimize the overall fault tolerance (FT) of the 
containerized cloud systems adopting the proposed RALB algorithm, considering FT as one of the 
key elements of service level objectives (SLOs) for cloud services (Kumari & Kaur, 2023).
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