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ABSTRACT

The aim of process discovery is to discover process models from the process execution data stored 
in event logs. In the era of “Big Data,” one of the key challenges is to analyze the large amounts 
of collected data in meaningful and scalable ways. Most process discovery algorithms assume that 
all the data in an event log fully comply with the process execution specification, and the process 
event logs are no exception. However, real event logs contain large amounts of noise and data from 
irrelevant infrequent behavior. The infrequent behavior or noise has a negative influence on the process 
discovery procedure. This article presents a technique to remove infrequent behavior from event logs 
by calculating the minimum expectation of the process event log. The method was evaluated in detail, 
and the results showed that its application in existing process discovery algorithms significantly 
improves the quality of the discovered process models and that it scales well to large datasets.
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1. INTRODUCTION

Process mining refers to a family of techniques in the field of process management used to support 
the analyses of business processes based on event logs. Business process mining aims at the automatic 
construction of models that explain the behavior observed in event logs (Van et al., 2007). There are 
three classes of process mining techniques: process discovery, conformance checking, and process 
enhancement. Process discovery is based on an event log, and a new model, an a priori model, is 
constructed or discovered based on the low-level events. Conformance checking is used when there is 
an a priori model. The existing model is compared with the process event log, and the discrepancies 
between the log and the model are analyzed. Performance mining is used when there is an a priori 
model. The model is extended with new performance information, such as the processing times, 
cycle times, waiting times, and costs, so that the goal is not to check for conformance, but rather to 
improve the performance of the existing model with respect to certain process performance measures.
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creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium, provided the author of 
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During the process mining/process identification procedure, process discovery is the first step 
to construct the prior module, and it is often used to quickly obtain insights into the process under 
study (Van et al., 2016). Most process discovery algorithms assume that the event logs represent the 
behavior accurately, and that the logs are clean. Thus, these algorithms are designed to incorporate 
all of the behaviors in the event log into their resulting process model as much as possible (Huang 
et al., 2018). However, real event logs contain outliers, and these outliers may represent noise or 
infrequent behaviors (Măruşter et al., 2006). In general, noise refers to behavior that does not conform 
to the process specification and/or its correct execution. Infrequent behavior relates to events that 
may happen in exceptional cases of the process (Sani et al., 2017). Previous works show that the 
low levels of infrequent behavior have a detrimental effect on the quality of the models produced by 
various discovery algorithms, such as the heuristics miner (Weijters et al., 2011), the Fodina process 
discovery (Vanden et al., 2017), and the inductive miner (Leemans et al., 2013) algorithms, even 
though these algorithms claim to have noise-tolerant capabilities.

This paper deals with the issue of discovering high-quality process models in the presence of 
infrequent behavior in the event logs, that is, by filtering the event log prior to applying any particular 
process discovery algorithm.

The remainder of this paper is structured as follows. In Section 2, we discuss the related work, 
and in Section 3, we define the proposed technique and explain our proposed method. Details of 
the evaluation and the corresponding results are given in Section 4. Finally, Section 5 concludes the 
paper and discusses future work.

2. RELATED WORK

A number of outlier detection algorithms have been proposed in the data mining field. These algorithms 
build a data model (e.g., a statistical, linear, or probabilistic model) that describes the normal behavior 
and considers all data points that deviate from this model as outliers (Aggarwal et al., 2015).

In the context of temporal data, these algorithms have been extensively surveyed by Gupta et al. 
(2014) (for events with continuous values, known as time series) and by Chandola et al. (2012) (for 
events with discrete values, known as discrete sequences).

According to Gupta et al. (2014), we can classify these approaches into three major groups. 
The first group encompasses the approaches that deal with the problem of determining if an entire 
sequence of events is an outlier. These approaches either build a model from the entire dataset, i.e., 
from all the sequences (e.g., Budalakoti et al., 2009, Florez-Larrahondo et al., 2005, Sun et al., 2006 
and Zhang et al., 2003) or subdivide the dataset into overlapping windows and build a model for each 
window (e.g., Hofmeyr et al., 1998, Lane et al., 1997, 1999). While the approaches in this group 
can, in principle, be used for filtering out the infrequent process behavior in event logs, the filtering 
would be too coarse grained and lead to the removal of entire traces in the log, which would impact 
the accuracy of the discovered process model.

Approaches in the second group identify single data points as outliers (e.g., Basu et al., 2007, 
Keogh et al., 2002 and Muthukrishnan et al., 2004) or sequences thereof (e.g., Yankov et al., 2008) on 
the basis of a data model of the normal behavior in the log, e.g., a statistical model. These approaches 
are not suitable since they work at the level of a single time series. To apply them to our problem, we 
would need to treat the entire log as a unique time series, which would lead to mixing events from 
different traces based on their absolute order of occurrence in the log. Another option is to treat every 
trace as a separate time series.

However, given that the process events are not repeated often within a trace, their relative 
frequency would be very low, which would lead to considering almost all the events of a 
trace as outliers.

Finally, approaches in the third group identify the anomalous patterns within sequences (e.g., 
Gwadera et al., 2005 and Keogh et al., 2002). These approaches assign an anomaly score to a pattern 



International Journal of Cognitive Informatics and Natural Intelligence
Volume 14 • Issue 2 • April-June 2020

3

based on the difference between the frequency of the pattern in the training dataset and the frequency 
of the pattern in the sequence under analysis. These approaches are not suitable in our case due to 
the absence of a noise-free training dataset that can be used as input.

The outlier detection algorithms, e.g., Gupta et al. (2011, 2014), that are given a graph built from the 
log as input identify the outlier subgraphs within the given graph. These approaches consider undirected 
graphs where the order dependency between the elements is irrelevant. While this filtering mechanism 
may work with process event logs, the removal of infrequent behavior would again be too coarse grained.

The execution of business processes supported by IT systems is generally recorded in most system 
or application logs. These logs can then be converted into event logs for process mining analysis. The 
event logs serve as the starting point for process mining. An event log is a multiset of traces. Each 
trace describes the life cycle of a particular case (i.e., a process instance) in terms of the activities 
executed. Each trace captures the footprint of a process instance in the log in the form of a sequence 
of events. Each event records the execution of a specific process task within a trace. Some process 
mining techniques assume that a log is complete and free from noise and may produce unsound models 
if this is not the case. However, real-life log data will contain a certain amount of noise.

To detect the processes within massive amounts of real-life log data, several noise-tolerant 
discovery algorithms have been proposed. The inductive miner algorithm is based on a divide-and-
conquer approach that always results in sound process models (Buijs et al., 2012). This algorithm, 
using the directly follows dependency, generates the directly follows graph. The fuzzy miner algorithm 
(Conforti et al., 2017), another discovery algorithm, applies noise filtering posteriori directly on the 
discovered model. This algorithm is based on the concepts of correlation and significance and produces 
a fuzzy net where each node and edge are associated with a correlation and significance value.

The main purpose of the filter is to identify the likelihood of the occurrence of an activity based 
on its surrounding behavior because the process is composed of a sequence of activities, e.g., how 
likely it is that activity a follows a sequence of activities. The criterion for the event filter can be 
based on the expectation of activity occurrences, given a sequence of activities.

3. FILTERING WITH THE EXPECTATION

3.1. Basic Notation and Definitions

Definition 1 (Event log, event and trace): L E O� � �, ,I . Let   be the set of events, and I  be 
a finite set of tasks. There is a subjective function linking   to I .  → I . Here, O E E� � .is 
a strict total ordering over the events. A (nonempty) sequence of events, e∈  is a trace, τ . 
Thus, an event log, ,  is a multiset of traces.

The business process can be viewed as a directed connected graph, and the events in the process 
graph have a transitive closure, so we use the reachability matrix to show the transitive closure of a 
process graph. The criterion for the infrequent behavior detected can be based on the minimum 
expected for events, dminEU :

EU n pi j
j

k

i i j�
�

���
1

* 	 (1)

p
e e
ei j

i j
� �

�
	 (2)



International Journal of Cognitive Informatics and Natural Intelligence
Volume 14 • Issue 2 • April-June 2020

4

d e e EU i n j nEU i j i ji j�
� � � � � � � � �� ��, , ,| � 1 1 	 (3)

where ni  is the number of events i  in a trace, which can be found in the reachability matrix, 

e ei j→  is the number of edges from event i  to event j . e  is the total number of edges in the 
trace and ζ  is the threshold of the expectation value.

The interquartile range is often used to find the outliers in data, so we use the interquartile to 
obtain the ζ . First, we calculate the lower quartile (Q1 ), second quartile (Q2 ), and upper quartile 
(Q3 ). Currently, we do not use a uniform method to obtain the quartile, here Q n

1
1 1 0 25� � �� �* . , 

Q n
2
1 1 0 5� � �� �* . , Q n

3
1 1 0 75� � �� �* . . The interquartile range IQR � �Q Q

3 1
, and the 

outliers here are defined as the observations that fall below the IQR.

Definition 2 (Infrequent events): The set of the infrequent events,   is defined as 

 � � �� ��
e dj EUi j
| min . Here, ej  is an event that has a nonzero minimum possibility of 

linking from event ei  to event ej  in dEUi j→
.

Definition 3 (Essential events): Given log data  . the events that must be preserved during data 
filtering (i.e., deleting the infrequent events from the trace) are called the essential events.

The events that occurred are shown in Table 1. The corresponding trace graphs and their 
synthesized trace graphs are shown in Figures 1 and 2, respectively.

When the infrequent arcs and corresponding events are removed, the frequencies of the other 
arcs are changed, which affects the arc frequency distribution curve. To address this problem, we 
propose reiterating the log filtering process several times, using the filtered log as the input, until 
no more events are removed. During the filtering process, we must retain the connectivity of the 

Table 1. Event log data

Trace1 <A,B,B,C,D,E>

Trace2 <A,B,C,D,C,E>

Trace3 <A,B,B,B,C,E>

Trace4 <A,B,C,E>

Figure 1. Log trace graph of the event data



International Journal of Cognitive Informatics and Natural Intelligence
Volume 14 • Issue 2 • April-June 2020

5

process. Certain events should be kept even at low frequencies. We can calculate the expectation of 
every event according to Definition 1:

EU(A) = �0 4
4

22
0 0 0

16

22
+ × + + + = 	

EU(B) = �0 3
3

22
4
4

22
0 0

25

22
+ × + × + + = 	

EU(C) = �0 0 0 2
2

22
3
3

22

13

22
+ + + × + × = 	

EU(D) = �0 0 1
1

22
0 1

1

22

2

22
+ + × + + × = 	

EU(E) = �0 0 0 0 0 0+ + + + = 	

Q n
1
1 1 0 25 1 4 0 25 2= + −( ) = + =* *. . 	

Q n
3
1 1 0 75 1 4 0 75 4= + −( ) = + =* *. . 	

IQR = − = − =Q Q
3 1

4 2 2 	

Sorted from smallest to largest, the order of expectation is 2
22

13

22

16

22

25

22
� � � . Therefore, the second 

data point is 2
22

. We will filter events with an expectation less than or equal to 2
22

, unless the event 

is an essential event. Event E is the end event, so it must be kept. The expectation of event D is 2
22

, 

and the nonzero value indicates that the edge from the event to D to event C could probably be filtered; 
event C is not an essential event, so it will be deleted from the trace.

In Figure 1, the superscript of an event denotes the event frequency, and the number on the 
directed line is the frequency of two linked events. When the frequency is just one, we do not mark 
it. Utilizing the process mining algorithms, we can obtain the processes from the event data. The 
reachability matrix shows the relationship between events, where the matrix row is the outer link 
of the corresponding event, the matrix column is the inner link of the corresponding event, and the 
diagonal is the self-loop of the corresponding event. We can obtain the number of times the events 
have occurred by adding the numbers in the matrix row and the numbers in the matrix column. We 
can easily obtain the event relationships in different traces from Figure 3 and the sum of matrices in 
Figure 3. Figure 4 is the matrix of the synthesized trace graphs in Figure 1.

Figure 2. Synthesized trace of the event data
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3.2. Infrequent Events Detected by the Minimum Exception

When d
EU

 is below the threshold value, according to Formula (2), it is very possible to detect an 
infrequent event, e

i
. However, in special cases, such as start and end events, they are essential events 

that must remain regardless of the threshold value for these kinds of events.
Consider ing the example in Figure 3 and using a threshold value of  0.3, 

Min EU EU EU
D j D C D E→ → →( ) = { } = <, . .0 22 0 3 , meaning that the expectation from event D to 

the other events is below the threshold and ˆ , = { }e e
C E

. However, E is an essential event, and it 
must remain. The link between D and C can be deleted, and the matrix is changed, as shown in Figure 
6, and Figure 2 changes to Figure 7. The new trace 2 in the log was changed, as shown in Table 2.

Figure 3. Matrix of the event data

Figure 4. Matrix of the events in Figure 2
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Figure 5. Change of the trace 2 matrix

Figure 6. Matrix of the events after filtering

Figure 7. Synthesized trace after filtering

Table 2. Filtered event log

Trace1 <A, B, B, C, D, E>

Trace2 <A, B, C, D, E>

Trace3 <A, B, B, B, C, E>

Trace4 <A, B, C, E>
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The process graph must be a simply connected graph, so removing a link between events can 
cause an unconnected graph, which must be avoided. Therefore, the events in a link are also known 
as essential events.

3.3. ILP Formulation of the Process
The log filter can be regarded as having an integer linear programming (ILP) format because there are 
only two types of tasks in the logs: kept (1) or deleted (0). This fits the classical ILP problem formulation 
of whether a selection is made or not. Thus, we can use an ILP approach to effectively judge which path 
is a minimum process in the log data. We introduce the following definitions before the ILP formulation:

•	 For events i and j, there exists i j, ,�� �0 1  in the simply connected process graph. When 
a subpath exists between events i and j, the result of the ILP problem is i j, =1 , 
otherwise, i j, = 0 ;

•	 For event i∈ , there exists s �� �0 1,  in the simply connected process graph. When a 
subpath exists between the start event and event i, the result of the ILP problem is s =1 , 
otherwise, s = 0 ;

•	 For event i∈ , there exists e �� �0 1,  in the simply connected process graph. When a 
subpath exists between event i and the end event, the result of the ILP problem is e =1 , 
otherwise, e = 0 ;

•	 For events i j, �� , there exists s i j, ,� � �� �0 1  in the simply connected process graph. When 
there are exit sub-paths from the start event through event i and event j, the result of the ILP 
problem is s i j,� � �1, otherwise, s i j,� � � 0 ;

•	 For event i j, ∈ , there exists e i j, ,� � �� �0 1  in the simply connected process graph. When 
there are exit sub-paths through event i and event j that reach the end event, the result of the ILP 
problem is e i j,� � �1, otherwise, e i j,� � � 0 .

The ILP problem aims at minimizing the number of paths between the events:

min

i

N

j

N

i je e
� �
��� �
1 1

, 	

where there are paths between event e and ei j  .
In frequent processes, the frequent events should satisfy the following constraints:

•	 For random events i and j, if they are connected:

C
i j,
= 1 	 (4)

•	 Every event i is reachable from the start events:

C
s i,
= 1 	 (5)
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•	 Every event i is reachable to the end events:

C
i e,
= 1 	 (6)

•	 Every start event is reachable to the end events:

C
s e,
= 1 	 (7)

•	 For each event path, if events i and j are connected, event i is reachable from the start events:


s i j s i i j

C C
, , ,( ) = ⇔ + =1 2�	 (8)

•	 The constraints of the above formulas can be written as equivalent inequalities, shown as follows:

C C
s i i j s i j, , ,
+ − ⋅ ≥( )2 0 	 (9)

C C
s i i j s i j, , ,
+ − ⋅ ≤( )2 1 	 (10)

•	 For each event path, if event i and event j are connected, event i is reachable from the start event:


e i j i e i j

C C
, , ,( ) = ⋅ + =1 2�	 (11)

•	 The constraints of the above formulas can be written as equivalent inequalities, shown as follows:

C C
i e i j e i j, , ,
+ − ⋅ ≥( )2 0 	 (12)

C C
i e i j e i j, , ,
+ − ⋅ ≤( )2 1 	 (13)

As we know, any event i must involve at least one path, which is from the start event via i to the 
end event.

The constraints can be written as equivalent inequalities as follows:

i j

n

i j
C

,
,

=
∑ ≥
1

1 if i = j, indicates a self-loop	

i j

n

i j s i
C N C

,
, ,

=
∑ − ⋅ ≥
1

1 	 (14)

i j

n

i j i e
C M C

,
, ,

=
∑ − ⋅ ≥
1

1 	 (15)
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where N is the number of paths from the start event to event i, and M is the number of paths from 
event i to the end event.

There is at least one path from the start events though event i and event j in the process. At the 
same time, there is at least one path from events i and j to the end events in the process.

The infrequent event filtering methods presented above are described in pseudocode in Algorithm 1.

4. EXPERIMENTS AND EVALUATION

In this section, we present the results of the experiments to assess the advantage of our event filtering 
method. The design of the experiment is illustrated in Figure 8.

Algorithm 1. Infrequent event detection

Input: Event log 

1 Original trace Γ = Auto Find Process ( )

2 Relation Ability Matrix RAM( µ) ⇐  Compute RA �� �

3 Sorted Expectation SE( e ei j, ) ⇐  Compute Expectation (RAM)

4 Filtering Threshold � � Interquartile Range (SE)

5 Infrequent Event IFE( ej )⇐  SE( e ei j, )� �

6 Aligned( ′ )⇐Delete Infrequent Event( ej , )

7 '' ⇐ ILP( ′ )

8 Original trace � �� Auto Find Process ('' )

Figure 8. Framework for the experiments



International Journal of Cognitive Informatics and Natural Intelligence
Volume 14 • Issue 2 • April-June 2020

11

In process mining, two quality measures are defined for measuring the behavioral quality of 
the process models: the recall and precision metrics (Buijs et al., 2012). The recall metric computes 
how much behavior in the event log is also described by the process model. On the other hand, the 
precision metric measures the amount of behavior described by the model that is also present in the 
event log. The precision and recall metrics counter each other, so that increasing one of them reduces 
the other. A metric that combines precision and recall is the harmonic mean of precision and recall, 
which is the traditional F-measure or balanced F-score:

F-score =
+

2*
*precision recall

precision recall
	 (16)

4.1. Experimental Design and Datasets
For the experiments, we use three real-life logs from different domains and of different sizes, and 
we do not have insights into the types of infrequent behavior. We used these logs to evaluate the 
generalizability of the results obtained with the first two experiments. The three logs are publicly 
available: the hospital log, sepsis cases and hospital billing1.

The first dataset is a real-life log of a Dutch academic hospital, and this log contains 1143 traces 
and 150291 events.

The sepsis cases event log contains events of sepsis cases from a hospital. The events were 
recorded by the ERP system of the hospital. Moreover, 39 data attributes are recorded containing 
1050 traces and 15214 events.

The hospital billing event log was obtained from the financial modules of the ERP system of a 
regional hospital. The event log provided by the hospital contains events that are related to the billing 
of medical services. This log contains 100000 traces and 451359 events.

Conforti et al. emphasized that when analyzing events with filter measures, we need to ensure 
that the highest level of infrequent behavior is below 40% (Conforti et al., 2017). If the levels of 
infrequent behavior are above 40%, there is a contradiction since there should be a low proportion 
of infrequent behavior.

4.2. Results
Two of the methods deal with the removal of infrequent behavior: filtering the log using simple 
heuristics (SLF) and filtering the log using a prefix-closed language (PCL). SLF removes the traces 
that do not start or end with a specific event and events that refer to a specific process task, based 
on their frequency. PCL removes events from traces to obtain a log that can be expressed via a 
prefix-closed language. We compared our technique with the SLF and the PCL techniques using the 
above real-life data. Table 3 shows the change in the traces and events after using SLF, PCL and our 
technique to filter them.

From the aspect of the trace and event compression, our technique can match the SLF for the 
hospital billing and sepsis case logs. The PCL has a much higher compression than the other methods 
for the hospital and sepsis case logs; however, the excessive compression ratio might miss many 
essential events, and the event compression ratio even reached 92.8% for the hospital log, which is 
much higher than the upper limit of 40% (Conforti et al., 2017).

Figures 9 to 11 show the comparison results of the fitness, precision, and F-score, which 
were obtained using the three real-life logs when applying the three process mining techniques 
(heuristics miner, inductive miner and fuzzy miner). We used the default parameters for these 
process mining methods.

In Figures 9, 10 and 11, we used the filtered log and original log to test our technique. In Figure 
9, the precision is improved, despite a reduction in recall. Therefore, the F-score improved for the 
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Table 3. Traces and events after filtering

Original SLF PCL OURS

Hospital Billing

Traces 100000 83950 83109 83942

Events 451359 351296 354812 351184

Hospital

40 1143 772 189 793

Events 150291 99781 10680 10327

Sepsis Cases

Traces 1050 829 276 796

Events 15214 10090 2212 9748

Figure 9. Real-life log comparison of the heuristics miner algorithm

Figure 10. Real-life log comparison of the inductive miner algorithm
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hospital billing log and hospital log, but there was a slight decrease in the F-score for the sepsis 
log. In Figures 10 and 11, the F-scores are improved in all three logs. These experiments indicate 
that the proposed filtering technique is beneficial to process discovery algorithms to obtain higher 
F-score values.

5. CONCLUSION

In this paper, we presented a technique to detect and remove infrequent behavior from real-life 
process execution logs. The core idea is to use the expectation of the event labels as a proxy for 
infrequent behavior.

We demonstrated the effectiveness and efficiency of our method using real-life logs and 
mainstream process discovery algorithms. The results indicate that the proposed approach is able to 
help the process discovery algorithms discover the models. Furthermore, these experiments show 
that our filtering method outperforms the related state-of-the-art process mining filtering techniques.

In the future, we plan to employ larger datasets to verify the effectiveness of our method and 
consider formal methods to validate our log filtering technique.

Figure 11. Real-life log comparison of the fuzzy miner algorithm
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