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ABSTRACT

Rail guide vehicle (RGV) problems have the characteristics of fast running, stable performance, and 
high automation. RGV dynamic scheduling has a great impact on the working efficiency of an entire 
automated warehouse. However, the relative intelligent optimization research of different workshop 
components for RGV dynamic scheduling problems are insufficient scheduling in the previous works. 
They appear idle when waiting, resulting in reduced operating efficiency during operation. This article 
proposes a new distance landscape strategy for the RGV dynamic scheduling problems. In order 
to solve the RGV dynamic scheduling problem more effectively, experiments are conducted based 
on the type of computer numerical controller (CNC) with two different procedures programming 
model in solving the RGV dynamic scheduling problems. The experiment results reveal that this new 
distance landscape strategy can provide promising results and solves the considered RGV dynamic 
scheduling problem effectively.

Keywords
Computer Numerical Controller, Dynamic Scheduling, Fitness Distance Correlation, Fitness Landscape, Rail 
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1. INTRODUCTION

With the development of control engineering technology, many enterprises have gradually raised the 
awareness of industrial intelligent automation. Rail guide vehicle dynamic scheduling problem is an 
important branch in the automation industry. Nowadays, the RGV is mainly applied in production 
scheduling workshop, logistics transportation, component assembly, and many other fields. The 
RGV has the characteristics of fast running, stable performance and high automation, the dynamic 
scheduling problem associated with RGV can effectively improve the production efficiency of modern 
intelligent processing, which has been widely used in various workshops and automated warehouses. 
The RGV can be divided into self-driven type, passive-driven type, assembly type and transport type 
according to the driving mode and the purpose (Martina et al., 2018; Sáez et al., 2008). At present, 
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most enterprises choose the ring RGV, which can run multiple vehicles on the same track and greatly 
improve the capacity of transportation and assembly (Lee et al., 1996).

The research on the RGV dynamic scheduling is mainly based on the warehousing system 
(Roy et al., 2016). Lee et al. proposed the RGV scheduling strategy based on FCFS and analyzed 
the system operating efficiency of different quantities the RGV in automated warehousing system 
(Zhu et al., 2016). Sáez et al. (2008) effectively completed the multiple RGV scheduling tasks by 
predicting the tasks to be generated in advance, fuzzy classification algorithm was used to calculate 
and generate the probability of the tasks based on historical data, and then used a genetic algorithm 
to find a reasonable RGV scheduling path (Gagliardi et al., 2015). Zhang et al. established the genetic 
algorithm model and made a comprehensive analysis of the dynamic scheduling model of loading and 
unloading completed by the cooperation between the RGV and CNC (Ferrara et al., 2014). Wu et al. 
constructed a scheduling model with the shortest running time of RGV as the objective function, and 
then they adopted dynamic programming algorithm based on TSP to save the scheduling time of the 
RGV, accordingly improved the production efficiency of intelligent machining (Roy et al., 2016). All 
the above researches were carried out purely from the perspective of traditional algorithms, which is 
used to solve the scheduling problem by setting various constraints. Meanwhile, traditional algorithms 
are Although the scheduling results sometimes have some rationality using traditional algorithms, 
they are easy to fall into the local optimum, higher complexity, and more runtime.

The fitness landscape is a theory applied to the optimization dynamics of biological evolution 
proposed by Wright (Wright, 1932). Study of the fitness landscape is an important topic of evolutionary 
computation. Influenced by biological evolution, researchers began the fitness landscape research early 
in the field of evolutionary computation, whose purpose is to understand the behavior of evolutionary 
algorithms to solve optimization problems. The fitness landscape can reveal the relationship between 
the search solution space and fitness by the features of the landscape information, which regards 
evolutionary optimization as a process of an adaptive random walk on the three-dimensional 
landscape visualized by ridges, canyons, and basins. If the search space is regarded as a landscape, 
the evolutionary algorithm can be understood as navigation through the landscape to locate its highest 
peak. The fitness landscape is described as mapping from a set of genotypes, and it can be considered 
as the height of the entire genotype. In other words, the fitness involved in the fitness landscape is an 
orthogonal projection that can be expressed as a genotype attribute. However, the search strategy of 
the evolutionary algorithm is to decode the genotype into a phenotype with high fitness. The fitness 
landscape can be represented as a common metaphor used to describe the behavior of evolutionary 
algorithms in the solution of optimization problems. The fitness landscape is a visual tool with 
geometric meaning that can be used to evaluate population characteristics as they change over time. 
These changes are achieved by mapping one genotype to another. Many studies and discussions of 
the fitness landscape topology have been published, including one in which the fitness landscape 
topologies are related to the optimization problem of evolutionary computation. The problem-oriented 
fitness landscape has been deeply analyzed, especially for combinatorial optimization problems, such 
as the Traveling Salesman Problem (Angel & Zizzimopoulos, 2001), Image Segmentation (Bouziri 
et al., 2011), the Graph Coloring Problem (Daolio et al., 2010), the Quadratic Assignment Problem 
(He & Yao 2005; Malan & Engelbrecht 2009), the MAX-SA (Merz & Freisleben, 2000), and the 
Knapsack Problem (Prugel-Bennett & Tayarani-Najaran, 2012). Although the main focus of these 
studies is to provide the most effective information to solve problems in evolutionary computation, the 
experimental results of some optimization problems also show the features of various fitness landscape 
topologies. For example, in the symmetric TSP problem, the travel cost from i point to j point is the 
same as j to i, and the corresponding fitness landscape topology is quite smooth. In comparison, the 
fitness landscape presented by the asymmetric TSP problem is quite rough (Reidys & Stadler, 2001). 
For the quadratic assignment problem, the experiment shows that a significant neutrality degree of 
fitness landscape topography can be obtained (Shen & He, 2010). For the continuous real-valued 
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problem, similar numerical results can be obtained with fitness landscape topography among widely 
used benchmarks (Caamaño et al., 2013).

With the continuous improvement in the optimization solution of the evolutionary algorithm, 
the fitness landscape can present more abundant feature information around fitness, which is mainly 
shown in the local fitness, fitness distance correlation, random walk, and landscape roughness. These 
fitness landscape features reflect the optimal solution distribution, quantity, and local unimodal or 
multimodal topological structures from a different perspective. Therefore, this work analyzes the 
relevant fitness landscape features and then establishes the RGV dynamic scheduling model. In order 
to solve the RGV dynamic scheduling problem more effectively, this paper using a distance landscape 
strategy by combining the fitness landscape and dynamic search strategy. Experiments are conducted 
based on the type of CNC with two procedures programming model in solving the RGV dynamic 
scheduling problems. The experiment results reveal that this new distance landscape strategy can 
provide promising results and solve the considered RGV dynamic scheduling problems effectively.

The remainder of the paper is organized as follows. Section 2 briefly introduces fitness landscape 
analysis and fitness distance correlation. Section 3 illustrates the model description of RGV dynamic 
scheduling problem. Section 4 presents the design and implementation of the proposed distance 
landscape strategy for the RGV dynamic scheduling problem. The detail of experimental analysis and 
verification are described in section 5. The conclusions are summarized in the final section include 
some topics of the future research are provided.

2. FITNESS LANDSCAPE ANALYSIS

2.1. Definition of the Fitness Landscape
Study of the fitness landscape is an important area of evolutionary computation, whose purpose is to 
explain the behavior of evolutionary algorithms in the solution of optimization problems. Influenced by 
biological evolution, researchers began to study the fitness landscape early in the field of evolutionary 
computation. A static fitness landscape can be represented in an abstract manner with triples (Kallal 
et al., 2000) as follows:

L X f N
k

= ( ), , 	 (1)

where the tuple X  is a feasible solution space set of the evolutionary algorithm. The fitness function 
f X R: →  is used to calculate the fitness value of the priority observation x X∈  in the fitness 
landscape. The neighborhood tuple N

k
 given by the distance metric of size k is defined on the tuple 

set X , and N
k

 has N x y X d x y k
k
( ) { : ( , ) }= ∈ ≤ .

2.2. The Topology of the Fitness Landscape
The fitness landscape topological structures can be enlightening and instructive for the population 
structure of the evolutionary algorithm, the recombination mutation strategy of the search space, and 
even algorithm performance optimization. However, the topological structures also clearly show the 
limitation of geometric conception, especially, the above fitness landscape topologies are based on two 
dimensions. If the genotype space is higher than two dimensions, the geometric topological features of 
the fitness landscape are difficult to represent. In fact, the fitness landscape topological features exist 
for all dimensions, only with the dimension increases, the meaning of the feature may change, and the 
geometric feature will present more complex and variable pattern. This situation can be converted into 
a two-dimensional landscape topology by using the methods that include dimensionality reduction 
and mapping operation. The local fitness landscape topology looks like ridges, canyons, plateaus, 
and basins, there are directly viewed as having the same meaning as two-dimensional landscapes. 
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Therefore, through discussing the problem which whether two-dimensional landscape features such 
as fitness distance correlation, fitness information roughness, and gradient neutrality are related to 
higher dimensions have great important research value for evolutionary algorithm optimization. In 
order to better solve the representation of the fitness landscape, this work focus on the use of fitness 
distance correlation representation to analyze characteristics of the optimization problem.

2.3. Fitness Distance Correlation
The genotype of the fitness landscape is reflected from one variant to another in the distance attribute. 
An important part of solving this distance attribute problem is to collect possible topological and 
structural features in the fitness landscape and to analyze and express them into the potential and 
observable mechanisms in evolutionary algorithms. The fitness distance correlation (FDC) analysis 
method can quantify the distance relationship between the fitness of a set of points in the local fitness 
landscape and the global minimum (Müller & Sbalzarini 2011). This section will use the fitness 
distance correlation analysis method to represent the topological features of the fitness landscape. 
The customized triple of the fitness landscape F is defined as:

F d f
E

= ( )χ, , 	 (2)

where the local effective fitness landscape domainχ  is constrained by χ ι= ⊂[ , ]u Rn , vector ι , 
u Rn∈  defines the upper and lower bounds. The distance d

E
 between points are calculated by using 

the Euclidean distance in the fitness landscape decision space. From the local fitness landscape to 
evaluate the fitness function f in the statistical sampling region given a random sample x j( ) ∈ χ  and 
f j Rn( ) ∈ , j s= 1, ,� . In the standard fitness distance correlation analysis, the global minimum 
x

min
 is considered to be a priori known, and x

min
 is usually approximated by �x x j f x j

min
argmin= ( ) ( )( )




, 

j s= 1 2, ,� . The features presented by the distance d d x x d d x xj
E

j j
E

j( )
min

( ) ( )
min

( ), ,= ( ) = ( ) or �  

and the corresponding fitness value f j( )  can provide a speculative means for the global topology of 
the fitness landscape.

3. THE RGV DYNAMIC SCHEDULING PROBLEM DESCRIPTION

In the following section, in order to discuss and analyze the RGV dynamic scheduling problem more 
conveniently, we construct an example simplified simulation scenario. There are two kinds of materials 
that can be processed by the intelligent RGV scheduling system, one process can be completed in 
single-procedure scheduling, and the other process requires multi-procedure scheduling to complete. 
This scheduling system consists of 8 CNCs, 1 RGV, 1 RGV linear track, 1 loading conveyor belt, 1 
unloading conveyor belt, and other accessorial components. A sample of the RGV dynamic scheduling 
system is described by Figure 1.

It is assumed that this type of the RGV can obtain the real-time working status of each CNC 
by scheduling the historical demand signal, comprehensively consider and compare the remaining 
scheduling time of each CNC, the loading and unloading time, and the required time for the RGV to 
the corresponding CNC position, the task order is under determined. This type of the RGV start in 
the next round of optimal CNC, all CNCs demand to wait within 8 hours.

For the convenience of describing the RGV dynamic scheduling problem, some necessary 
assumptions are given as follows:



International Journal of Cognitive Informatics and Natural Intelligence
Volume 14 • Issue 3 • July-September 2020

24

•	 In view of the safety requirements, the tools cannot be replaced midway until the system stops 
working after the scheduling system is started;

•	 When the RGV is operated to a certain CNC where work is required, the loading conveyor will 
deliver the raw material to the front of the CNC at the same time, and the unloading conveyor 
will immediately send the cleaned material;

•	 All RGV calculation processing times are considered to be zero, which does not have any effect 
on system performance;

•	 Unless the scheduling system stops working for 8 hours of continuous operation, the operation 
of RGV such as moving, loading, unloading and cleaning will not be stopped midway.

The symbols that need to be used in the modeling process are unified in Table 1.

3.1. RGV Single-Procedure Scheduling Model
In the intelligent processing system, one RGV is dispatched to carry out loading and unloading 
and washing of 8 CNC machines arranged on both sides. The loading and unloading of the nth  
round only have two status of going forward and stopping, we introduce 0 and 1 variables 
expression as follows:

f move
the n round of loading and unloading goes to

i n
_

,
,
=

1  th         

 th       

CNCi

the n round of loading and unloading doesn t go

#

, '0    to CNCi#








	 (3)

Comparing the remaining processing time of each CNC machine before each round of movement 
t rest

i n
_

,
 with the time required before moving to each CNC machine t move

n
_ , the larger value 

plus loading and unloading time t add
i n

_
,

 is the time taken by the RGV from heading to CNCi#  
complete the nth  round of loading and unloading on CNCi# :

t t rest t move t add
i n i n n i n, , ,

max _ , _ _= { }+ 	 (4)

Before the RGV starts working, all CNCs are idle, which is different from the status after working, 
so these different statuses will be analyzed separately. In order to distinguish between the first 8 

Figure 1. A sample of the RGV dynamic scheduling system
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Table 1. The symbol description of RGV dynamic scheduling model

Symbol Symbol Description

n nth, , ,= 1 2� The serial number of loading and unloading rounds.

CNCi#,  
i = 1 2 8, , ,�

Refers to CNC CNC CNC1 2 8#, #, #�

f move
i n

_
,

f move
i n

_
,

 determines whether to go to the CNCi#  workbench before the nth  
round of loading and unloading status.

f have
i n

_
,

f have
i n

_
,

 determines whether there any materials on the CNCi#  workbench before 
the nth  round of loading and unloading status.

s e,

s e, , , ,= 1 2 3 4  denotes the starting and ending position of the RGV movement, 
respectively.﻿
When s e, = 1 , the position of the RGV is between CNC1#  and CNC2# . When 
s e, = 2 , the position of the RGV is between CNC 3#  and CNC 4# . When 
s e, = 3 , the position of the RGV is between CNC5#  and CNC6# . When 

s e, = 4 ,the position of the RGV is between CNC7#  and CNC 8# . s
n

 and e
n

 
respectively denote the start and end positions of the RGV when nth  round is loaded.

t
i n,

The nth  round took time of the RGV for reaching CNCi#  from loading and unloading 
position.

t move
n

_ The nth  round took time from s
n

 to e
n

.

t add
i n

_
,

The nth  round took time of the RGV for loading and unloading at the CNCi#  position.

t wash
i n

_
,

The nth  round took time of the RGV for cleaning at the CNCi#  position.

t rest
i n

_
,

The nth  round took time of the RGV for processing the remaining materials at the 
CNCi#  position.

A
n

After the nth  round of loading and unloading, the number of raw materials produced in 
one process.

AB
n

After the nth  round of loading and unloading, the number of raw materials produced in 
two processes.

order
i

The CNCi#  responsible for the i-th processing process, i n= 0 1, , ,� .

left
n

The number of materials for the target process in the nth  round of loading and unloading.
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rounds of working after no washing stage, set f have
i n

_
,

 to determine whether CNCi#  has material 
before loading and unloading of the nth  round on the working table:

f have
there are materials on CNCi work table

therei n
_

, #

,,
=

1

0

      

       aren t materials on CNCi work table
n

' #
,








≤ 8 	 (5)

The material needs to be cleaned after each unloading, using t wash
i n

_
,

 denote the cleaning 
time of the nth  round.

The single-procedure programming model with the largest quantity of finished materials can 
be established as follows:

•	 The decision variable:

f move
i n

_
,

	 (6)

•	 The objective function:

max  A
n

	 (7)

A
n

: the total amount of finished materials obtained after loading, processing, washing, and 
unloading in n rounds.

The constraint conditions:

•	 The RGV moves to the CNC with the shortest waiting time each round by the following problem:

max _ min
, , ,

f move t t
i n i n i n
⋅{ } = 	 (8)

•	 One RGV can only load and unload and wash one material at a time, we have:

f move
i n

i

_
,

=
∑ =

1

8

1 	 (9)

•	 Once one material is acquired by CNC, the material on the CNC working table will always 
exists, then we have:

f have f have f move f have
i n i n i n i n

_ _ _ _
, , , ,
= + −( )1 	 (10)

•	 Each shift is operated continuously for 8 hours, the total working time of the CNC and RGV 
should not exceed 8 hours. This implies that:
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f move t t wash f have
i n i n i n i n

in

n

_ ( _ _ )
, , , ,
⋅ + ⋅ ≤ ×

==
∑∑ 8 3600

1

8

1

	 (11)

•	 The starting position of s
n+1

 is the ending position of e
n

 in the nth  round, then we have:

s e
n n+

= 
1

	 (12)

•	 After each round of loading and unloading, the cumulative output of finished materials can be 
increased by up to 1, we have:

A A f have f move
n n i n i n

i
+

=

= + ⋅( )∑1
1

8

_ _
, ,

	 (13)

•	 Set the initial value, when the first round of loading and unloading, the quantity of finished 
materials is 0:

A
1

0 = 	 (14)

3.2. RGV Multi-Procedure Scheduling Model
For materials with two processing procedures, there are three states in the machining process: raw 
material, processed raw material and finished material. In a shift, when a CNC can only use one tool 
to process one procedure, how to make RGV identify the state of the material held by the mechanical 
arm when loading and unloading, and the next step to deal with it is a big difficulty. To solve these 
two problems, the following two parameters are introduced: order

i
 refers to the processing type of 

CNCi# , left
i
 refers to the states of material in RGV. Only when these two parameters can be 

successfully matched can RGV proceed to the next step, the loading and unloading of the second 
procedure.

As for the CNC’s processing tool distribution, because there must be two procedures. There are 
C C C

8
1

8
2

8
7+ + +�( )= 254 ways to allocate the tools. Different distribution schemes will have a great 

impact on the working time and quantity of finished material of RGV. Therefore, this paper established 
a mutil-procedure programming model with RGV scheduling path as the decision variable to obtain 
the maximum quantity of finished materials are as follows:

•	 The decision variable:

f move
i n

_
,

	 (15)

•	 The mutli-procedure functions:

maxAB
n

	 (16)
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min _ _ _
, , , ,

f move t t wash f have
i n i n i n i n

in

n

+ ⋅( )
==
∑∑

1

8

1

	 (17)

AB
n

: the quantity of finished materials after completing two procedures.

The constraint conditions:

•	 In one processing shift, a CNC can only install one tool and process one procedure, and it is not 
allowed to change the tool in the middle of the process for safety, namely:

order
responsible for the first procedure

responsiblei
=

0

1

,

,

    

 ffor the second procedure   








	 (18)

•	 There are only two states of material in RGV during the working period, namely:

left
no material in RGV

havinga cleaned material in Rn
=

0

1

,

,

   

    GGV








	 (19)

•	 The nth round of loading and unloading can only be carried out when the material is successfully 
matched with the CNCi#  process ( )order left

i n
= , namely:

f move f move order left
i n i n i n

_ _
, ,
= − −( )1 	 (20)

•	 If N
1
 is the number of CNC responsible for the first procedure and N

2
 is the number of CNC 

responsible for the second procedure, then N N N N N
1 2 1 2

8+ = , , *∈ .

4. DISTANCE LANDSCAPE STRATEGY FOR THE 
RGV DYNAMIC SCHEDULING PROBLEM

The distance landscape strategy will be discussed in this section. According to the fitness distance 
correlation method, the local fitness landscape features will be represented and analyzed for the 
dynamic scheduling problem. The distance landscape strategy relationship of the RGV dynamic 
schedule problem will be designed and performed.

4.1. Distance Landscape Strategy

For a population P X X X=
1 2
, , ,� ω{ } , where each X x x x

i i i i
= ( ), , ,n

, , ,
1 2

�  is a solution on Rn . 
According to the FDC method and the correlation coefficient, the detailed steps of distance landscape 
strategy are as follows:

Step 1: Finding the optimal solution in the current population and denoting it as X * , then calculating 
the distance between each X i

i
, , , ,= 1 2� ω , and the optimal solution X *  by the following 

formula:
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d x x x x
i i j j

j

n

,
,

**( ) = −
=
∑

1

	 (21)

Step 2: The set of { }X X X
1 2
, , ,� ω  corresponding to the distance value d x x

i
, *( )  calculated above 

is sorted according to the rule from low to high, and it is denoted as k k k
1 2
, , ,� ω  in order.

Step 3: Initialization: Set θ= 0 to calculate the fitness function f i
ki
, , , ,= 1 2� ω �f

ki
, if f f

k ki i+
+ ≤

1
ε

k f
i ki
 , then θ θ =  + 1 , where ε  is the error value. This value is added to maintain the diversity 

of the population and avoided the local optimum or global convergence in the late stage of 
optimization.

Step 4: Normalizing θ :

θ
µ−1

	 (22)

where µ  is the population size in the local fitness landscape, 0 1≤ ≤ϕ . According to the analysis 
and representation of landscape features: When φ  close to 0, the local fitness landscape is closer to 
the uni-modal topology, and when φ  close to 1, the local fitness landscape is closer to the multimodal 
topology.

4.2. Process of Solving the RGV Scheduling Model
It is difficult to obtain the global optimal solution directly through the model, we design a heuristic 
algorithm to obtain the approximate optimal solution by the distance landscape strategy for the 
shortest loading and unloading of each round. The basic steps and principles of the algorithm are 
described in Algorithm 1.



International Journal of Cognitive Informatics and Natural Intelligence
Volume 14 • Issue 3 • July-September 2020

30

From the beginning of processing for solving the single-procedure RGV scheduling system, by 
considering all historical demand signals and current demand signals, we designed this algorithm to 
find the CNC that completes the loading and unloading, and respond to the current demand signal 
of the CNC, so that the CNC completes the process of loading and unloading. Then the algorithm 
judges whether to wash the material according to the actual situation. Repeat the above operation. 
When the accumulated time exceeds 8 hours, the iteration is terminated.

For the processing of the two procedures, each CNC can only install one tool to process one 
material at the same time, and the tool cannot be replaced during the processing period. The first and 
second procedures need to be processed successively on different CNC, and the completion time is 
also different. Each CNC can only complete one procedure. Therefore, it is of great importance for 
the reasonable distribution of processing tools.

For each tool distribution scheme, the heuristic algorithm is constructed with the same idea 
as the algorithm under one procedure to obtain the corresponding approximate optimal solution. 
According to the multi-procedure, selecting the optimal tool distribution scheme and the corresponding 
material processing situation. Every distribution scheme must exist tool for procedure one and tool 
for procedure two simultaneously, not allowing all CNCs to install the same tool in a shift. Then 
traverse 254 distribution schemes and solve them according to Algorithm 2.
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From the beginning of processing for solving the multi-procedure RGV scheduling system, by 
considering all historical demand signals and current demand signals, finding out the fastest CNC 
to complete the loading and unloading among eight CNC whose current target procedure is accord 
with the procedure it is responsible for RGV should respond to the CNC when demand signal comes, 
heading to this CNC to complete the loading and unloading process, then determine whether to wash 
the material in accordance with the actual situation and whether to change the target procedure. Repeat 
the above procedure until the accumulations exceed 8 hours, the loop is stopped. According to the 
double decision objective, the Algorithm 2 can find out the optimal tool distribution scheme and the 
corresponding material processing condition.

5. EXPERIMENTAL RESULTS AND ANALYSIS

In order to test the effectiveness of the RGV dynamic scheduling model based on the distance landscape 
strategy, we use three different sets of system operating parameters to calculate and analyze the results 
to evaluate the operational efficiency of the RGV scheduling strategy.

5.1. Data Initialization
According to the characteristics of RGV in real-life scenarios, combined with the actual requirements 
of the RGV dynamic scheduling system, the three sets of parameters for initializing the intelligent 
machining system are shown in the Table 2. The data in this table reflects the time required for the 
RGV and CNC work processes.

5.2. The Experimental Results
According to the provided system parameters and three sets of data, combined with the above algorithm 
process, the scheduling results obtained by MATLAB software from Tables 3 to 8.

From Table 3 to Table 5 the results show that the quantity and specific execution time of materials 
can be processed by the scheduling system during processing a procedure within 8 hours from the 
beginning to the end. From these tables, we can find that in the same processing time, the number 
of processing materials under the third group of parameters is the largest, reaching 392; the second 
group is the least, only 359.

From Table 6 to Table 8, the results show that quantity and specific execution time of materials 
can be processed by the scheduling system during processing two procedures within 8 hours from 
the beginning to the end. Because there are two processing procedures, the quantity of processed 
materials is obviously less than that of one procedure. Despite this, the quantity of processing materials 

Table 2. Parameter settings of system operation

System Operation Parameters Group 1 Group 2 Group 3

RGV to move 1 unit 20 23 18

RGV to move 2 units 33 41 32

RGV to move 3 units 46 59 46

CNC to complete signal process 560 580 545

CNC1#, 3#, 5# and 7# loading and unloading 28 30 27

CNC2#, 4#, 6# and 8# loading and unloading 31 35 32

RGV to complete a material cleaning operation 25 30 25
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Table 3. The results of the first group under one procedure

The Number of Materials The Number of CNCs The Time of Loading The Time of Unloading

1 1 0 588

2 2 28 641

3 3 79 717

4 4 107 770

5 5 158 846

6 6 186 899

7 7 237 975

8 8 265 1028

9 1 588 1176

10 2 641 1232

� � � �

380 4 27956 28547

381 5 28032 28623

382 6 28085 28676

Table 4. The results of the second group under one procedure

The Number of Materials The Number of CNCs The Time of Loading The Time of Unloading

1 1 0 610

2 2 30 670

3 3 88 758

4 4 118 818

5 5 176 906

6 6 206 966

7 7 264 1054

8 8 294 1114

9 1 610 1238

10 2 670 1446

� � � �

357 5 27910 28538

358 6 27970 28598

359 7 28058 28686
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Table 5. The results of the third group under one procedure

The Number of Materials The Number of CNCs The Time of Loading The Time of Unloading

1 1 0 572

2 2 27 624

3 3 77 699

4 4 104 751

5 5 154 826

6 6 181 878

7 7 231 953

8 8 258 1005

9 1 572 1114

10 2 624 1201

� � � �

390 6 27997 28574

391 7 28072 28649

392 8 28124 28701

Table 6. The results of the first group under two procedures

The Number 
of Materials

The Number 
of CNCs 

With 
Procedure 

One

The Time of 
Loading

The Time of 
Unloading

The Number 
of CNCs 

With 
Procedure 

Two

The Time of 
Loading

The Time of 
Unloading

1 1 0 428 2 456 898

2 3 48 532 4 560 1002

3 5 96 636 6 664 1106

4 7 144 740 8 768 1210

5 1 428 870 2 898 1340

6 3 532 974 4 1002 1444

7 5 636 1078 6 1106 1548

8 7 740 1182 8 1210 1652

9 1 870 1312 2 1340 1782

10 3 974 1416 4 1444 1886

� � � � � � �

251 5 27598 28040 6 28068 28510

252 7 27702 28144 8 28172 28614

253 1 27832 28274 2 28302 28744
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Table 7. The results of the second group two procedures

The Number 
of Materials

The Number 
of Cncs With 

Procedure 
One

The Time of 
Loading

The Time of 
Unloading

The Number 
of CNCs 

With 
Procedure 

Two

The Time of 
Loading

The Time of 
Unloading

1 2 0 315 1 350 880

2 4 58 433 3 468 998

3 6 116 551 5 586 1116

4 8 174 669 7 704 1275

5 2 315 940 1 880 1429

6 4 433 805 3 998 1574

7 6 551 1081 5 1116 1665

8 8 669 1335 7 1275 1805

9 2 805 1199 1 1429 1959

10 4 940 1489 3 1537 2077

� � � � � � �

209 8 27305 27835 1 27929 28459

210 2 27459 27989 3 28047 28577

211 4 27577 28107 5 28165 28695

Table 8. The results of the third group under two procedures

The Number 
of Materials

The Number 
of CNCs 

With 
Procedure 

One

The Time of 
Loading

The Time of 
Unloading

The Number 
of CNCs 

With 
Procedure 

Two

The Time of 
Loading

The Time of 
Unloading

1 1 0 482 2 509 958

2 3 45 584 5 629 838

3 4 72 908 2 958 1189

4 6 122 681 8 731 1407

5 7 172 788 5 838 1074

6 1 58 1015 5 1074 1310

7 3 482 1144 2 1189 1671

8 6 584 1278 5 1310 1546

9 7 681 1380 8 1407 1889

10 4 788 1496 5 1546 1787

� � � � � � �

242 1 27576 28132 5 28191 28400

243 6 27692 28243 8 28293 None

244 7 27794 28350 5 28400 28640
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under the first group of parameters reaches the maximum with 253, while the quantity of processing 
materials in the second process is still the minimum with only 211.

In order to more clearly see the operation of RGV in a shift, using matplotlib library of Python 
language to draw the changes of CNC involved in processing over time, which can also be regarded 
as the running route of RGV shown in Figure 2.

As for two procedures schedule task, on the premise of satisfying the fastest and maximum for 
materials at the same time, the results are obtained by using the distance lanscape strategy algorithm 
designed in this paper for three groups of different parameters optimization. The tool types are shown 
in Table 9.

In this table, F denotes the tool used by CNC in procedure one, and S denotes the tool used by 
CNC in procedure two.

At the same time, according to the Algorithm 2, three different tool allocation scenarios are 
obtained for three groups of different parameters in Table 9. According to the tool allocation in the 
table and the scheduling routes in Figure 3, because the distribution of CNC in procedure one and two 
are different, the scheduling routes and execution cycles of RGV to perform loading and unloading 
tasks are also different.

It can be seen that the dynamic scheduling of RGV presents a very regular periodicity. Within a 
shift (8 hours), the density of parallel lines in the second group is small, and the density of parallel 
lines in the third group is large. This also confirmed that the number of CNC processed materials 
in the second group of parameters was less and the number of CNC processed materials in the third 
group was more. In addition, comparing the scheduling routes of one process under three different 
parameters, it can be found that the difference of parameters does not have much influence on the 
RGV scheduling route. The scheduling route of RGV is very similar to the internal disk scheduling 
algorithm of the computer.

Figure 2. The RGV scheduling route under one procedure
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By observing the scheduling routes under three parameters, we can find that the first group of 
parameters is basically the same as the RGV scheduling routes under the second group of parameters, 
but because of the difference in the time of CNC executing the two procedures, the output of the 
finished material is also different. In addition, compared with the third group of RGV scheduling 
routes, it can be found that the tool allocation ratio of the first and second group is 3:5, while the tool 
allocation ratio of other two groups are 4:4, so the scheduling path has changed a lot.

5.3. Analysis of the Experimental Performance
A good scheduling model can shorten the production cycle, reduce the production costs, improve the 
production efficiency and other goals, and then improve the economic benefits of the system. The 
dynamic scheduling model of RGV directly affects the production capacity of the intelligent machining 
system. In order to analyze the performance of the intelligent scheduling strategy designed in this paper, 

Table 9. The tool types under three groups parameters

CNC i#
Tool Types

Group 1 Group 2 Group 3

CNC 1# F S F

CNC 2# S F S

CNC 3# F S F

CNC 4# S F F

CNC 5# F S S

CNC 6# S F F

CNC 7# F S F

CNC 8# S F S

Figure 3. The RGV scheduling route under two procedures
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we introduce the expected number of processed materials, and calculate the total number of finished 
materials in the ideal state of CNC uninterrupted work (no waiting situation). Analysis the ratio of 
the actual number of processed materials to the expected number of processed materials and use it as 
the execution efficiency of the dynamic scheduling model to reflect the performance of the model.

From the Table 10 about the efficiency of the model with three parameters under one procedure, 
when finishing a material needs only one procedure, a large number of finished materials will be 

processed by CNC with three sets of different parameters, and the execution efficiency will more 
than 95%.

From the Table 11 about the efficiency of the model with three parameters under two procedures, 
when finishing a material needs two procedures, the scheduling efficiency is higher only under the 
first group of parameters, and only about 75% in the other two groups.

The RGV dynamic scheduling model designed in this paper is simple and easy to understand, it 
can use the distance landscape strategy algorithm to obtain an ideal scheduling scheme, and quickly 
find the optimal allocation scheme of the quantity and position of each material, which shows the 
practicability and effective algorithm of this RGV dynamic scheduling model.

But at the same time, for the RGV scheduling model with one procedure, in the actual materials 
procession, there will be a time delay in the whole process of signal sending and receiving an action, 
which is not considered by the model. However, when the number of CNC or processing procedures 
increase, the solving time of the model will increase exponentially, so the effectiveness of the algorithm 
is not very strong.

In actual production, the delay time will be determined by a variety of random factors, so a fixed 
approximate delay time can be used to replace it and incorporate it into the calculation of the model 
will minimize the error. When the number of CNC increases, genetic algorithm, ant colony algorithm, 
and other approximate optimal solution algorithms can be used to calculate the tool distribution 
scheme and improve the computational efficiency.

Table 10. The execution efficiency of the RGV scheduling model under one procedure

Performance Group 1 Group 2 Group 3

Actual quantity 382 359 392

Expected quantity 390 374 400

Execution efficiency 97.95% 95.99% 98.00%

Table 11. The execution efficiency of the RGV scheduling model under two procedures

Performance Group 1 Group 2 Group 3

Actual quantity 253 211 244

Expected quantity 273 271 330

Execution efficiency 92.67% 77.86% 73.94%
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6. CONCLUSION

In this paper, a distance landscape strategy based on the fitness landscape is used to solve the dynamic 
scheduling problem of RGV. With the development of our science and technology, the modern 
intelligent logistics system has been constantly improved. In order to make up for the problems of 
low efficiency and high maintenance cost exposed by general automation system and warehouse, the 
RGV dynamic scheduling model can be easily connected with other logistics systems to automatically 
transport, clean and process materials. In addition, it needs no human operation and runs fast. Thus, 
the workload of warehouse managers is significantly reduced, and labor productivity is improved. 
Meanwhile, the application of shuttle vehicles can make the logistics system very simple and 
convenient. A reasonable RGV scheduling strategy also provides more space for its development in 
industrial production, terminal sequencing, cloud scheduling system and other fields.
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