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ABSTRACT

In this paper, the problem of 3D body registration using a single RGB-D sensor is approached. It has 
been guided by three main requirements: low-cost, unconstrained movement and accuracy. In order 
to fit them, an iterative registration method for accurately aligning data from single RGB-D sensor is 
proposed. The data is acquired while a person rotates in front of the camera, without the need of any 
external marker or constraint about its pose. The articulated alignment is carried out in a model-free 
approach in order to be more consistent with the real data. The iterative method is divided in stages, 
contributing to each other by the refinement of a specific part of the acquired data. The exploratory 
results validate the proposed method that is able to feed on itself in each iteration improving the final 
result by a progressive iteration, with the required precision under the conditions of affordability and 
unconstrained movement acquisition.
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1. INTRODUCTION

Nowadays, there are several techniques to obtain a 3D model of the human body. This model is useful 
in many applications of different scopes: medical, textile, shoes, etc. The tandem of 3D technology 
and medicine has a long trajectory, 3D models have been used to help experts study patients and 
make decisions (Treleaven & Wells, 2007), e.g.: dietetic treatment, child growth monitoring, podiatry, 
orthopedics, among others. There are several solutions to obtain a high definition 3D model of the 
human body, but they are expensive and bulky, making its portability more difficult, with a prohibitive 
cost. The usefulness of these models has made more attractive the development of inexpensive 
systems with few restrictions for the subject pose during the acquisition. Consumer RGB-D, low-cost 
RGB-D, or just RGB-D sensors have become popular in fitting those requirements (Lai, Bo, Ren, & 
Fox, 2013) due to their combination of affordability and portability. However, the accuracy of them 
is not high enough for some applications.

Therefore, in this paper we face the problem of providing a 3D body representation using 
RGB-D sensors. The proposal has to fit some requirements: (1) affordability and flexibility for broad 
transferring solutions, (2) unconstrained method in terms of free movement of the subject in front of 
the sensor, (3) accurate alignment of the data to create an accurate representation.

26



International Journal of Computer Vision and Image Processing
Volume 7 • Issue 3 • July-September 2017

27

Low-cost RGB-D sensors are considered a new type of sensors due to the large usage they are 
receiving in the scientific and industrial community. This kind of sensors combine color and depth 
information, the later one estimated using Time of Flight (ToF) or structured-light techniques. In this 
work, we propose a method for RGB-D devices, due to the low-cost requirement, and their accuracy 
are appropriate for body modeling since they were originally developed for body movement tracking 
(Saval-Calvo et al., 2017). However, it could be possible to use our approach with any other sensor 
which provides color and depth information.

To develope a full model of bodies using RGB-D data, our proposal faces the registration or 
alignment of 3D points. The registration is the process to align one data set onto one or more data 
sets. It could be performed rigidly and non-rigidly, which refer to transform the data all with the same 
transformation, or by applying different transformations to each data point (Saval-Calvo, Azorin-
Lopez, Fuster-Guillo, & Mora-Mora, 2015). Registration of 3D data is a widely studied problem. 
(Henry, Krainin, Herbst, Ren, & Fox, 2014) made a 3D reconstruction of indoor environments with 
an RGB-D sensor. The work of (Lovato, Bissolo, Lanza, Stella, & Giachetti, 2014) carried out an 
accurate 3D registration of the foot using a PrimeSense rotating around it. These sensors could be 
used in combination with augmented reality markers in the scene in order to estimate more accurately 
the transformation to obtain the 3D model (Mihalyi, Pathak, Vaskevicius, Fromm, & Birk, 2015).

The 3D registration of the human body is complex due to its articulated nature, and the 
impossibility to keep the same pose in different instants of time. These inconveniences could be 
approached by different acquisition approximations to obtain a model:

•	 Single view, performing a partial reconstruction of the subject of interest.
•	 Adding sensors to acquire the subject from different angles in the same instant of time, avoiding 

any movement of the subject.
•	 Controlled environment, using external elements to the sensor, like augmented reality markers.
•	 Using articulated/isometric techniques for the registration. These techniques take into account 

the movements performed by the subject during the acquisition.

This work is focused on the fourth approach in order to provide a registration of the human body 
fitting the requirements above mentioned of affordability, flexibility and accuracy.

The rest of the paper is organized as follows: a study of the background is presented in section 
1.1; an explanation of the proposed method is done in section 2; the experiments are presented in 
section 3; finally, the conclusion is presented in 4.

1.1. Related Works
Various proposals for body scanning could be found, either related to the sensor system or to the 
registration. There exist commercial body scanners, like Vitus BodyScan or the Cyberware Whole 
Body Scanner. However, these systems are expensive. Some works carried out the reconstruction 
of body introducing multiple RGB-D devices (Tong, Zhou, Liu, Pan, & Yan, 2012; Shapiro et al., 
2014; Lin, Chen, Ralph, & Cheng, 2016). Nevertheless, the affordability and flexibility are required 
in this work. One restriction is the use of a single RGB-D sensor, avoiding complex instrumentation, 
but forcing the rotation of the body in front of the camera. Then, the use of articulated or isometric 
techniques are mandatory (Pellegrini, Schindler, & Nardi, 2008) to overcome misalignment problems.

The articulated alignment is currently under intense study. In human bodies, it consists of non-rigid 
alignment of the different parts in the body, taking into account the joints, allowing pose variations 
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during the acquisition. It divides the body into different parts defined by pairs of joints, and rigidly 
registers each part. To determine each part the work (Charles & Everingham, 2011) differentiates 
each one from a single view obtained with an RGB-D sensor. Shotton et al. (2013, p. 116) proposed 
a method to estimate the parts of the body and its pose in real time from a single frame using random 
forest. Schwarz et al. (2012, p. 217) estimated the pose from depth data, using geodesic distances 
and optical flow for occlusions. Other works use Convolution Neural Networks (CNNs) for pose 
and skeleton estimation (Chen et al., 2016; Oliveira, Valada, Bollen, Burgard, & Brox, 2016; Wei, 
Ramakrishna, Kanade, & Sheikh, 2016).

Focused on the articulated 3D reconstruction of human body, two approaches have been used, 
model-free and model-based techniques (Bogo, Black, Loper, & Romero, 2015). The former needs 
multiple depth frames from different view-points to get information of the whole body and performs 
the 3D reconstruction. The latter techniques fit the data points on a generic model as (Weiss, Hirsh-
berg, & Black, 2011), which uses the SCAPE (Anguelov, Srinivasan, & Koller, 2005).

Model-free approaches use different techniques to get the 3D model. Barmpotis et al. (2013, 
p. 1347) carried out a real-time reconstruction of a body of a subject in front of the camera through 
parametrization of cylindrical objects using Cartesian tensor and b-splines. Cui et al. (2013, p. 133) 
proposed a method to obtain a full body model using a single depth camera with a Kinect sensor 
and employing an articulated model to describe de non-rigid motion of the body forcing the subject 
placed in “T” pose. Wang et al. (2012, p. 432) propose a cylindrical representation of the body 
model, performing the registration in a top-bottom-top manner and using the cylinders to simplify 
the registration to a bi-dimensional problem.

Our main goal is to develop a system for 3D body registration of subjects. The system aims to be 
flexible, accurate, and affordable. In order to accomplish this objective, we propose to use a single 
RGB-D sensor, due to its affordability and flexibility, being the subject who rotates in front of the 
camera. Furthermore, the registration is performed in a model-free approach using all the acquired 
information from a large set of frames. To the best of our knowledge, there exist the need to propose 
a system which accurately registers full body fitting the requirements above mentioned. To achieve 
the accuracy of the problem, we propose an iterative method for 3D reconstruction of the human 
body, based on an initial estimation of the skeleton. This method is divided in three main stages, each 
one contributing to the others by the refinement of a specific part of the data, performing an iterative 
strategy fitting the accuracy of the problem.

2. METHOD OVERVIEW

In this paper, an iterative method for 3D registration of the human body is proposed. This method is 
based on the initial estimation of a 3D medial axis (i.e. a skeleton of the subject), which is iteratively 
improved by the registration process itself. Initially, the proposed method expects as input a set of 
views, being each one a 3D point cloud aligned with the color information of the scene. In these set 
of views, the subject is rotating by itself in front of the camera in a “tired T” pose (see Figure 1) that 
is appropriate for perceiving the whole body along the different views.

Figure 1 shows the outline of the method composed by three stages that are fed back in each 
iteration in order to improve the final result.

The first stage estimates the skeleton of the subject (position of body joints related to the 3D 
point set). Moreover, in each iteration, the information of previous skeletons and registered points 
are used to overcome possible problems (see Section 2.1). At the labeling stage, the different parts 
of the body are detected and each point in the view is accordingly labeled (forearm, chest, etc.). The 
points labels are used in the isometric alignment of the data. Finally, the registration stage performs 
the articulated alignment of the 3D data having as output a set of aligned views that are, moreover, 
used as feedback for the next iteration of the process.
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2.1. Skeleton Estimation
The skeleton model to be estimated is composed by a set of joints and bones. The joints are a set of 
3D points in the location of the body joints related to the input point set. The bones of the skeleton 
are segments connecting the joints keeping the shape model of a human body. As a case of study 
in this paper, the skeleton model used is composed by 23 joints (see Table 1) and 25 bones but any 
other approach can be used.

The skeleton estimation is a challenging problem, mainly when the subject is not facing the 
camera and becoming very difficult when the body is positioned from the side with respect to the 
camera. In order to correct the estimation errors, different refinements have been proposed:

•	 Re-estimating left and right joints and bones in case the subject back to-wards the camera (see 2.1).
•	 Detecting and discarding wrongly estimated joints by overlapping (see 2.1). For example, when 

the subject is seen from the side, both arms are detected in the same position (see Figure 2).
•	 Re-estimating joints placed in wrong locations, discarded, or those that have not been estimated 

(see 2.1).

Figure 1. Iterative scheme of the method

Table 1. Set of joints model used in this paper

N Joint N Joint N Joint N Joint

1 Head 7 Left wrist 13 Right hand 19 Left knee

2 Neck 8 Left elbow 14 Right thumb 20 Left ankle

3 Spine shoulder 9 Left shoulder 15 Right hand tip 21 Right hip

4 Left hand tip 10 Right shoulder 16 Middle spine 22 Right knee

5 Left thumb 11 Right elbow 17 Spine base 23 Right ankle

6 Left hand 12 Right wrist 18 Left hip
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2.1.1. Backward Correction
One of the usual problems in body skeleton estimation algorithms become when the subject is facing 
backwards to the camera due to the calculated joints are not correct being exchanging the left and 
right ones.

The proposed method checks distances between the same joints in different views. The joints 
are clustered into four groups: right arm (10-14), left arm (4-9), right leg (21-23) and left leg (18-
20). Then, the view where the subject is facing the camera is taken as reference (i.e. view with best 
skeleton). For each view, the clusters are analyzed so as each joint is compared to its corresponding 
and its opposite (other side). If the distance is larger in the corresponding, an exchange is performed 
to correct it. It is important to remark the need of a prior alignment of the torso (the most static part 
of the body).

2.1.2. Overlapped Joints
Another common problem in skeleton estimation algorithms is that, in some cases, the joints are 
overlapped. Figure 2 shows the estimation of the skeleton when the subject is seen from the side with 
respect to the camera. Figure 2-left shows the problem, the joints of both arms (4-8 and 11-15 from 
Table 1) are overlapped. This problem will result in a wrong labeling of the body parts. Again, this 
correction also needs that the torso is previously registered.

First, the method improves the estimation of joints by positioning those from the reference frame 
into the remaining views once pre-aligned. Then, the overlapped joints are detected assuming that 
the Euclidean distance between hands should be greater than the distance between shoulders (joints 
9 and 10).

Next, it is necessary to decide which of the two groups of joints (left or right) is wrong. Hence, 
we calculate the distance between the hand and both its corresponding shoulder and the opposite 
one. If the former is larger, those joints are incorrect and a re-estimation is required as explained in 
Section 2.1.3.

Figure 2. Overlapped joints problem. Left: Wrong joints in an arm. Both are detected in the same side. Right: Skeleton correction 
after correcting wrong joints
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2.1.3. Re-Estimation
After the correction of the overlapped joints, the skeleton model may have some non-detected joints, or 
wrongly positioned ones. For example, in Figure 2-right image, the wrist joint is placed at the elbow, 
and the elbow joint at the shoulder, producing errors in the labeling stage. To solve this problem, 
the first step is to detect the frames where the joints are wrong estimated by calculating the standard 
deviation of the distances between the joints showed in Table 2. Then, the distances for each frame 
are calculated and compared with the reference frame, checking the following condition: |distance 
- reference distance| > std, where std is the standard deviation of all the distances. In those frames 
were the condition is true, a re-estimation of the wrist and elbow joints is needed.

Assuming a “tired T” pose of the subject, the problem could be solved as basic geometry problem. 
Given two points A and B, being the hand and shoulder as shown in Figure 3, and the segment which 
connects them, we find a third point C (elbow or wrist) that belongs to the segment and is placed at 
a certain distance from A or B. These distances, from the hand to the wrist and from the shoulder to 
the elbow, are recalculated taking into account those from the rest of views.

2.2. Part Labeling
The articulated registration of the human body needs to know to which part of the body each point 
of the point cloud belongs to. These parts are defined taking into account the joints of the skeleton 
and the bones, which are the segments defined by pairs of joints following human body shape. With 
the information of the previous stage, each 3D point of the point cloud per view is classified in a part 
of the body. In the experiments, 12 parts have been considered (Table 3) but this could be different 
depending on the requirements of the problem.

To classify the points, the distance from each 3D point to each bone of the skeleton is computed. 
The closest bone to a specific point determines the part in which will be classified. The distance from 
a point to a line is given by the orthogonal projection of the point in the line, so it could be calculated 
with basic three-dimensional geometry.

Next, the topology defined by a part is validated, checking the connectivity of the points under 
the same label. Each part or label only contains connected points. Sometimes, if two parts are close, 
points from one could be labeled as the other. In this case, the clusters are analyzed selecting one of 
them as correct, and classifying again the remaining groups.

2.3. Registration
The registration stage performs the alignment of different views to obtain the whole 3D model. This 
alignment is usually performed with rigid registration techniques. Rigid registration algorithms could 
be classified in terms of (Salvi, Matabosch, Fofi, & Forest, 2007): precision (coarse and fine) and 
registration strategy (pair-wise and multiview). However, rigid registration techniques are not enough, 
such as in the problem of body modeling due to the acquisition of the different viewpoints are not 
simultaneously taken and the subject is in motion. For that reason, it is necessary to take advantage 
of the topological information provided in previous stages, i.e. joints, bones and body parts labeling.

Figure 3. Segment from A, hand, to B, shoulder, to find C elbow or wrist
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In this paper, the articulated registration is approached by dividing the model in parts and 
aligning each one independently with a rigid registration method. Then, the transformation has to be 
propagated to the dependent parts, e.g.: in case of the arm (Figure 4), a transformation to the biceps 
must be applied to the forearm and hand, and so on. The dependencies between the different parts 
of the body are defined by the graph in Figure 5.

Hence, the registration is divided into different steps (see Figure 6). First, the registration of the 
torso is performed to coarsely align the different views of the subject. Second, the views are filtered 
to determine which one could be used. Finally, the registration of the limbs is carried out.

2.3.1. Torso Registration
The torso is fine registered using Iterative Closest Point (ICP) (Rusinkiewicz & Levoy, 2001) with 
a pair-wise strategy. The main objective of this step is to perform the alignment of all views based 
on the torso, due to the remaining parts depend on it and it is the most static part of the body. This 
implies that a transformation of the torso must be applied to other parts. In this case, it is possible 
to use a fine approximation without a previous alignment due to the closeness between consecutive 
frames having a minimum variation between consecutive views. If the views are not close each other, 
a pre-alignment could be used.

2.3.2. Filtering Views
The views are filtered to select and remove the parts that are not used to be registered. The method 
discard the parts that lie in one of the next situations: the part is occluded (side views); the number 
of points of a part is widely different that the average in the rest of views; and, the distance between 
joints in the skeleton is widely different that the same in the rest of frames.

2.3.3. Limbs Registration
In this step, each part is aligned individually, taking into account the dependencies with other parts 
in order to apply the transformations (see Figure 5). The head usually has few points and a uniform 
geometry mainly in the back, which difficult its alignment. To register this part, first, a coarse alignment 

Table 2. Joint distances calculated for correct position of joint in the arms

Joint

6 – 7 Left hand – wrist distance

9 – 8 Left shoulder – elbow distance

10 – 11 Right shoulder – elbow distance

12 – 13 Right hand – wrist distance

Figure 4. Arm articulated registration process. From left to right, first the biceps are registered propagating to the rest. Second, 
the forearm is registered propagating to the hand. Thirdly, the hand is registered
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is performed using Random Sample Consensus (RANSAC) (Fischler & Bolles, 1981) with visual 
features as SIFT and SURF. Then, a fine alignment it is done with ICP.

The arms and legs are composed by different parts, so the transformations are applied according 
to the dependencies of each part (see Figure 4). In this step, a pair-wise strategy is used between 
consecutive frames with a coarse registration based on Principal Component Analysis (PCA) and ICP 
as fine refinement. After that, a multiview strategy is applied to each part for improving the final result. 
This strategy consists in align each view with the whole model in order to polish the imperfections 
produced by the registration of consecutive views with a pair-wise strategy.

Figure 5. Dependencies between body parts

Table 3. Labels and the associated part of the body

Part Part Part

1 Head 5 Left hand 9 Left thigh

2 Torso 6 Right biceps 10 Left calf

3 Left biceps 7 Right forearm 11 Right thigh

4 Left forearm 8 Right hand 12 Right calf

Figure 6. Schematic of articulated registration
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3. EXPERIMENTS

In this section, a set of experiments have been carried out to verify the results provided by our method. 
This exploration results are evaluated using visual inspection. The setup includes an RGB-D sensor 
Microsoft Kinect V2 and the Microsoft Kinect SDK. The SDK provides the skeleton of the subject, 
estimated with a variation of the method proposed by (Shotton et al., 2013) that provides joints for 
thumbs tracking, which are not useful for this method.

The experimentation is divided into three parts: overlapped joints detection and correction; joints 
re-estimation when they are wrongly estimated; 3D registration of body subjects with the proposed 
iterative method.

3.1. Overlapped Joints
The proposed method can solve problems where both arms have been detected in the same side, 
shown in Figure 7a. This problem has direct consequences in the labeling and registration stages, 
as can be seen in Figure 7b which shows the result of the labeling stage with the previous wrong 
skeleton where the arm is divided into regions that do not correspond to any correct human model. 
With the proposed method in Section 2.1, the skeleton is corrected by removing the wrong joints, and 
re-estimating some of them as can be seen in Figure 7c. Then, the 3D data can be properly labeled 
(Figure 7d) to provide useful information for the articulated registration step.

3.2. Joints Re-Estimation
The second experiment studies the joints re-estimation, when the skeleton estimation missed some 
joint. For example, Figure 8a shows the skeleton where the joint 9, corresponding with the left 
shoulder, has not been detected. This problem produces erroneous detection of body parts, in this 
case the left biceps and shoulder are equally labeled (Figure 8b). The proposed method can solve 
this situation by providing the skeleton showed in Figure 8c making the left biceps distinguishable 
in the labeling stage.

3.3. Articulated Registration
In order to evaluate the articulated registration, a sequence of frames of a man facing the camera 
making free movements with his arms is used. A subset of these frames is showed in Figure 9. Figure 
9-bottom-right depicts the 3D points of all frames superimposed. After applying the proposed method, 
the articulated alignment achieves an accurate registration of the views represented in Figure 10.

Figure 7. 7b shows the wrong joints estimation due to the arms overlapping, and 7a shows the problems in labeling of the arm. 
7c shows the joint correction and 7d shows the adequate labeling after applying the proposed method
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3.4. 3D Body Model
The purpose of the proposed method is to obtain a 3D registered model of a human body. To evaluate 
the overall performance of the proposal, various experiments have been carried out. Because of the 
similarity between the results, only one example is shown in this paper, but similar accuracy has been 
achieved for the rest of models. The model is obtained from a sequence of 281 images of the subject 
rotating by itself in front the camera. Then, the whole method has been applied to those frames, 
obtaining an accurate result, as shown in Figure 11 in frontal and profile view.

Figure 8. Figure 8a shows the skeleton model in which the joint 9 has not been estimated; 8b shows the wrong labeling of the 
data where shoulder and biceps are the same part; 8c presents the corrected skeleton with the proposed method, which leads 
to an adequate labeling shown in 8d

Figure 9. First row and three left figures in bottom row are a subset of frames of free movements with the arms. Bottom right 
shows 3D data overlapped of the movement
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4. CONCLUSION

In this paper, an iterative method for 3D body registration is presented aiming to be low-cost, dealing 
with unconstrained movements and accuracy. In line of these objectives, RGB-D sensors have been 
selected for the acquisition of 3D data to fit the low-cost requirement. The acquisition of this data is 
performed while the subject rotates in front of the camera, without the need of any external device 
or forcing the subject to be in a specific pose. The alignment of the different views is performed in 
a model-free approach in order to be more consistent with the real data.

Figure 10. Result of the articulated alignment

Figure 11. 3D model obtained with the proposed iterative method
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The iterative method for 3D registration of the human body is based on an initial estimation of 
the skeleton. The method is divided in three stages, contributing to each other by the refinement of a 
specific part of the data. Moreover, the method feeds back in each iteration to improve the final result.

The experimentation with real data allows to validate the proposed method. It has been shown 
how it can progressively improve the acquired data to achieve the more accurate registration. The 
articulated alignment has been tested performing free arm movements, proving that the method can 
take into account those movements aligning all views into a specific pose. Finally, the main purpose 
of the method has been carried out performing the 3D registration of a body rotating in front of the 
camera satisfying the requirements of low-cost, unconstrained movements and accuracy.

As future lines, it is considered to introduce non-rigid registration methods to study the shape 
variation of subjects by obtaining 3D models in different instants of time in order to quantify that 
variation.

ACKNOWLEDGMENT

This work has been supported by a grant from the University of Alicante project GRE16-28.



International Journal of Computer Vision and Image Processing
Volume 7 • Issue 3 • July-September 2017

38

REFERENCES

Anguelov, D., Srinivasan, P., & Koller, D. (2005). Scape: shape completion and animation of people. ACM 
Transactions on Graphics, 24(3), 408-416.

Barmpoutis, A. (2013). Tensor body: Real-time reconstruction of the human body and avatar synthesis from 
RGB-D. IEEE Trans. on Cybernetics, 43(5), 1347-1356. doi:10.1109/TCYB.2013.2276430

Bogo, F., Black, M. J., Loper, M., & Romero, J. (2015). Detailed Full-Body Reconstructions of Moving People 
from Monocular RGB-D Sequences. In Proceedings of the IEEE International Conference on Computer Vision 
(pp. 2300-2308). doi:10.1109/ICCV.2015.265

Charles, J., & Everingham, M. (2011). Learning shape models for monocular human pose estimation from 
the Microsoft Xbox Kinect. In Proceedings of the 2011 IEEE Int. Conf. on Computer Vision Workshops (pp. 
1202–1208). IEEE. doi:10.1109/ICCVW.2011.6130387

Chen, W., Wang, H., Li, Y., Su, H., Tu, C., Lischinsk, D., Chen, B. (2016). Synthesizing Training Images for 
Boosting Human 3D Pose Estimation. doi:10.1109/3DV.2016.58

Cui, Y., Chang, W., Nöll, T., & Stricker, D. (2013). Kinect Avatar: Fully automatic body capture using a single 
Kinect. In Asian Conference on Computer Vision, LNCS (Vol. 7729, pp. 133-147). doi:10.1007/978-3-642-
37484-5-12

Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: A paradigm for model fitting with 
applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395. 
doi:10.1145/358669.358692

Henry, P., Krainin, M., Herbst, E., Ren, X., & Fox, D. (2014). RGB-D Mapping: Using Depth Cameras for Dense 
3D Modeling of Indoor Environments. In Experimental Robotics (pp. 477-491). Springer. doi:10.1007/978-3-
642-28572-1

Lai, K., Bo, L., Ren, X., & Fox, D. (2013). Consumer Depth Cameras for Computer Vision. In Consumer depth 
cameras for computer vision (p. 167). doi:10.1007/978-1-4471-4640-7

Lin, S., Chen, Y., Lai, Y. K., Martin, R. R., & Cheng, Z. Q. (2016). Fast capture of textured full-body avatar 
with RGB-D cameras. The Visual Computer, 32(6-8), 681–691. doi:10.1007/s00371-016-1245-9

Lovato, C., Bissolo, E., Lanza, N., Stella, A., & Giachetti, A. (2014). A low cost and easy to use setup for foot 
scanning.

Mihalyi, R.-G., Pathak, K., Vaskevicius, N., Fromm, T., & Birk, A. (2015). Robust 3D object modeling with a 
low-cost RGBD-sensor and AR-markers for applications with untrained end-users. Robotics and Autonomous 
Systems, 66, 1–17. doi:10.1016/j.robot.2015.01.005

Oliveira, G. L., Valada, A., Bollen, C., Burgard, W., & Brox, T. (2016, May). Deep learning for human part 
discovery in images. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation 
(ICRA) (pp. 1634-1641). IEEE. doi:10.1109/ICRA.2016.7487304

Pellegrini, S., Schindler, K., & Nardi, D. (2008). A Generalisation of the ICP Algorithm for Articulated Bodies. 
In Proc. of the BMVC. doi:10.1.1.165.4314 doi:10.5244/C.22.87

Rusinkiewicz, S., & Levoy, M. (2001). Efficient variants of the ICP algorithm. In Proceedings third international 
conference on 3-d digital imaging and modeling (pp. 145-152). IEEE. doi:10.1109/IM.2001.924423

Salvi, J., Matabosch, C., Fofi, D., & Forest, J. (2007). A review of recent range image registration methods with 
accuracy evaluation. Image and Vision Computing, 25(5), 578–596. doi:10.1016/j.imavis.2006.05.012

Saval-Calvo, M., Azorin-Lopez, J., Fuster-Guillo, A., Garcia-Rodriguez, J., Orts-Escolano, S., & Garcia-Garcia, 
A. (2017). Evaluation of sampling method effects in 3d non-rigid registration. Neural Computing & Applications, 
28(5), 953–967. doi:10.1007/s00521-016-2258-z

Saval-Calvo, M., Azorin-Lopez, J., Fuster-Guillo, A., & Mora-Mora, H. (2015). μ-mar: Multiplane 3d marker 
based registration for depth-sensing cameras. Expert Systems with Applications, 42(23), 9353–9365. doi:10.1016/j.
eswa.2015.08.011

http://dx.doi.org/10.1109/ICCVW.2011.6130387
http://dx.doi.org/10.1007/978-3-642-37484-5-12
http://dx.doi.org/10.1007/978-3-642-37484-5-12
http://dx.doi.org/10.1145/358669.358692
http://dx.doi.org/10.1007/978-3-642-28572-1
http://dx.doi.org/10.1007/978-3-642-28572-1
http://dx.doi.org/10.1007/978-1-4471-4640-7
http://dx.doi.org/10.1007/s00371-016-1245-9
http://dx.doi.org/10.1016/j.robot.2015.01.005
http://dx.doi.org/10.1109/ICRA.2016.7487304
http://dx.doi.org/10.5244/C.22.87
http://dx.doi.org/10.1109/IM.2001.924423
http://dx.doi.org/10.1016/j.imavis.2006.05.012
http://dx.doi.org/10.1007/s00521-016-2258-z
http://dx.doi.org/10.1016/j.eswa.2015.08.011
http://dx.doi.org/10.1016/j.eswa.2015.08.011


International Journal of Computer Vision and Image Processing
Volume 7 • Issue 3 • July-September 2017

39

Victor Villena-Martinez is a PhD Student at the University of Alicante. He received his Master’s Degree in Automation 
and Robotics in June 2016 and his Bachelor’s Degree in Computer engineering in June 2015. He has collaborated 
in the project “Acquisition and modeling of growing plants” (GV/2013/005). His main research is focused on the 
calibration of RGB-D devices and the reconstruction of the human body using the same devices.

Andres Fuster-Guillo received the BS degree in Computer Science Engineering from Polytechnic University of 
Valencia (Spain) in 1995 and the PhD degree in Computer Science at the University of Alicante (Spain) in 2003. 
Since 1997, he has been a member of the faculty of the Department of “Computer Science Technology and 
Computation” at the University of Alicante, where he is currently a professor. He was Deputy Coordinator of the 
Polytechnic School at the University of Alicante for seven years and Director of the Secretariat for Information 
Technology at the University of Alicante for four years. During this period, he has coordinated and participated 
in several strategic technology projects: Open University (transparency portal and open data), UACloud, Smart 
University, among others.

Marcelo Saval-Calvo obtained a PhD in Computer Science in 2015, as well as Computer engineer at University of 
Alicante in 2010 and Master of Science in 2011. His interests include computer vision problem in human behaviour 
understanding, 3D shapes changes analysis and modelling, and 3D sensing and mapping. Moreover, he has 
expertise in CUDA programming for GPGPUs. Marcelo has published various paper in these areas and has attended 
international conferences and specialist courses. He worked as a senior researcher in a National Funded project 
in Advanced Driver Assistance Systems accelerating computer vision algorithms using heterogeneous platforms. 
He is a postdoc visitor in the School of Informatics, University of Edinburgh, in the computer vision group led by 
Prof. Robert B. Fisher.

Jorge Azorin-Lopez received a degree in Computer Engineering in 2001 and a PhD degree in Computer Science 
at the University of Alicante (Spain) in 2007. Since 2001, he has been a faculty member of the Department of 
Computer Science Technology and Computation at the same university, where he is currently an Associate Professor 
and the Deputy Director of Research. He was awarded the Post-Doctoral Research Fellowship “Automatic visual 
inspection of shape defects on specular surfaces. Methods to compensate low sensitivity of 3D image acquisition 
and reconstruction techniques” by the Spanish Ministry of Science and Education for research at University of 
Edinburgh. He has worked in 14 research projects and has published more than 40 papers on computer vision 
and computer architecture in several journals, conferences and book chapters. He has served as a reviewer to 
numerous scientific journals and international conferences.

Schwarz, L. A., Mkhitaryan, A., Mateus, D., & Navab, N. (2012). Human skeleton tracking from depth data 
using geodesic distances and optical flow. Image and Vision Computing, 30(3), 217–226. doi:10.1016/j.
imavis.2011.12.001

Shapiro, A., Feng, A., Wang, R., Li, H., Bolas, M., Medioni, G., & Suma, E. (2014). Rapid avatar capture 
and simulation using commodity depth sensors. Computer Animation and Virtual Worlds, 25(3-4), 201–211. 
doi:10.1002/cav.1579

Shotton, J., Sharp, T., Kipman, A., Fitzgibbon, A., Finocchio, M., Blake, A., & Moore, R. (2013, January). 
Real-time human pose recognition in parts from single depth images. Communications of the ACM, 56(1), 116. 
doi:10.1145/2398356.2398381

Tong, J., Zhou, J., Liu, L., Pan, Z., & Yan, H. (2012). Scanning 3D full human bodies using Kinects. IEEE 
Transactions on Visualization and Computer Graphics, 18(4), 643–650. doi:10.1109/TVCG.2012.56 
PMID:22402692

Treleaven, P., & Wells, J. (2007, July). 3D Body Scanning and Healthcare Applications. Computer, 40(7), 28–34. 
doi:10.1109/MC.2007.225

Wang, R., Choi, J., & Medioni, G. (2012). Accurate full body scanning from a single fixed 3D camera. In 
Proceedings of the 2nd Joint 3DIM/3DPVT Conference: 3D Imaging, Modeling, Processing, Visualization and 
Transmission, 3DIMPVT ’12 (pp. 432-439). doi:10.1109/3DIMPVT.2012.57

Wei, S.-E., Ramakrishna, V., Kanade, T., & Sheikh, Y. (2016). Convolutional Pose Machines. In Proc. of CVPR 
(pp. 4724-4732). doi:10.1109/CVPR.2016.511

Weiss, A., Hirshberg, D., & Black, M. (2011). Home 3D body scans from noisy image and range data. In 
Proceedings of Computer Vision ’11 (pp. 1951–1958). doi:10.1109/ICCV.2011.6126465

http://dx.doi.org/10.1016/j.imavis.2011.12.001
http://dx.doi.org/10.1016/j.imavis.2011.12.001
http://dx.doi.org/10.1002/cav.1579
http://dx.doi.org/10.1145/2398356.2398381
http://dx.doi.org/10.1109/TVCG.2012.56
http://www.ncbi.nlm.nih.gov/pubmed/22402692
http://dx.doi.org/10.1109/MC.2007.225
http://dx.doi.org/10.1109/3DIMPVT.2012.57
http://dx.doi.org/10.1109/CVPR.2016.511
http://dx.doi.org/10.1109/ICCV.2011.6126465

