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ABSTRACT

One of the most serious global health threats is the COVID-19 pandemic. The emphasis on increasing 
the diagnostic capability helps stopping its spread significantly. Therefore, to assist the radiologist 
or other medical professional to detect and identify the COVID-19 cases in the shortest possible 
time, the authors propose a computer-aided detection (CADe) system that uses the computed 
tomography (CT) scan images. This proposed boosted deep learning network (CLNet) is based on 
the implementation of deep learning (DL) networks as a complementary to the compressive learning 
(CL). They utilize their inception feature extraction technique in the measurement domain using 
CL to represent the data features into a new space with less dimensionality before accessing the 
convolutional neural network. All original features have been contributed equally to the new space 
using a sensing matrix. Experiments performed on different compressed methods show promising 
results for COVID-19 detection.
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1. INTRODUCTION

Coronavirus Disease 2019 (COVID-19) is a novel (new) virus that first identified in Wuhan, 
Hubei Province, China in December 2019. COVID-19 is contagious respiratory illnesses that is 
caused by infection with a new coronavirus (called SARS-CoV-2), which affects different people 
in different ways. The centers for disease control and prevention (CDC) are closely monitoring 
the spread of cases caused by this disease. As of the best of our knowledge while we write this 
article and according to the World Health Organization (WHO), more than 60 million confirmed 
cases glob- ally, and more than 1 million deaths. The current tests are mostly based on reverse- 
transcription polymerase chain reaction (RT-PCR), which looks for bits of the virus’s genetic 
material in the patient’s blood or sputum sample. The testing may not be sensitive enough to detect 
COVID-19 in people with the infection. In addition, during the peak time of COVID-19 outbreak, 
RT-PCR test kits were in shortage (Yang et al., 2020). To overcome of RT-PCR limitation, many 
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imaging techniques can be widely used to examine patient with COVID-19 such as Chest x-ray 
(CRX) and CT scan are (Rubin et al, 2020; Cohen et al., 2020). In this study, the assessment 
or examination processes to identify COVID-19 is the chest CT, which is recommended to be 
used as the primary screening or diagnostic method. Chest CTs are fast and relatively easy to 
perform and undergo. They are also demonstrated more sensitive to COVID-19 infection and 
better performance to detect the positive cases than CRX (Benmalek et al., 2021; Borakati et 
al., 2020). Therefore, the CAD systems are recommended to detect the earliest signs of ground-
glass nodules in thoracic CT that are caused by this disease, which may not be detected by the 
medical professionals at the early times. In Fig. 1, image A shows that COVID-19 causes multiple 
peripheral ground-glass opacities in lung that did not spare the subpleural regions, while image 
B shows progressive produced pulmonary opacities after 3 days (J. Lei et al., 2020).

The main motivation of this research is to assist accelerating the diagnostic process and help 
stopping this widespread pandemic. Therefore, we introduce the CAD system that applies the advanced 
deep learning-based radiology image analysis methods as a complementary to the com- pressive 
learning (CL), which is based on different sensing matrices weighted strategy. This CAD system 
could outperform many state-of-the-art methods.

1.1 Deep Learning
There are many Deep Learning (DL) methods have been applied to diagnosis COVID-19 based on 
radiology medical images. Many of those approached have been explored the use of CT images 
extensively and shown promising detection accuracy of COVID- 19 (X. Xu et al. 2020; O. Gozes 
et al., 2020; S. Wang et al., 2020; H. Ko et al., 2020). DL approaches like machine learning can be 
categorized as follows: supervised, semi-supervised, and unsupervised learning. Also, there is one 
more category of DL that is called reinforcement learning or deep reinforcement learning which 
are often considered to be a special case of semi supervised or sometimes unsupervised learning 
approaches (M. Z. Alom et al., 2018).

1.1.1 Deep Unsupervised Learning
Unsupervised learning is a type of learning algorithm that allows the model to work on its own 
to discover the hidden patterns within the input data. Often clustering, dimensionality reduction, 
and generative techniques are considered as unsupervised learning approaches, such as Encoders 
(AE), Restricted Boltzmann Machines (RBM), and the recently developed Generative Adversarial 
Networks (GAN).

Figure 1. Unenhanced CT images. According to (J. Lei et al., 2020), image A shows multiple ground-glass opacities in bilateral 
lungs. While image B which obtained 3 days after follow-up shows progressive ground-glass opacities in the posterior segment 
of right upper lobe and apical posterior segment of left superior lobe.
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1.1.2 Deep Semi-Supervised Learning
Semi-supervised learning provides powerful framework for leveraging unlabeled data when labels 
are limited by combining that limited number of labels and a large number of unlabeled datasets 
(partially labeled datasets) to construct a model or classifier feature. Semi-supervised learning is 
between supervised and unsupervised learning. In some cases, Deep Reinforcement Learning (DRL) 
and GAN are used as semi-supervised learning techniques.

1.1.3 Deep Supervised Learning
Supervised learning is a learning technique that uses labeled data to infer the relationship be- 
tween the observed data and a predetermined dependent variable. In the case of supervised DL 
approaches, the predetermined dependent variable has a set of inputs and corresponding outputs. 
After successful training, and the goal is to learn a general rule that maps inputs to outputs. There are 
different supervised learning approaches for deep leaning including Deep Neural Networks (DNN), 
Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) including Long Short-
Term Memory (LSTM), and Gated Recurrent Units (GRU).

1.1.4 Deep Reinforcement Learning (DRL)
DRL is a learning technique for use in unknown environments where a system interacts with a dynamic 
environment in which it must perform a certain goal. In this case, there is a straight forward loss 
function that controls the convergence to the optimal action value function. Therefore, the system 
is provided feedback in terms of rewards and punishments as it navigates its problem space. DLR is 
the appropriate way to go if the problem has a lot of parameters to be optimized.

1.2 Compressive Sensing (CS)
One of the very powerful signal processing techniques is the Compressive Sensing (CS), which has 
provided fast and efficient data acquisition in many applications. Based on the assumption that each 
data has a sparse representation in some basis (E. J. Candes et al., 2006; D. L. Donoho et al., 2006; K. 
Awedat et all., 2017; K. Awedat et al., 2017). The sparse signals can be recovered with high accuracy 
by projecting or sensing the data into the measurement domain. The sensing data can be achieved using 
sensing matrix which should satisfy the incoherent, restricted isometry property (RIP) (E. J. Candes 
and T. Tao, 2005). Most of CS works have been focused on providing theories for reconstruction the 
original sparse data (A. Draganic et al., 2017; G. Pope, 2009). Mathematically, for a signal x ∈ RN is 
called sparse if it contains only a small number of non-zero elements compared with its dimension 
s = ǁxǁ0 ∈ RN (whereǁxǁ0 is number of nonzero entries). Due the sparsity x can be manipulated in a 
new domain y ∈ RM where M< N by linear system transformation as:

y x= ϕ 	 (1)

where φ ∈ RM×N is sensing (measurements) matrix. Decoding process focuses on finding back the sparse 
signal x from a given measurement y. For this purpose, the optimization method must be applied as:

min ǁyǁ0subject to φ.x = y	 (2)

However, this problem is NP-hard (Knuth, Donald, 1974). Instead, the reconstruction can be 
done using L1-minimization as:

min ǁyǁ1subject to φ.x = y	 (3)
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Generally, the CS can be optimized in the coding procedure by implementing different coding 
matrices (Y. Arjoune et al., 2018), or using different optimization methods to reconstruct the original 
signals (Knuth, Donald, 1974). While the reconstruction sparse signal is the main objective of CS, 
the compressed signal can be very useful in the applications that detecting certain patterns or features 
for classification (R. Calderbank and S. Jafarpour, 2012; J. Wright et al. 2008). Moreover, in some 
scenarios related to information privacy, reconstruction is undesirable.23 Therefore, (R. Calderbank and 
S. Jafarpour, 2012; M. A. Davenport et al., 2007; M. A. Davenport et al., 2010) have been proposed 
the Compressive Learning (CL), where the system is built based on the com- pressed measurements 
without the reconstruction step. Since CL has been built based on all features of data that are combined 
to reduce the dimensionality, it still can be used for learning task. In other words, since all the original 
features have been involved in projected domain, the new low dimension projected features can be 
applied to distinguish the original pattern or class (K. Awedat et al., 2020).

This study is inspired by (K. Awedat et al., 2020), and based on the observation that the new 
low dimension projected features which can be obtained by CL are great source of information to 
pass through advanced deep learning methods. We propose the CL to employ our inception feature 
extraction technique in the measurement domain for representing the data features into a new space 
with less dimensionality before accessing the deep learning network. The novel scientific contributions 
in this paper are summarized as follows:

•	 It introduces a computer-aided detection (CAD) system based on the boosted deep learning 
network (CLNet), which uses compressive learning based deep learning approach.

•	 The evaluation process of the proposed CLNet technique has been conducted on raw CT images 
without any preprocessing and has shown signs of high performance.

The rest of this paper is organized as the following: The related work is covered in Section 2. 
The proposed approach is presented in Section 3. Section 4 discusses the experimental setup and 
data description. The obtained results, detailed discussion, and the work limitations are presented in 
Section 5. Section 6 concludes the work and introduces the future work suggestions.

2. RELATED WORK

The effort of developing deep learning technique to diagnose COVID-19 has been gradually in- creased 
since the outbreak. To illustrate the importance of early detection and management of COVID19 
patients, a detailed study has been conducted in (W. Yang and F. Yan, 2020; M. Z. Alom et al., 
2020). Some literature reviews demon- strate that the multiple peripheral ground-glass opacities in 
lung which are caused by COVID-19 disease are clearly appeared on CT images, while sometimes 
are not appeared on the chest X-ray (CXR) at all (Yang et al., 2020; M.-Y. Ng et al., 2020). Due to 
superior ability of deep learning of image classification, there are several Artificial Intelligence (AI) 
systems that have been proposed for COVID-19 detection based on medical imaging. The authors of 
J. Civit-Masot et al. (2020) and A. Narin et al. (2020) have proposed convolutional neural network 
(CNN) for the detection of coronavirus pneumonia infected patient using chest X-ray radiographs. 
The output of learning method is a classification between Pneumonia, COVID19 or Healthy. The 
data need to be preprocessed and calibrated to reduce the variation of the histogram of the images. 
Comparison CT and CXR images with deep learning model for COVID-19 diagnosis had been issued 
in (Benmalek et al., 2021; Borakati et al., 2020). The results showed that imaging techniques was 
faster rate than the RT-PCR method. In addition, CT scanning had demonstrated excellent sensitivity 
and should strongly be considered in the initial assessment of COVID-19. While some literature 
reviews show that DL methods using CT images have been achieved promising detection accuracy 
of COVID-19, the DL based approaches also have been utilized extensively on CXR images and 
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successfully have provided high performance (Ozturk et al., 2020). The authors of Song et al. (2021) 
have proposed a method to accurate identification of COVID-19 in human samples. However, there 
were many preprocessing steps such as lung segmentation, extracting main regions of lung, filled 
the blank segmentation with the lung itself and aggregation of prediction images. On the other hand, 
the authors of C. Butt et al. (2019) have applied 2D and 3D deep learning to classify CT samples 
with COVID-19. The authors of X. Yang et al. (2020) have used the influenza viral pneumonia cases 
and no-infection cases to build a database of COVID-19 based on CT images, where the diagnosis 
method was based on concatenating both lung masks and lesion masks. The authors of A. Jaiswal et 
al. (2020) have proposed DenseNet201 based deep transfer learning (DTL) to classify the patients 
as COVID infected. There are many studies have been proposed to diagnosis coronavirus using 
deep learning (X. Xu et al., 2020; S. Wang et al., 2020; H. Ko et al., 2020; T. Ozturk et al., 2020). 
According to various studies presented in the literature, the learning framework has been applied on 
medical images with different approaches for preprocessing methods. Generally, most of proposed 
methods the images need a certain preprocessing. These preprocessing steps depend on the images 
features that required for the classifications. In many cases, the proposed method was designed for 
a certain dataset. In our study, by taking the advantage of CL that the images can be represented in 
new domains with small number of features, and then combining these features would be useful to 
improve the diagnosis accuracy.

3. PROPOSED METHOD

To investigate the appearance of coronavirus (COVID-19) on CT images, we have utilized our inception 
feature extraction network based on the compressing learning (CL) to represent the data features into 
a new space with less dimensionality before accessing the advanced deep learning network. The end-
to-end training pipeline of the proposed CLNet is shown in Fig. 2.

3.1 Feature Extraction
In this stage, the appropriate features that are required for an accurate distinguishing between infected 
and non-infected images will be extracted. Our method is based on the principle of CL where all 
features of the input image will be preserved in low dimension representation. Since the compressing 
procedure is done using a sensing matrix, we claim that different sensing matrices will hold the 
original features in different weights. Fig. 3 shows an example for applying different measurement 
matrices on an image.

It is obviously that the image has been represented in a new domain differently in every single 
matrix. The authors of (K. Awedat et al., 2020) have addressed this issue and proved that the 
classification performance of the classifier is varied based on the sensing matrix and the compression 
ratio. In our technique, we went further and stated that the selected features for classification would be 
composed from three different manipulation matrices. The input features to the classifier contain three 
channels and every channel is a representation of images under one sensing matrix Φ. Each image 
has been represented by one channel. The three channels produce concatenating image under Φ1, Φ2, 
and Φ3. These matrices could be any combination of sensing matrices that proposed or applied for 
compressing sensing. Basically, the raw data has been directly compressed and forwarded as features 
for classification purpose. In this study, we applied Gaussian matrix, Circulant matrix, and Toeplitz 
matrix. This selection is not unique, but it is just to confirm the effectiveness of our technique.

3.2 Data Classification
Once the features of input CT images are extracted, the next step in our method is the 
classification process, which has been carried out by adjusting the CNN model structure of 
the well-known deep learning network (LeNet) (Y. LeCun et al., 1998). The LeNet or LeNet-5 
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Figure 2. Block diagram of the proposed COV ID − CLNet method for COV ID − 19 detection
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architecture is made up of 7 layers that include 3 convolutional layers, 2 subsampling layers, 
and 2 fully connected layers. Generally, it utilizes two significant types of the layer block, a 
convolutional encoder block and dense block. The basic units in the convolutional block are 
convolution layer, an activation function, and a subsequent average pooling operation. The 
convolutional layers are used to identify the spatial patterns in the image, while the pooling 
layer is used for dimensionality reduction. Even though there are several versions of LeNet 
that have been successfully developed for different applications, in this work and based on 
the nature of the classification process the LeNet has been modified to accommodate the two 
classes binary classification, which can be seen in Fig. 2. The input images were processed 
to 64 × 64 × 3 to maintain the prominent image features. The convolutional cores kernel size 
is set to 3 × 3 with valid padding and the max pooling is utilized with kernel size of 2 × 2 to 
minimize the size of the convolved features. Then the output passed to the dense block which 
contains two fully connected layers to reduce the training parameters from 128 to 64 neurons. 
The number of images of each input layer can be adjusted where the adjustment parameter is 
called batch size. In our experiment, the batch size has been set to 40 which means 40 images 
are used each time for training, based on the observation that helps to save the machine 
memory and to maintain detecting prominent image features. Additionally, there is no need 
to resize the classifier input images since they are already compressed to the required size 
using sensing matrix.

4. EXPERIMENTAL SETUP

The proposed CADe system is developed using deep learning based on compressing learning models 
for classification of the raw data without any kind of preprocessing. We design the network based on 
modified LeNet. Table 1 shows the main parameters for the network layers. For the hyper parameters, 
epochs = 40, patch = 10 and Adam optimizer. The implementation process was conducted using 
Python programming language on 24 Intel(R) Xeon(R) CPU E5-4607 0 @ 2.20GHz, 377G memory 
and two Quadro P2000.

Figure 3. Feature extraction of input image using three different measurement matrices. Where ΦG is Gaussian matrix, ΦC is 
Circulant matrix, and ΦT is Toeplitz matrix. The compression ratio is 30%.
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4.1 Dataset (CT Images)
The COVID-CT dataset which has been used in this study is publicly available (X. Yang et al., 2020). 
There are 349 images of COVID-19 collected from 216 patients. The non-COVID-19 data contains 
397 samples. The images collected from four sources:

•	 MedPix website 1: A free online Medical Image Database with over 59,000 indexed and curated 
images, from over 12,000 patients.

•	 LUNA website 2: The Lung Image Database Consortium (LIDC) and Image Database Resource 
Initiative (IDRI). The database contains 888 CT scans.

•	 PubMed Central (PMC) website 3: A free full-text archive of biomedical and life sciences 
journal literature at the U.S. National Institutes of Health’s National Library of Medicine (NIH/
NLM).

•	 Radiopaedia website 4: A free full-text archive of biomedical and life sciences journal literature. 
Some papers contain CT images.

Fig. 4 shows some positive and negative samples of the CT images. In this study, the collected 
CT images have different sizes. The minimum and maximum height are 153, 1853. The minimum 
and maximum width are 124, 1485. Since the resolution variation is very high, the first step was 
to resize the entire images into one scale. To make sure that all images are included, the minimum 
size (153×124) need to be selected. Just for simplicity, all input images have been resized to 120 × 
120, which should be very efficient and accurate size for compressing images using a single sensing 
matrix. The main advantage for our proposed technique is not require many preprocessing for the 
images. Even the dataset contains very low-resolution images, the compressing features combination 
are enough for classification. The proposed approach depends on the use of more than one sensing 
matrix, the entire images are represented in the grayscale domain. Then the three sensing matrices set 
to have the same size, which accordingly produces output compressed images with final size of 64 × 
64 (all images are scaled by compressing ratio is CR= 54%). In addition, our technique is flexible. 
The size of the images and compressing ratios can be selected arbitrary.

4.2 Data Augmentation (DA)
Since the dataset is considerably small, we applied a data augmentation (DA) to add more samples. 
The augmented data will represent a more comprehensive set of possible data points. The DA approach 
is built based on assumption that more information can be extracted from the original dataset through 
augmentations (Elgendiet al., 2021). In this work, we consider the geometric augmentation. This 
approach is using simple image transformation, such as rotation, flipping zooming and padding 

Table 1. Details of the proposed network that is based on the modification of LeNet-5 CNN

Layer Feature Map 
# of channel

Feature Map 
# of channel

Filter Size 
(Kernel Size) Stride Padding Activation 

Function

Convolution 128 60×60 3×3 1 0 relu

Max- Pooling 128 30×30 2×2 2 0 relu

Convolution 64 26×26 3×3 1 0 relu

Max-Pooling 64 14×14 2×2 2 0 relu

Convolution 64 10×10 3×3 1 0 relu

FC - 128 - - - relu

FC - 64 - - - Sigmoid



International Journal of Computer Vision and Image Processing
Volume 12 • Issue 1

9

(Shorten et al., 2019). We applied DA on the training set features after the compressing the images 
and concatenate the three channels. Fig 5 shows a simple example of sensing features combinations 
and five transformations.

5. RESULTS AND DISCUSSION

After the model has been successfully built and to avoid any bias, the dataset was randomly split into 
two independent parts for training and testing respectively. Then K-fold cross validation method was 
applied to obtain several results according to each observation from the raw dataset. Basically, each 

Figure 4. CT positive and negative samples from the dataset for COVID-19 diagnosis

Figure 5. Examples of augmentation methods
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sample could be considered in both cases training set and testing set. We divided the testing images 
equally between two categories at each fold. The positive and negative COVID images are randomly 
mixed. Fig. 6 displays how testing and training sets are selected.

5.1 Results
All trained models are evaluated using the accuracy and validation loss (val-loss). The starting 
point is that testing the CL technique for the classification. We have applied three sensing matrices 
Gaussian, Circulant, and Toeplitz to manipulate the images into the size of 64 × 64. Then apply a 
quick comparison with the original images where there is not any kind of compression sensing (No 
CS). In the classifier, the original images resized to the same size of compressed images. The CT 
images dataset was randomly split into two independent parts with 80% and 20% for training and 
testing respectively. The quantitative results based on k-fold cross validation method and according 
to 5 different k values (k = 1 − 5) show around 86.08% testing accuracy on the overall completely 
different testing samples. Table 2 shows the experimental result comparisons where it is obviously 
when the CL has been applied the classification accuracy is improved at all three different matrices 
comparing to the case of no compression sensing is applied.

The experimental results also show that the classifier performance can be improved with a 
minimum margin around 15%, which means the evaluation parameters would be affected by the 

Figure 6. K-fold cross validation for the input CT images. Every fold contains the same number of images from each class.

Table 2. Comparison of non-compression sensing and compression sensing with different compressing methods

Method Accuracy % ± std Val Loss

No CS 70.02% ± 3.13 1.686

Circulant 86.08% ± 1.17 0.546

Teoplize 85.81% ± 2.17 0.547

Gaussian 185.00% ± 3.62 0.525
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compression sensing method. As we can see that Circulant matrix outperforms other matrices with 
a small margin around 1.5%. Notice that the input features to the classifier are different from three 
sources of compression.

In addition, for quantitative justification after confirming that the CL can be involved to improve 
the performance of the classifier, we have investigated the combination of these three different 
methods for classification extensively. As shown in Fig. 2, the three compressed features from every 
image are concatenated into one channel. Every channel has a size 64 × 64. First, we investigate 
all concatenation options to identify which one provides the best performance. For performance 
assessment of the classifier, the confusion matrix has been used. The sensitivity (Sen), Specificity 
(Speci), Positive Predictive Value (PPV) and Negative Predictive Value (NPV) have been calculated 
for all data combinations. Table3 shows the average accuracy and val_loss as assessment performance 
for the classifier. Then in the second part, we compare our results with other methods that have been 
listed in.35 Tables 3 and 4, and Fig. 7 show the experimental results for two testing sets. In the first 
set, we have left 6.5% of the data samples for testing and used the rest training. While in the second 
set, we have utilized 10% for testing and the rest for training.

In general, the quantitative analysis that has been applied using all different concatenation options 
shows promising results that higher performance than the case of single channel method even though 
when the three channels are from the same sensing matrix (TTT, GGG, and CCC) Toeplitz, Gaussian, 
and Circulant respectively. All possible combinations of these three channels can be seen in Tables 3 
and 4. Overall, the best performance could be achieved when the three channels are totally different. 
The average accuracies are 91.98% ± 2.77 and 91.96% ± 2.09 for 6.5% and 10% testing set respectively. 
Of critical importance, PPV is significantly higher when the three channels are different which is 
particular clinical important to diagnosis of COVID-19 disease. The main reason behind that is the 
selected features after representing the images in low dimensions are promoted by the combination 
of the three different channels. We also observed that increases the accuracy and validation loss as 
long as the selected features have been increased.

Table 3. The performance evaluation based on confusion matrix values

Method
6.5% Samples 10% Samples

Sen Speci PPV NPV Sen Speci PPV NPV

Gaussian(G) 0.806 0.765 0.79 0.778 0.781 0.748 0.779 0.754

Toeplitz(T) 0.804 0.774 0.802 0.777 0.823 0.742 0.784 0.789

Circulant(C) 0.803 0.774 0.799 0.784 0.824 0.768 0.800 0.801

Concatenate TCT 0.897 0.891 0.904 0.884 0.884 0.877 0.891 0.870

Concatenate GCG 0.909 0.902 0.915 0.898 0.906 0.902 0.914 0.895

Concatenate CGC 0.906 0.908 0.919 0.895 0.906 0.882 0.899 0.893

Concatenate CTC 0.909 0.888 0.909 0.897 0.889 0.868 0.885 0.873

Concatenate TGT 0.891 0.888 0.901 0.878 0.891 0.882 0.897 0.885

Concatenate CTG 0.950 0.943 0.950 0.942 0.925 0.942 0.948 0.920

Concatenate CCC 0.911 0.880 0.896 0.898 0.889 0.880 0.894 0.874

Concatenate TTT 0.874 0.846 0.865 0.856 0.868 0.871 0.885 0.855

Concatenate GGG 0.891 0.894 0.905 0.879 0.904 0.882 0.898 0.891



International Journal of Computer Vision and Image Processing
Volume 12 • Issue 1

12

Figure 7. The validation loss comparison for different combination methods

Table 4. Performance comparison of different sensing matrices at different number of testing samples

Method
6.5% Samples 10% Samples

Accuracy % ± std Val Loss Accuracy % ± std Val Loss

No CS 71.35% ± 4.78 1.34 71.75% ± 5.2 1.28

Gaussian(G) 85.10% ± 4.11 0.451 85.01% ± 4.1 0.448

Teoplize(T) 84.99% ± 5.87 0.463 85.54% ± 3.36 0.427

Circulant(C) 87.41% ± 4.11 0.525 85.14% ± 4.49 0.611

Concatenate TCT 90.36% ± 2.74 0.755 89.42% ± 2.71 0.503

Concatenate GCG 90.88% ± 3.65 0.450 90.63% ± 3.31 0.461

Concatenate CGC 90.76% ± 3.18 0.466 90.49% ± 1.96 0.467

Concatenate CTC 90.08% ± 3.35 0.477 90.39% ± 1.96 0.470

Concatenate TGT 90.34% ± 3.79 0.490 90.10% ± 2.33 0.485

Concatenate CTG 91.98% ± 2.77 0.390 91.96% ± 2.09 0.409

Concatenate CCC 89.57% ± 3.98 0.537 89.82% ± 1.75 0.605

Concatenate TTT 88.02% ± 4.70 0.694 87.54% ± 3.25 0.754

Concatenate GGG 88.20% ± 5.11 0.616 89.29% ± 3.07 0.584
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5.2 Discussion
To evaluate our proposed method, we have made a comparison with the DenseNet-169, G. Huang 
et al. (2017) which has been trained under different pretraining methods according to X. Yang et al. 
(2020), named random initialization, Transfer learning (TL), and TL with contrastive self-supervised 
learning (CSSL). More details can be found in (X. Yang et al. 2020). To avoid any bias, we select the 
same number of CT images for testing and 16-fold cross validation has been applied. Just to confirm 
that our method flexible and effective, we applied two different compressing ratios (r/n) 54% and 
83% (The size of sensing matrices 64×64, 100×100). The proposed method shows average 91.98% 
and 94.48% testing accuracy whereas the highest accuracy of the comparison papers TL-CSSL shows 
89.1% testing accuracy. Thus, our COVID-CLNet based detection model shows around 2.88% higher 
testing accuracy than the mentioned comparison methods. Although all these methods need some 
preprocessing steps such as lesion segmentation and lung mask, our proposed approach does not need 
any kind of preprocessing. The main observation of these qualitative results is shown in Table 5.

5.3 Limitations
Even though our proposed CLNet has shown signs of high performance using raw CT images with- out 
any preprocessing, the main prevalent challenge of this work is to access a big data. Currently, most of 
COVID-19 datasets are limited due to the nature of the disease, patient privacy, and the requirements 
of the radiologist or other medical professional to data labeling. From our point of observation, data 
augmentation could be an option to improve the system performance and to avoid the overfitting. In 
our technique, there are more options to expand the dataset where augmentation could be performed 
on either the original dataset images or on the CL features level.

6. CONCLUSION

The proposed CAD system for COVID-19 detection could be a great and inexpensive tool to as- sist 
the radiologists or other medical professionals to detect and identify the COVID-19 cases at early 
infection stages and in very short possible time that is about 0.288 seconds for the 64×64 image size 
which excludes any preprocessing time. Our improved deep learning network model based on the 
compressive learning (COVID-CLNet) is applied on computed tomography (CT) images directly and 
without any kind of preprocessing. The observed results show very promising detection precision 
with 91.98% testing accuracy. Combining the CL with different deep learning networks could be one 
of the future work suggestions.
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Table 5. Comparison of the proposed method with different pretrained methods

Method Random 
Initialization

Transfer Learning 
(TL) TL - CSSL Proposed Method 

CR=54%
Proposed Method 
CR=83%

Accuracy 83.00% 87.10%. 89.10% 91.98% 94.48
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