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ABSTRACT

Modern artificial intelligence systems have revolutionized approaches to scientific and technological 
challenges in a variety of fields. Thus, remarkable improvements in the quality of state-of-the-art 
computer vision and other techniques are observed. Object tracking in video frames is a vital field of 
research that provides information about objects and their trajectories. This paper presents an object 
tracking method basing on optical flow generated between frames and a ConvNet method. Initially, 
optical center displacement is employed to detect possible the bounding box center of the tracked 
object. Then, CenterNet is used for object position correction. Given the initial set of points (i.e., 
bounding box) in first frame, the tracker tries to follow the motion of center of these points by looking 
at its direction of change in calculated optical flow. With the next frame, a correction mechanism 
takes place and waits for motions that surpass a correction threshold to launch position corrections.
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1 INTRODUCTION

Visual tracking is an important research area in computer vision which is critical for many 
applications including surveillance, trafðc monitoring, video indexing, human-machine interaction, 
and autonomous vehicle driving. In spite of existing trackers have achieved impressive progress in 
the last years, designing a robust tracker is still a challenging problem. In practice, the probabilistic 
approaches (Kristan et al., 2008) and (Pérez et al., 2002) that globally model the tracked object’s 
appearance, have demonstrated to be very successful. However, scenarios that contain signiðcant 
appearance changes caused by several factors that commonly occur in real-life scenarios, such as 
occlusion, scale variation, fast motion, deformation, and illumination variation present such models 
with serious problems. The reason is that such factors lead to reduced matches and drifting, which 
eventually result in the trackers’ defeat. Improvements in the visual model (Babenko et al., 2011), 
(Kalal et al., 2010), (Bolme et al., 2010), and (Grabner et al., 2006) potentially increases the trackers’ 
performance, but at the same time lead to additional questions regarding when should the visual 
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model be improved and which parts of it should be appreciated. With the advent of high-performing 
object detection models (Ren et al., 2015) and (Zhou et al., 2019) a powerful alternative developed: 
Tracking-following-detection or tracking-by-detection (Zhou et al., 2020) and (Tang et al., 2017). 
Tracking-by-detection (or tracking-following-detection) influences the high power of deep-learning-
based object detectors is actually the dominant tracking model. However the best object trackers are 
not without drawbacks.

This paper presents a method for the correction of object tracking coordinates basing on optical 
flow and a ConvNet method called CenterNet (Zhou et al., 2019), this last is based on the standard 
keypoint estimation method and stacked hourglasses network as its backbone network, like in (Law 
& Deng, 2018), which is trained on MS COCO datasets (Lin et al., 2014). An implementation of 
proposed technique has been performed using python programming language.

Figure 1 shows the general process of Object Center Displacement OCDTracker. The proposed 
technique consists on: Region of Interest selecting, Optical flow handling, slicing and tracking.

2 BackGround Information

2.1 Optical Flow
Optical flow is the image motion of objects as the objects, scene or camera moves between two 
consecutive images. It is a two dimensions vector field of within-image translation (Solem, 2012).

Consider a pixel in first frame (a new dimension, time, is added), it moves by distance in next 
frame taken after time (Mordvintsev & Abid, 2017):

I x y t I x dx y dy t dt, , , ,( ) = + + +( )�� �� 	 (1)

OpenCV contains several optical flow implementations, the authors then use method based 
on (Farnebäck, 2003). That is considered one of the best methods for obtaining dense flow fields 
(Solem, 2012).

2.2 CenterNet
CenterNet (Zhou et al., 2019) model represents objects by one point at their bounding box center. 
In this model, particularities such as object size, dimension, orientation, and pose are regressed 
directly from image features at the center position. Objects are detected with the standard key-point 

Figure 1. OCDT general process
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estimation method. Authors feed the input image to a FCNN that generates a heat-map. Peaks (i.e., 
local maxima) in this last correspond to object centers.

2.3 Evaluation Criteria
For evaluation (i.e., quantitative comparison) the authors have used both the center position error 
(Euclidean distance between ground-truth region center (xGTC, yGTC) and estimated region center 
(xERC, yERC), see Figure 2) and the overlap rate (overlap between ground-truth region and estimated 
region). The Euclidean distance metric is employed for plotting the center position error (cpe) curve 
which is defined as:

cpe x x y y
GTC ERC GTC ERC

= −( ) + −( )2 2
	 (2)

The overlap score is employed for plotting the success rate curve. By fixing an overlap threshold 
s, which is defined as the minimum overlap ratio, the authors can decide whether an overlap score is 
correct or not. The success ratio R is calculated as:
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Where N is the total number of frames, ri is the overlap score, and s is the corresponding threshold. 
A robust tracker will produce a higher value for R. The overlap score can be calculated as (Cehovin 
et al., 2016):
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Where ERi is the region estimated by a tracker in the frame, and GTRi is the corresponding 
ground-truth region.

Basing on Figure 2 with help of equation (4) the authors can compute the overlap score for ith 
case as (Cehovin et al., 2016):

r
Area green

Area green gray
i
=

( )
+( )

        	 (5)
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Accordingly if a > w or b > h: Area (green) = 0
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Area green gray w h Area green+( ) = ( )− ( )2* * 	 (7)

3 RELATED WORKS

Several works using image/video processing and artificial intelligence methods for object tracking 
are mentioned these last years. Many approaches are considered to handle this challenge. First is 
using vigorous features. The color feature is employed by the MeanShift (Comaniciu et al., 2003) 
and CAMShift (Bradski, 1998) trackers, due to its robustness when there exist challenges like 
deformation and rotation. Both trackers are of high competency (Wong, 2014). However, when the 
surroundings have the same color, they easily shift from the target. To deal with this problem, Cross-
Bin metric (Leichter, 2011), scale-invariant feature transform (SIFT) (Zhu, 2011), and texture feature 
(Bousetouane, 2013) were used into the mean shift-based tracker, and well performance was performed. 
The second way is to learn robust models, such as MIL (Multiple Instance Learning) (Babenko et 
al., 2009) and (Hu et al., 2014) and fast compressive tracking (Kaihua et al., 2014). As well of these 
trackers, the local-global tracker (LGT) (Cehovin et al., 2013), incremental visual tracker (IVT) (Ross 
et al., 2008) and TLD (Tracking Learning Detection) (Kalal et al., 2010) also perform nearly well.

These first trackers were fast, simple and reasonably robust. However, they were unsuccessful 
with the absence of well-based low-level features such as corners and edges. In another approach with 
the arrival of high performing objects detection models (Felzenszwalb et al., 2009) and (Ren et al., 
2015), a great alternative emerged: tracking by detection (Bewley et al., 2016), (Tang et al., 2017) 
and (Xu et al., 2019). These models based on a given precise recognition to identify objects and then 
track them through time. Furthermore, the KCF (Henriques et al., 2015) that represents an improved 
version of CSK (Henriques et al., 2012), robust MIL tracker (Babenko et al., 2011), an improved 
version of (Babenko et al., 2009), uses a tracking by detection approach that shows well robustness 
to inaccuracies of the tracker and to incorrectly labeled training patterns.

A recent approach is joint detection and tracking to perform multi-object tracking by converting 
existing detectors into trackers by integrating both goals detection and tracking in the same framework. 
Authors in (Feichtenhofer et al., 2017) use a Siamese ConvNet that predicts the location in the second 
frame of the object shown in the center of the previous frame. In (Zhang et al., 2018) authors use 
tracked bounding boxes as supplementary region proposals to improve detection with a bipartite-
matching-based bounding box allocation. In object detection system, (Kang et al., 2017) feed stacked 

Figure 2. Overlap of ground-truth region with the estimated region for two different cases
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consecutive frames into the network and do object detection for a whole video sequences. Tracktor 
(Bergmann et al., 2019) removes the box association by directly propagating identities of region 
proposals using bounding box regression. And (Zhu et al., 2017) use ñow to warp intermediate features 
from previous frames to accelerate inference. In (Zhou et al., 2020) authors present a point-based 
framework where ach object is represented by a single point at the center of its bounding box. This 
center point is then tracked through time basing on CenterNet (Zhou et al., 2019) detector.

4 PROPOSED TECHNIQUE

In this paper authors address visual tracking as the problem of object center displacement across 
frames, at time t , an image of the current frame is represented by I t Width Height Channels   ∈ × × and the 
previous frame by I t n Width Height Channels− × ×∈    where channels =1 for gray scale images and 3 for color 
i m a ge s .  T h e  t r a ck e d  o b j e c t s  i n  t h e  p r ev i o u s  f r a m e  a r e  r e p r e s e n t e d  by 
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t n t− − −= ( ) ∈, ,ˆ , 2  represents its center motion (used to perform an eventual object 

center displacement and calculate the Root Mean Squared Error to activate/deactivate acceleration 
mechanism, see Figure 4) within extracted partial flow ˆ

�
F F Width Height⊂ ∈ × × 2 , where F  represents 

optical flow calculated between the previous frame t n−  and the current one t  according to the 
tracking step Ts n=  (see Figures 3 and 4). Note that motion vector v

i
t n t− ,  is null at the first frame. 

There are two main challenges here. The ðrst is tracking the targeted objects across frames, this 
challenge is addressed by using the motion vector � � ,�,�� ,�� ,��v dx dy

i
t n t

i
t n t

i
t n t− − −=( )  where n  represents the 
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in Z  and they are both compared with a correction threshold (fixed to 30 pixels) if one of them 
surpasses this threshold a correction of object coordinates is required and CenterNet (Zhou et al., 
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object Ob
k
t  is identified through its center point p

k
t ∈�2  and then regressed to a height and width 

s
k
t ∈ 2  of the object’s bounding box. CenterNet produces a low-resolution heatmap ˆ � ,� ��Y

W

R

H

R
C

∈


× ×

0 1

and a size map ˆ � ��S
W

R

H

R∈
× ×


2

 with a down-sampling factor R  = 4. Each peak (also called local 
maximum) ˆ �c ∈2  in the heatmap �̂Y  corresponds to a center location of a detected object with 
conðdence ˆ ˆ� ��

ˆ
w Y

c
=  and object size ˆ ˆ� �

ˆ
s S

c
= . The set of detections D  produced by CenterNet is used 

to perform object position correction, in this case the new position for a tracked object Ob
i
t n−   in tth  

frame is calculated as follows:

Ob p s v
i
t

i
t

i
t

i
t n t= ( )−, , ,� 	 (9)

Where

p p d

s s

v F p

i
t

k
t

k
t

i
t

k
t

i
t n t

k
t n

= ∈

=

=










− −

;

( ),
^

	

Where And r
area Ob d

area Ob d
k

i
t n

k
t

i
t n

k
t

=
∩( )
∪( )

−

−

  

  
 represents the overlap score (calculated using equation (4)) 
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The tracking step is calculated as follows (see figure 4):
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Where n  is the previous value of TS incremented by 1, p̂
j
t  represents the j th  point that belongs 

to the object bounding box border at current frame t , and K  represents the number of these points.
Thus the methodology proposed in this paper uses a new algorithm for “object tracking” based 

on optical flow generated between frames (for estimating the direction and speed of moving objects) 
using the Farneback optical flow (Farnebäck, 2003) method and CenterNet (Zhou et al., 2019) ConvNet 
for object position correction. The method includes these steps: Bounding boxes selecting using a 
RoI function, optical flow computing according to the tracking step value and object tracking by 
bounding box center displacement according to computed optical flow or a corrected position using 
CenterNet (Zhou et al., 2019) detector. The detailed process of the proposed method is represented 
in Algorithm 1 and Algorithm 2.

For simplicity authors adopt a single-object tracking scenario, the objective in this case is to 
track the object Ob

i
t n
=
−
0

 (represented by Initial_bounding_box variable in the Algorithm 1) through 
frames. For each optical flow generated according to the tracking step the authors extract partial flow 
(see Figure 3) corresponding to object bounding box boundaries using slicing and with help of sensory 
zone which represents its kernel the authors control object displacement.
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In each time the authors capture the maximum motion in sensory zone (green zone in Figure 3, 
initialized to 20x20 pixels2) and according to correction threshold the authors decide the displacement 
type (using only object center motion (dx, dy) or a totally displacement to a new detected position 
using CenterNet (Zhou et al., 2019) detector). The steps of this process and its detail are mentioned 
in Algorithm 1.

Algorithm 1 describes the main steps for OCDT tracking process, lines 1 and 2 do initializations, 
line 3 opens a loop through video frames, lines 4-6 allow to read frames according to tracking step 
value, line 7 and 8 allow to calculate optical flow between ith frame and (i+Ts)th frame, line 9 extracts 
the partial flow corresponding to object bounding box, note that dealing with object partial flow is 
faster than the whole flow during tracking, line 10 recuperates the bounding box center coordinates, 
line 11 gets bounding box center motion within flow vector, lines 12-15 compute RMSE (Root Mean 
Squared Error) between motion of each point belongs to bounding box border (red rectangle in Figure 
3) and object center’s motion, line 16 gets the maximum RMSE that is used (in lines 17-21) to 
accelerate or slow down the tracking process (see Figure 4), lines 22 recuperates sensory zone 
coordinates (i.e., its top-left corner (x1, y1) and bottom-right corner (x2, y2), see Figure 3), line 23 
extracts the maximum motion within sliced zone (i.e., sensory zone) using maxzone variable, note 
that the abs function calculates the absolute value for each motion within sensory zone, in lines 24-
28 and according to the maximum motion extracted above and using correction threshold (assigned 
to 30 pixels) the authors decide if it concerns of a position correction using OPC module or simply 
a position shift using dx dy± ±( ),  motions (see Figure 3), line 29 displays new bounding box and line 
30 reinitializes the bounding box for next frame.

Algorithm 2 describes OPC (Object Position Correction) process, line 1 calls CenterNet (Zhou 
et al., 2019) detector with the current frame (i.e., frame of which a fast motion is detected) as parameter, 
the result is a set of detected objects (i.e., a set of detected bounding boxes represented by detected_
Bboxes variable) within current frame using a free detection (i.e., the detection confidence equals 
zero) with a restriction on their bounding boxes areas (i.e., the authors only take objects that have at 
maximum double of tracked object area) that allows to eliminate large bounding boxes with respect 
to tracked object bounding box, the authors also eliminate imbricated bounding boxes for the same 
object, line 2 opens a loop through the whole detected bounding boxes, line 3 computes, using equation 
(5), and saves overlap rate between each detected bounding box and the one of tracked object, in this 
process the authors assume, according to equations (6) and (7), that estimated region ER

i
and ground-

truth region GTR
i  

 (see Figure 2) have the same width and height for that and to compute the overlap 

Figure 3. Object potential motions
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rate the authors use for each detected bounding box its width and height for both  ER
i
and GTR

i  
, 

this last allows to appreciate overlap rate for tracked object and ignores other detected objects located 
in its neighborhood, line 5 recuperates the center coordinates of bounding box having the great overlap 
rate, the output of this algorithm is moving the tracked object bounding box to its new detected 
position. In an object multi-tracking scenario users can open a loop through tracked objects within 
OCDT algorithm and for each object they decide the displacement type according to correction 
threshold, in this case optical flow is calculated (for each doublet of frames) for all objects and 
CentreNet (Zhou et al., 2019) is called once for all corrections if there are in a current frame.

Algorithm 1: OCDTracker

Input: Initial_bounding_box, old_frame, corr_threshold
1: old_Bbox = initial_bounding_box 
2: tracking_step=1 
3: while true {video is open}:
4: for i =1 to tracking_step do
5: current_frame=read(frame) 
6: end for
7: calculate flow(old_frame, current_frame) 
8: old_frame = current_frame 
9: partial_flow=flow(old_Bbox) 
10: (x, y) = center (old_Bbox) 
11: dx, dy = partial_flow[x, y] 
12: for ˆ �p ∈ old_Bbox_borders do

13: dx’, dy’ =partial_flow[x y
p pˆ ˆ
,� ]

14: Calculate and save RMSE(dx, dy, dx’, dy’) 
15: end for
16: max_rmse = max(savedRMSEs) 
17: if max_rmse <  1 then {acceleration}
18: tracking_step= tracking_step+1 
19: else {slowing down}
20: tracking_step = 1 
21: end if
22: (x1, y1, x2, y2) = sensory_zone_coordinates
23: maxzone = max(abs(partial_flow[x1: x2, y1: y2]))
24: if maxzone    >  corr_threshold then
25: new_Bbox = OPC(old_Bbox, current_frame) 
26: else
27: new_Bbox = moving old_Bbox center with dx, dy values 
28: end if
29: display(new_Bbox) 
30: old_Bbox=new_Bbox 
31: end while

Algorithm 2: OPC (Object Position Correction)

Input: old_Bbox, current_frame
1: detected_Bboxes= CenterNet(current_frame) 
2: for each Bbox in detected_Bboxes do
3: calculate and save overlap_rate(old_Bbox, Bbox) 
4: end for
5: x, y=center(Bbox having max_overlap_rate) 
Output: Moving old_Bbox center to (x,y) point.
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5 EXPERIMENTAL RESULTS

The authors have measured the performance of OCDT tracker on several challenging videos1. The 
videos include either a non-static object or an object that suffers significant form changes. OCDT 
tracker was implemented in Python and runs at approximately 03 frames per second (i.e., CenterNet 
(Zhou et al., 2019) consumption time is ignored), on an Intel(R) Core (TM) i5-2430M, using Keras API 
on Tensorflow (Abadi et al., 2015) CPU framework. Note that Tensorflow (Abadi et al., 2015) GPU 
framework represents the best execution environment for models based on ConvNets architectures.

For comparison, the authors compute the center position error between the manually labeled 
ground-truth region center (performed by picking objects centers points through frames using a RoI 
function and saving, for each frame, its two first returned results that correspond to object center 
coordinates) and estimated region center by each tracker. The basic properties of the experimental 
sequences are collected in Table 1:

The authors also recorded the tracked objects trajectories. The experiments implicated tracking 
a car, a bird and objects with significant view changes (see Figure 5).

The authors have compared the OCDT Tracker with six state-of-the-art trackers, which are:

1. 	 The Kernelized Correlation Filter tracker (KCF) (Henriques et al., 2015).
2. 	 The multiple instance tracker (MIL) (Babenko et al., 2011).
3. 	 The P-N tracker (TLD) (Kalal et al., 2010).
4. 	 The CSRT tracker (Lukezic et al., 2017).
5. 	 The Minimum Output Sum of Squared Errors (MOSSE) tracker (Bolme et al., 2010).
6. 	 The OAB tracker (Grabner et al., 2006).

The success rate was automatically determined by measuring the overlap, using equation (5), 
between the ground-truth region GTR

i
 and the region estimated by each tracker ER

i
 in each frame. 

In the first frame, each tracker is manually initialized by drawing a bounding box over the object. 
As shown in Figure 6, results for the car sequence (camera follows tracked object), all the trackers 

perform well except TLD tracker. However, the bounding box calculated by the CSRT tracker has 
a relatively small scale in frames #235 #330 and #475, the same remark about OCDT tracker from 
360th frame, the OAB tracker produces a significant error position for the bounding box from 235th 
frame. The TLD tracker failed to track the car from 106th frame. As seen in Figure 7b the OCDT 
tracker, with two unnecessary position corrections (i.e., activated by the car’s windscreen wiper after 

Figure 4. OCDT acceleration mechanism
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a long acceleration period) at frames #129 and #360 has a good success ratio when different overlap 
thresholds are selected and a more accurate center has been produced by the OCDT tracker as seen 
in Figures 6 and 7a. 

Figure 5. Samples from the experimental sequences

Table 1. An outline of the experimental sequences

Sequence Type Remarks Ground-truth labeling step frames

(a) car car Illumination variation, scale variation one by five frames 500

(b) bird body Fast motion, occlusion, appearance 
change

variable value according to the 
tracking step TS

300

(c) race body Fast motion, scale variation, 
appearance change

one by three frames 339

(d) racer car Fast motion, appearance change, 
occlusion

one by frame 176

Figure 6. Performance on the car sequence. The results are shown for all trackers with OCDT corrections.
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In Figure 8, Results for the bird sequence, in this sequence there is a short speed motion of 
tracked object at frames #45 #46 and #47 and camera speed shift from frame #107 to #117, all the 
trackers perform bad except CSRT and OCDT trackers and for lower degree MIL tracker. As shown in 
figures 9a and 9b, the OCDT tracker has a good success ratio and the center position error for whole 
frames is reasonable. Due to the OCDT correction module (with three corrections at frames #46 #108 
and #117) OCDT has a more appropriate scale than the other trackers and the center location of the 
tracked object is closer to the ground truth center in most frames.

Figure 7. The quantitative plots for all trackers of the car sequence: (a) Center position error plots; (b) Success rate plots.

Figure 8. Performance on the bird sequence. The results are shown for all trackers with OCDT corrections.
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As shown in Figures 10 and 11b, results for the race sequence, KCF, MIL, and CSRT work better 
than OCDT tracker, when estimating the success rate evaluation criteria, this is because of correction 
threshold assigned to 30 pixels, for a better execution of OCDT in this sequence the correction 
threshold should be decreased (e.g., 20 pixels, which increases the number of corrections up to 12 
corrections). Note that decreasing correction threshold to zero pixel requires a correction in each 
frame. Other trackers have weaker results in object tracking from frame #70, due to the fast motion 
and important object form changes. The OCDT position correction module succeeded to track the 
athlete with only three object position corrections at frames #66, #190 and #257.

Figure 9. The quantitative plots for all trackers of the bird sequence: (a) Center position error plots; (b) Success rate plots.

Figure 10. Performance on the race sequence. The results are shown for all trackers with OCDT corrections.
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Figure 11. The quantitative plots for all trackers of the race sequence: (a) Center position error plots; (b) Success rate plots.

Figure 12. Performance on the racer sequence. The results are shown for all trackers with OCDT corrections.
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As shown in Figure 12, results for the racer sequence, OCDT, OAB, and CSRT trackers perform 
well, other trackers have weaker results from frame #105, due to the challenge of serious appearance 
change and fast motion. The TLD tracker failed to track the racer-car from frame #75. As shown 
in Figures 13a and 13b, OCDT tracker has minimal position errors (with six corrections, at frames 
#104, #105, #106, #107, #110, and #111) also it has a good success ratio.

In summary OCDT tracker is good for tracking objects in most cases with help of sensory zone 
and CenterNet (Zhou et al., 2019) detector except in the case where tracked object disappears and 
reappears through frames. For real-time tracking users should use Tensorflow (Abadi et al., 2015) 
GPU framework, in this case users can use seamlessly CenterNet (Zhou et al., 2019) or CornerNet 
(Law & Deng, 2018) in object position correction process.

6 CONCLUSION

In this paper, authors have formulated the visual tracking as object center displacement based on optical 
flow vector and CenterNet (Zhou et al., 2019) method for the correction of object position coordinates, 
which is robust to the appearance variation caused by important form changes, deformation, and rapid 
motion. Two algorithms are presented for the proposed formulation and authors further give detail 
on the working steps of them. Authors also include a detailed experimental analysis and perform the 
comparative experiments using four video sequences and six reference trackers as well as several 
figures are mentioned that illustrate the properties of the proposed visual model.

Figure 13. The quantitative plots for all trackers of the racer sequence: (a) Center position error plots; (b) Success rate plots.
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ENDNOTE

1 	 The experimental sequences and experiments data are available at: https://drive.google.com/drive/folde
rs/1Pa22zSw8uyO36FWVrqA5dLPS_VYi5_a-


