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ABSTRACT

This article is concerned with the problem of constructing lightweight MDS matrices. The authors 
present a new construction of 4 × 4 MDS matrices over GL(F2, m) for any integer m. They give 
sufficient and necessary conditions to determine whether the construction is an MDS matrix. Further, 
for any even number m ≥ 4, they construct lightweight MDS matrices in this structure. Applying 
Horner’s rule to implement MDS matrices, the authors constructions need only 8+4×3×m XOR 
operations.
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1. INTRODUCTION

Diffusion and confusion are two fundamental properties that must be considered when designing 
symmetric-key ciphers (Shannon, 1949). These two properties are required for the security of the 
cipher. The diffusion layer is often obtained by a linear diffusion matrix. Matrices with higher branch 
number perform better to resist linear and differential attacks. The matrix with the maximum branch 
number is perfect for constructing diffusion layers and called a Maximal Distance Separable (MDS) 
matrix.

MDS matrices are widely used in many ciphers, including AES (Daemen &Rijmen, 2002), LED 
(Guo, Peyrin, & Poschmann, 2011) and SQUARE (Daemen, Knudsen, & Rijmen, 1997). When 
resources are limited, it is necessary to reduce the implementation costs when designing diffusion 
layers. For MDS matrices, the construction of lightweight MDS matrices becomes a hot topic, where 
lightweight MDS matrices means MDS matrices with small XOR counts.

The general method of constructing MDS matrices is based on the matrices with some specific 
structures. Since searching for all the MDS matrices is beyond the reach, when the dimension of the 
matrix increases. Circulant matrices and Hadamard matrices are preferred due to their limited number 
of different elements, which also leads to a smaller number of different minors. Circulant-like MDS 
matrices were constructed and the lightest MDS circulant-like matrices were found in (Junod & 
Vaudenay, 2005; Gupta & Ray, 2014). In 2014, Khoo et al. (Khoo, Peyrin, Poschmann, & Yap, 2014) 
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introduced the metric XOR count that measures the implementation cost of a diffusion matrix. Based 
on this metric, there are a lot of works. Sarkar and Syed (Sarkar & Syed, 2016) gave theoretical 
constructions of Toeplitz MDS matrices and reported the minimum value of the XOR counts of 4 × 
4 MDS matrices over F

24
 and F

28
, respectively. Li et al. (Li, Bai, Sun, & Wang, 2016) reported the 

minimum value of the XOR counts of 4 × 4 MDS matrices over GL F
2
4
,( ) .

Another way for constructing lightweight MDS matrices is by recursive construction. This 
method was used in the design of PHOTON lightweight hash family (Guo, Peyrin, & Poschmann, 
2011) and LED lightweight block cipher (Guo, Peyrin, Poschmann & Robshaw, 2011)for the first 
time. Sajadieh et al. (Sajadieh, Dakhilalian, Mala, & Sepehrdad, 2015) extended the recursive method 
by using linear transformations instead of multiplications of elements infinite fields. It helps to 
increase the choices of entries in MDS matrices. Then Wu et al. (Wu, Wang, & Wu, 2013) presented 
some extreme lightweight MDS matrices by using linear transformations with fewer XORs. Toh et 
al. (Toh, Teo, Khoo, & Sim, 2017) proposed a new class of serial-type matrices known as Diagonal 
Serial Invertible (DSI) matrices.

Recently, Beierle et al. (Beierle, Kranz, & Leander, 2016) and Jean et al. (Jean, Peyrin, Sim, 
& Tourteaux, 2017) proposed the s-metric to reduce the implementation cost of diffusion matrices. 
By finding a short linear straight-line program to the case of MDS matrices, Kranz et al. (Kranz, 
Leander, Stoffelen, & Wiemer, 2017) optimized the previous constructions globally. Their metric 
can be applied to any matrix and they found that MDS matrices of special types do not differ much 
for all randomized constructions.

Contributions. In this paper, we study the constructions of MDS matrices and present a new 
metric to reduce the implementation cost of MDS matrices.

First, we present a new structure to construct MDS matrices over GL F m
2
,( ) . Then we propose 

two conditions to construct MDS matrices and sufficient and necessary conditions under two different 
conditions are given.

Second, improve the implementing efficiency of diffusion matrices and reduce their XOR counts 
with the help of QinJiushao’s method, also known as Horner’s rule. We construct an MDS matrix 
with 8 4 3+ × ×m  XOR counts over GL F m

2
,( ) , where m ≥ 4  and m  is even.

Outline. We first give some necessary notations in Section 2. The way to construct 4 × 4 MDS 
matrices over GL F m

2
,( )  is given in Section 3. In Section4, we apply Qin Jiushao’s method to reduce 

the XOR counts. In this way, we can reduce XOR counts of the previous constructions. The conclusion 
comes in Section 5.

2. PRELIMINARIES

Let F
2
 be the finite field of 2 elements and F m2

 be an m -dimensional vector space over the field 
F
2
. Denote by Fm m

2
×  the set of all the m m×  matrices over F

2
. Let E i j n

i j,
, , , , ,= …1 2 , be the 

matrix whose entries are all zeros except that the i -th row and the j -th column is 1. Denote by M
i j,

 
the entry at position i j,( )  of a matrix M . Denote by GL F m

2
,( )  the set of all the m m×  non-singular 

matrices with entries in the finite field F
2
. If a linear basis of F m2

 over F
2
 is fixed, a linear permutation 

Ã
a
F Fm m:
2 2
→  can always be equivalently described as X AX� , where A GL F m∈ ( )2

,  and 
X Fm∈

2
.

Given a vector X x x x F
n

m
n

= ( ) ∈ ( )1 2 2
, , ,� , we can also view X as an element in the vector 

space Fnm
2

. Here, X is viewed as a column vector throughout this paper. The bundle weight of X is 
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denoted by É
b
X( )  and defined as É

b i i
X x x i n( ) = ≠ ≤ ≤{ }: ,0 1 , where ⋅  means the size of 

a set.
For a matrix L Fnm nm∈ ×

2
, the branch number for m -bit words is defined as

B L min X LX X
m b b( ) = ( )+ ( ) ∈ ( ): { |É É Fm

n

2
.	

It is easy to see, the upper bound of B L
m ( )  is n+1 , and a matrix achieved the bound is called 

an MDS matrix for m -bit words. In this paper, we focus on the case n = 4 .
A matrix L Fnm nm∈ ×

2
 can be viewed as a n n×  block matrix

L

L L L

L L L

L L L
n

=







1 1 1 2 1 2

2 1 1 2 2

1 1 2

, , ,

, , ,

, , ,

�

�

� � � �

�

n

m n







	

where L F i j n
i j

m m
,

, ,∈ ≤ ≤×
2
1 .

Every linear diffusion is such a block matrix. Square block sub-matrices of L  of order t  means 
a t t×  sub-matrices of L  with entries in the set { | , }

,
L i j n
i j
1≤ ≤ . The following theorem given 

in (MacWilliams & Sloane, 1977) has shown that a matrix is an MDS matrix for m -bit words if and 
only if all its square block sub matrices are invertible. When talking about a block matrix is invertible, 
we view it as a matrix over the field F

2
.

Theorem 1. LetL Fnm nm∈ ×
2

. Then L  is an MDS matrix for m -bit words if and only if all square 
block sub-matrices of L  of order t  are of full rank for 1≤ ≤t n .

An addition in the field F
2
 is called an XOR operation. For A GL F m∈ ( )2

, , we denote É A( )  
the number of nonzero entries in A . Denote #A  the number of XOR operations that required to 
evaluate AX  directly, whereX Fm∈

2
. That is to say, we need #A  XOR operations to implement 

the linear permutation A  over Fm
2

. It is easy to know that #A A m= ( )−É  and we call A  has 
#A  XOR operations. For space saving, we define a representation of sparse matrices over F

2
. We 

extract the nonzero positions in each row. For example, for matrix

0 1 0

0 0 1

1 0 1













,	

the nonzero position 2 in the first row, 3 in the second row and 1,3 in the third row are extracted. 
Then we obtain the representation 2 3 1 3, , ,








 . It is a matrix with 1 XOR operations.

The XOR counts of one linear diffusion matrix is the number of the XOR operations needed to 
be implemented. We can implement such a matrix L in a straightforward way. The XOR counts is 
denoted as
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dXOR L L n n m
i j

n

i j( ) = ( )+ × −( )×
=
∑
,

,
#

1

1 .	

In this paper, we focus on the MDS matrices for the case n = 4 .

3. NEW CONSTRUCTIONS OF MDS MATRICES OVER GL(F2,M)

In this section, we present a method to construct MDS matrices over the general linear group 
GL F m

2
,( ) . We obtain a simple sufficient and necessary condition to determine whether the 

construction is an MDS matrix.
The following lemma is useful to calculate minors of block matrices.
Lemma 1. SupposeA B C GL F m, , ,∈ ( )2

 are m m×  non-singular matrices over F
2
. Then the 

following statements hold:

1. 	 the determinant of matrix 
I A

B C












 is identical with that of matrix BA C+ .

2. 	 the determinant of matrix 
A I

B C












 is identical with that of matrix CA B+ .

3. 	 the determinant of matrix 
A B

I C












 is identical with that of matrix AC B+ .

4. 	 the determinant of matrix 
A B

C I












 is identical with that of matrix AC B+ .

5. 	 the determinant of matrix 
A B

B A












 is identical with that of matrix B A+( )2 .

Proof. The proof of the first four identities is similar. We only show the details of the first identity 
here. According to elementary linear algebra, we have

I A

B C

I

B I

I A

BA C

I

B I

I A

BA C
=











⋅

+












= ⋅

+
0

0

0

0
== +BA C .	

Next, we prove the fifth identity.

A B

B A

I I

I

A B

B A B

I I

I
=











⋅
+

+












⋅




0

0

0






= +( )A B

2
. 	

 	

Now, we are able to prove the following theorem.
Theorem 2. Let A P GL F m P P, , ,∈ ( ) = −

2
1  and #P = 0 . Let I  be the identity matrix in 

GL F m
2
,( ) , f x( )  be the minimal polynomial of A  and
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L C A P

I P A APA

I P A

APA I P

A APA I

: ,= ( ) =







−

−

−

−

1

1

1

1

APA

A

P 



. 	

Then

1. 	 If AP I+( ) =2 0 , then L  is MDS ⇔ ( )f x  is relatively prime to x 3 1+  and x x3 1+ + .

2. 	 If A P+( ) =2 0 , then L  is MDS ⇔ ( )f x  is relatively prime to x +1  and x x3 1+ + .

Proof. Since A  and P  are always non-commutative, we have to calculate all the minors of L  
by hand in order to verify that whether L  is an MDS matrix.

Let B APA= −1 , then B I2 = . Therefore, B P I= = = 1 . Since A GL F m∈ ( )2
,  and 

A F∈
2
, we have A A= =−1 1 . It is easy to see that BA APA A AP= =−1 .

L

I P A B

I P A

B I P

A B I

=













B

A

P

	

has 
4

1

4

2

4

3

4

4

2 2 2










+











+











+











= + + + =

2

16 36 16 1 69  minors in total. Since swapping rows 

(columns resp.) of a matrix over F
2
 won’t change the determinant of the matrix and the matrix L  is 

circulant, the number of different minors which need to be computed is much less than 69 . We list 
minors in terms of different orders below.

First, minors of order 1 are A P B I, , ,  and they appear four times each. There are 16  minors 
of order 1 in total.

Second, minors of order 2

I P

IB
, 
P A

PI
, 
A B

AP
, 
B I

BA
, 
I A

PB
, 
I B

PA
, 
I P

BA
, 
I A

BP
	

appear four times each and minors of order 2

I A

IA
, 
B P

BP
	

appear twice each. There are 36 minors of order 2 in total.
Third, minors of order 3
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I P A

I P

B I

B

A

, 
P A B

P A

I P

I

B

, 
B I P

B I

A B

A

P

, 
A B I

A B

P A

P

I

	

appear four times each. There are 16 minors of order 3 in total.
At last, the unique minor of order 4 is L .
By Lemma 1, minors of 2 above are

BP I A I APA B A I BA P AB P AP B PA B A I B P+ + + + + + + + + +, , , , , , , , ,
2 2

.	

By factorizing these determinants, it is clear that all the minors of order 2 are non-zero if and 
only if AP PA A I AB P+ + +, ,  and PA B+  are all non-zero. Further, we reform AB P+  
and PA B+  as

AB P A PA P A P PA A A P PA+ = + = + ⋅ = +− −2 1 2 1 2 	

and

PA B PA APA PA AP A PA AP+ = + = + ⋅ = +− −1 2 1 2 ,	

respectively.
We will derive a simpler necessary and sufficient condition later under different assumptions.
First of all, we calculate the minors of order 3. With the help of Gaussian elimination, we could 

calculate the determinant of the following two square block sub-matrices. Add a multiple of second 
row of the matrix to the other two rows, then the second (first) entry in those two rows reduce to zero. 
Thus, we only need to calculate the determinant of a block matrix of order two.

I P A

I P

B I

I P

I

B I

PB I A I

I P

I BP I

PB I A I

I BP I
B

A

B

A
A

= ⋅
+ +

+ +
=

+ +
+ +

0

0 0

0

0

0

,	

P A B

P A

I P

I P

I

B I

A I PA B

P A

BP I BA P

A I PA B

I BA P
I

B

I
BP

= ⋅
+ +

+ +
=

+ +
+ +

0

0 0

0

0

0

,	

These two determinants can be computed further in specific conditions. Another two minors of 
order 3 can be computed directly without further conditions.

For the following block matrix, we use the second row to reduce the first entry in the other two 
rows to zero. Then the determinant of order three can be transformed into the determinant of order 
two. For the block matrix of order two, we use the second column to reduce the second entry in the 
first column to zero. Thus, we have
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B I P

B I

A B

I P

I

B I

PA B PB I

B I

P A I

A

P

A

BA

= ⋅
+ +

+ +

0

0 0

0

0

0

	

=
+ +
+ +

PA B PB I

P A IAP
	

=
+
⋅
+ + + +

⋅
P

A I

A PB BP I B P

I

I

I

0

0 0

0

P
	

= ⋅ + ⋅ + + +P A I A I BP PB  (for both cases, BP PB A A+ = + −2 2 , which will be 
proved later)

= + ⋅ + + + −A I A I A A2 2 	

= + ⋅ + + ⋅ −A I A A I A
2 3 2 	

= + ⋅ + +A I A A I
2 3 . 	

For the following block matrix, we use the third row to reduce the first entry in the first two rows 
to zero. Then the determinant of order three can be transformed into the determinant of order two. 
For the block matrix of order two, we extract the common divisor A I+  of the first column. By 
lemma 1, we can calculate the determinant directly. Thus, we have

A B I

A B

P A

I A

I P

I

AP B A I

A I PA B

P A

AP B A I

I PA B
P

I I
A

= ⋅
+ +
+ + =

+ +
+ +

0

0

0 0

0

0

2
2

	

=
+
+

⋅
+

= +( )+ + ⋅ +
B A I

PA B

A I

I
B PA B A I A I

2
2

0

0I
	

= + ⋅ + = ⋅ + ⋅ ⋅ +−BPA A A I A PA P I A A I2 1 	

= ⋅ ⋅ + ⋅ ⋅ +−P A A I P A I1 	

= +A I
2
. 	

In the following, we calculate the minors under two assumptions respectively.

1. 	 I f  AP I+( ) =2 0 ,  w e  h a v e  APAP I AP PA PA A P= = =− −, ,1 1 .  T h e n 
B APA A P PA= = =− −1 2 2  and BP PB A A+ = + −2 2 .

Then
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AP PA A A A I+ = + = +−1 2
,	

AB P A P PA A I+ = + = +2 3 ,	

PA B PA AP A A A I A A I+ = + = + = + ⋅ + +−2 2 1 2 .	

Then factors of minors of order 2 are A I+  and A A I2 + + . Since

I P A

I P

B I

PB I A I

I BP I

A I A I

I A I
B

A
A A

=
+ +
+ +

=
+ +

+ +

−2

2 	

=
+
⋅
+

⋅
+
= +

−A

A I

A I I

I

I

A I
A I

2 2
20

0

0

0I
	

and

P A B

P A

I P

A I PA B

I BA P

A I A P A P

I AP P
I

B
BP A

=
+ +
+ +

=
+ +

+ +

−1 2

2 	

=
+
⋅

+
⋅
+−A

A I

A A I

I

A I

P

1 30

0

0

0I
	

= + ⋅ + + ⋅ +�A I A A I A I3 	

= + ⋅ + +�A I A A I
2 3 , 	

factors of minors of order 3 are A I+  and A A I3 + + .
Next, we calculate the determinant of L .

L

I P A B

I P A

B I P

A B I

I

I

I

I

I P A B

BP I AP P I A

AP B A
= = ⋅

+ + +

+

B

A

P

B

A

P

0 0 0

0 0

0 0

0 0

0

0 22 2 1

0

+ +
+ + +

−I A PA P

I A PA B PB I

	

=

+ + +

+ + +
+ + +

−

BP I AP P I A

B A I A PA P

I PA B PB I

AP

A

2 2 1 	
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=

+ + +

+ + +

+ + +− −

A I AP P A I

P AP A I A P P

I A P A P A I

2

2 2 3

2 1 2

A

A

	

=
+

+
+
⋅

+

+ + +

+ + +− − −

A I

A I

A I

A I P I

A I A P AP P

AP P A P A A

0 0

0 0

0 0

2

1 2 1

AP

I

	

= + ⋅ + +

+

⋅

+

+ +( )
+ +− −

−

− −

A I

I

P AP P I

A I

A I P I

A A A P A

A I A

3
2

2 1

2 1 2

2 2

0 0

0

0

0A

A A (( )P 0

	

= + ⋅
+ +( )

+ +( )
−

− −
A I

A A A P A

A I A P

3
2 1 2

2 2A
	

= + ⋅
+ +( ) ⋅

+ +( ) +( )
+ +( )

− −

− −
A I

I A A A PA

I

A A A I A I

A I A P

3
2 1 2 4 2 3

2 20

0

A
	

= + ⋅ ⋅ + +
−

A I A A A I
4 6

2
2

	

= + ⋅ + +A I A A I
4 2

2
. 	

After factorizing all the minors of L , we find that L  is MDS ⇔ + + + + +A I A A I A A I, ,2 3  
are all invertible ⇔ ( )f x  is relatively prime to x x x3 31 1+ + +, .

2. 	 If A P+( ) =2 0 , we have A AP PA I2 0+ + + = . By multiplying P  on the right side, we 
have

A P AP PA I P A PAP P P PA AP I PA2 2= + +( ) = + + = + +( ) = .	

Thus

AB A PA PA A PA= = =− −2 1 2 1 .	

Since

B P APA P AP PA A A I A A A+ = + = +( ) = +( ) = +− − − −1 1 2 1 1 ,	

we have
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PB I P B P P A A+ = +( ) = +( )−1 	

and

BP I B P P A A P+ = +( ) = +( )−1 .	

Since

A A P PA I A I PA AP A A− − − − −+ + + = + + +( ) =2 1 1 1 2 1 0 ,	

we obtain that

BP PB BP I PB I P A A A A P+ = +( )+ +( ) = +( )+ +( )− −1 1 	

= +( )+ +( )− −PA AP PA A P1 1 	

= +( )+ +( )−A I A I2 2 	

= + −A A2 2 .	

Now we are ready to calculate all the minors of L .It is clear that

AP PA A I A I+ = + = +2 2
,	

AB P A P PA PA PA P A A I A I+ = + = + = ⋅ ⋅ + = +2 2 	

and

PA B PA AP A P AP A I A P A I+ = + = + = + ⋅ ⋅ = +2 2 .	

Then there is a unique factor of minors of order 2 , which is A I+ .
The computation of minors of order 3  is much more complicated. We need to apply relations 

above repeatedly to obtain the determinant.

I P A

I P

B I

PB I A I

I BP I

P A I A I

BP I

A I

I
B

A
A I

=
+ +
+ +

=
+( ) +

+
⋅
+−1 0

0
	

= +( ) +( )+ + ⋅ +−PA P BP I A I A I1 	

= + + +( )+ + ⋅ +− −A P PBP PA P A I A I1 1 	



International Journal of Digital Crime and Forensics
Volume 11 • Issue 4 • October-December 2019

92

= + +( )+ + +( ) ⋅ +− −A P PA I A PBP P A I1 1 	

= + + +( ) ⋅ +−A A P BP I A I2 	

= + + +( ) ⋅ +− −A A P A A P A I2 1 	

= + +( )+ ⋅ +− −A P PA AP PA P A I2 1 	

= + +( )+ ⋅ +− −A P A I PA P A I2 2 1 	

= +( ) + +( ) ⋅ +−A P A I P A A A I2 3 2 	

= + + ⋅ +P A A A I3 2 2
.	

By the equations obtained from the assumption, we have

P A B

P A

I P

A I PA B

I BA P

A I

I

I B

I BA P
I

B
BP BP

=
+ +
+ +

=
+

⋅
+ +

0

0
	

= + ⋅ + + +A I BPB B BA P 	

= + ⋅ + + +A I PB I A BP 	

= + ⋅ + + + −A I A I A A2 2 	

= + ⋅ + +A I A A I
2 3 , 	

Since

P A A A I A P PA A+ +( ) = + + + +3 2
2

6 3 3 4 	

= + + +( )+A I A AP PA A6 2 4 	

= + + +( )+A I A A I A6 2 2 4 	

= + +( )A A I3
2
, 	

we have

P A A A A I+ + = + +3 2 3 .	

Therefore, factors of minors of order 3  are |A I+  and A A I3 + + .
Finally, we only need to compute the determinant of the matrix L.
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L

I P A B

I P A

B I P

A B I

I P A B

I P A

B I P

A B I

I P A B

I

I

I

= = ⋅

+ + +
B

A

P

I

I

I

I

I

I

0 0 0

0 0

0 0

0 0

	

= ⋅
+ + +

+ + +

+ +

−

−

− −

I

I

I

I

I P A APA

P I A P P A

A A A I A A

P A P

0 0 0

0 0

0 0

0 0

0

0

0

1

1

1 1

I

I

I AA APA I

I A

− −

−

+

⋅ +

1 1

1 	

= ⋅

+ + +

+ +

+ +

⋅ ⋅ +

−

−

−

−

I

I

I

P I A P I A

A A I

A A A

I I

I

I

I A

0 0

0 0

0

0

0

0

0 0

0 0

1

1

1

1

I

A

I

	

= ⋅
+ +

+
⋅ ⋅ +

−

−
−

I

I

I A A I

A I

I

I
I A

0

0

01

1
1
2

I I
	

= +A I
4

. 	

After factorizing all the minors of L , we find that L  is MDS ⇔ + + +A I A A I, 3  are all 
invertible ⇔ ( )f x  is relatively prime to x x x+ + +1 13, .

 	

When m  is large, it is difficult to determine whether there exists A P,  meet the conditions in 
the above theorem. For even integer m ≥ 4 ,we constructively prove the existence.

Theorem 3. If m  is even and m ≥ 4 , there exists A P, , such that #A = 1 , A P+( ) =2 0  
and the minimal polynomial f x( )  of A  is relatively prime to x x x+ + +1 13, .

Proof. Let P E E
i

m

i i i i
= +( )

=
− −∑

1

2

2 1 2 2 2 1, ,
, A E E E

i

m

i i m t m
= + +

=
− +∑

2
1 1 2 1, , ,

 be the companion matrix 

of x xm t+ +2 1  over F
2
, where 1 2< <t m . Then A P+( ) =2 0 , since all the non-zero entries of 

A P+  are in the odd rows and the even columns. It is clear that x xm t+ +2 1  and x +1  are relatively 
prime. Now we only need to prove that there exists t  such that x xm t+ +2 1  and x x3 1+ +  are 
relatively prime. In fact, if m = 4 , then x x4 2 1+ +  and x x3 1+ +  are relatively prime. If m ≥ 6 , 
t h e n  e i t h e r  x xm + +2 1  o r  x xm + +4 1  i s  r e l a t i v e l y  t o  x x3 1+ + ,  s i n c e 
x x x x x xm m4 2 2 41 1+ = + +( )+ + +( )  and x x3 1+ +  relatively prime.

 	

Below we give some examples of MDS matrices which are constructed from Theorem 2.
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Example 1. Example of P A,  such that AP I+( ) =2 0  and the minimal polynomial of A  is 
relatively prime to x x x3 31 1+ + +,  with #A = 1 . Then C A P,( )  is an MDS matrix.

1. 	 m = 6 , P A= 

 = 









6 5 4 3 2 1 6 1 2 3 6 4 5, , , , , , , , , , , , .

Example 2. Examples of P A,  such that A P+( ) =2 0  and the minimal polynomial of A  is 
relatively prime to x x x+ + +1 13,  with #A = 1 . Then C A P,( )  is an MDS matrix.

1. 	 m = 4 , P A= 

 = 









2 1 4 3 4 1 2 4 3, , , , , , , , .

2. 	 m = 8 , P A= 

 = 









2 1 4 3 6 5 8 7 8 1 2 8 3 4 5 6 7, , , , , , , , , , , , , , , , .

4. APPLYING HORNER’S RULE TO REDUCE THE XOR COUNTS

Horner’s method, also known as Qin Jiushao’s algorithm, can be used to improve the efficiency, 
when calculating the values of polynomials. We could adapt it to reduce the practical XOR operations 
for implementing the diffusion layer.

For example, let A P GL F m, ,∈ ( )2
 such that # # , # , #A A P APA= = = ( ) ≥− −1 11 0 2� � . 

Then dXOR  of

x Px Ax APA x x F
i

m
1 2 3

1
4 2

+ + + ∈− , 	

is

# # # #I P A APA m m+ + + + × ≥ +−1 3 3 3 .	

By Horner’s rule, we can calculate the sum in a different way

x Px A x PA x
1 2 3

1
4

+ + +( )− . 	

If we calculate x PA x
3

1
4

+ −  firstly and multiply the matrix A  secondly, we only need 
# #PA A m m− + + × = + ×1 3 2 3  XOR operations. In such way, the constructions in Theorem 
3 only need 8 4 3+ × ×m  XOR operations to implement for any even number m ≥ 4 . In particular, 
whenm = 4 , our constructions need only 8 4 3 4+ × ×  XOR operations. However, the lightest (
dXOR ) 4 4×  MDS matrices over GL F

2
4
,( )  has 10 4 3 4+ × ×  XOR counts, which is proved in 

(Li, Bai, Sun, Wang, & Lin, 2016). Therefore, Horner’s method could successfully improve the lower 
bound of XOR count.

In fact, Horner’ rule can also be used to reduce the XOR counts in the previous constructions. 
We compare our findings with the previous results in Table 1. In the table, s-XOR means the s-XOR 
metric in (Jean, Peyrin, Sim, & Tourteaux, 2017) and h-XOR means the XOR after applying Qin 
Jiushao’s method (also known as Horner’s rule) in this paper.
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5. CONCLUSION

In this paper, we present a method to construct lightweight MDS matrices over GL F m
2
,( ) . We use 

the idea of Horner’s rule to optimize the implementation of MDS matrices. For any even integer 
m ≥ 4 , we construct an MDS matrices with 8 4 3+ ⋅ ⋅m  XOR counts and it is the lightest MDS 
matrix so far.

Finding the lightest MDS matrices based on Horner’s rule is leaved as our future work.

Table 1. Comparison Of 4 × 4 MDS matrices

Matrix Implementation
Ref.

Field/Ring Type XOR s-XOR h-XOR

F x
24
0 13/

Arbitrary 13 4 3 4+ ⋅ ⋅ 10 4 3 4+ ⋅ ⋅ 13 4 3 4+ ⋅ ⋅ Jean et al., 2017

F x
24
0 19/ Toeplitz 10 4 3 4+ ⋅ ⋅ 10 4 3 4+ ⋅ ⋅ 9 4 3 4+ ⋅ ⋅ Sarkar et al., 2016

GL F4
2
,( ) Arbitrary 10 4 3 4+ ⋅ ⋅ 10 4 3 4+ ⋅ ⋅ 9 4 3 4+ ⋅ ⋅ Li et al., 2016

GL F4
2
,( ) Circulant 12 4 3 4+ ⋅ ⋅ 12 4 3 4+ ⋅ ⋅ 12 4 3 4+ ⋅ ⋅ Li & Wang, 2016

F
24

Circulant 16 4 3 4+ ⋅ ⋅ 12 4 3 4+ ⋅ ⋅ 16 4 3 4+ ⋅ ⋅ Beierle et al., 2016

GL F4
2
,( ) Circulant 12 4 3 4+ ⋅ ⋅ 12 4 3 4+ ⋅ ⋅ 8 4 3 4+ ⋅ ⋅ Example 2

GL F8
2
,( ) Circulant 12 4 3 8+ ⋅ ⋅ 12 4 3 8+ ⋅ ⋅ 12 4 3 8+ ⋅ ⋅ Li and Wang, 2016

GL F8
2
,( ) Optimal 10 4 3 8+ ⋅ ⋅ 10 4 3 8+ ⋅ ⋅ 10 4 3 8+ ⋅ ⋅ Li and Wang, 2016

F x
24
0 13/

Sub-field 26 4 3 8+ ⋅ ⋅ 20 4 3 8+ ⋅ ⋅ Jean et al., 2017

GL F8
2
,( ) Circulant 12 4 3 8+ ⋅ ⋅ 12 4 3 8+ ⋅ ⋅ 8 4 3 8+ ⋅ ⋅ Example 2
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