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ABSTRACT

In this article, the authors propose a deep learning framework for malware classification. There
has been a huge increase in the volume of malware in recent years which poses serious security
threats to financial institutions, businesses, and individuals. In order to combat the proliferation of
malware, new strategies are essential to quickly identify and classify malware samples. Nowadays,
machine learning approaches are becoming popular for malware classification. However, most of
these approaches are based on shallow learning algorithms (e.g. SVM). Recently, convolutional
neural networks (CNNGs), a deep learning approach, have shown superior performance compared
to traditional learning algorithms, especially in tasks such as image classification. Inspired by this,
the authors propose a CNN-based architecture to classify malware samples. They convert malware
binaries to grayscale images and subsequently train a CNN for classification. Experiments on two
challenging malware classification datasets, namely Malimg and Microsoft, demonstrate that their
method outperforms competing state-of-the-art algorithms.
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INTRODUCTION

Malware is malicious software (e.g. viruses, worms, Trojan horses, and spyware) that damages or
performs harmful actions on computer systems (Malware Definition, 2017). In this Internet-age,
many malware attacks happen that pose serious security threats to financial institutions and everyday
users. Prior studies also highlight that malware analysis is crucial for digital forensic investigation
(Kaur & Nagpal, 2012). Figure 1 represents the number of malwares spotted in a year. It is clear
that the total number of instances of malware has drastically increased over the years. For example,
Symantec reported that more than 357 million new variants of malware were observed in 2016 (Internet
Security Threat Report, 2017). One of the main reasons for this high volume of malware samples is
the extensive use of obfuscation techniques by malware developers, which means that malicious files
from the same malware family (i.e. similar code and common origin) are constantly modified and/
or obfuscated. In order to cope with the rapid evolution of malware, it is essential to develop robust
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malware classification techniques that are tolerant of variants of malware files that belong to same
family. Towards this endeavor, we propose a deep learning architecture for malware classification.

Conventional methods use binary signatures of malware for analysis. Malware typically carries
a uniquely identifiable signature. Signature-based methods were extensively used in the past in
anti-virus software. Given the exponential increase in malware files and degree of variation, these
signature-based methods are not scalable. Other methods for malware analysis include static and
dynamic code analysis (Nataraj, Karthikeyan, Jacob, & Manjunath, 2011). In static analysis, the
malware code is disassembled to find malicious patterns. In contrast, dynamic analysis is done by
executing the malicious program in a virtual environment and its behavior is analyzed based on
execution trace. Dynamic analysis is more effective than static as it does not require disassembling,
but it is time consuming and resource intensive. Also, it is possible that during the dynamic analysis
malicious behaviors go unnoticed because the virtual environment may not be able to simulate the
exact real conditions (Nataraj, Karthikeyan, Jacob, & Manjunath, 2011).

Previous research on malware classification suggest that malware samples typically fall into
a family that share common behavior. Most new malware are variants of existing ones (Nataraj,
Karthikeyan, & Manjunath, 2015). Hence, the prospect of building a method that can efficiently
classify malware based on its family irrespective of being a variant, seems especially fruitful and a
means of dealing with the rapid growth of malware.

In this paper, we take a completely different approach to analyze and classify malware compared
with traditional methods. We use a Convolutional Neural Network (CNN), a deep learning architecture,
to tackle this problem.

Recently, CNNs have produced state-of-the-art performance on the image classification task
in the field of computer vision. Motivated by this success, we translate the malware classification
problem into the image classification problem to be addressed using CNNs. We firstly represent each
malware binary file as a grayscale image and then train a CNN architecture to perform classification.
Previous work (Nataraj, Karthikeyan, Jacob, & Manjunath, 2011) showed that malware belonging
to same family are visually similar, which is beneficial with respect to the capacity for a CNN to
detect relevant patterns. This is especially true given that the same or similar code is usually used
to generate variants of malware. However, the method proposed in (Nataraj, Karthikeyan, Jacob, &
Manjunath, 2011) have several shortcomings (See the Related Work section).

There is a recent work (Gibert Llauradd, 2016) that uses CNN for malware classification,
but it is still very shallow in architecture. In computer vision, researchers have shown that deeper
CNN architectures (e.g. (Simonyan & Zisserman, 2014)) are helpful in minimizing error for image
classification tasks. In this paper, we take the approach of vision researchers and adopt their technique
for malware classification.

CONTRIBUTIONS

We make the following main contributions in this paper:

1.  Wedevelop a deep convolutional neural network (CNN) architecture for malware classification,
which is generic in nature, unlike traditional methods. Existing techniques that achieve high
accuracy are often tailored for a specific dataset. In contrast, the proposed approach is data
independent and learns the discriminative representation from the data itself rather than depending
on hand-crafted feature descriptors.

2. We show that malware classification with higher accuracy is possible even if only a portion of
malware sample is available. As far as we know, we are the first to develop CNN-based method
that can classify malware samples using only partial knowledge of the properties of samples. In
addition, there are a number of advantages of the proposed approach that are discussed in the
Advantages section.
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Figure 1. Last 10 years malware statistics (Total Malware, 2017). Total volume of malware has increased drastically over the last
10 years.
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3. We perform extensive experiments on two benchmark datasets (Malimg (Nataraj, Karthikeyan,
Jacob, & Manjunath, 2011) and Microsoft (Microsoft, 2017)) which demonstrate that our approach
outperforms state-of-the-art methods. We obtain 99.97% accuracy on the Microsoft dataset while
the winning team (Wang, Liu, & Chen, 2017) of the Microsoft Malware Classification Challenge
(BIG 2015) (Microsoft, 2017) achieved an accuracy of 99.87% on the same dataset. Note that a
preliminary version of this work has also appeared in (Kalash, et al., 2018).

The remainder of the paper is organized as follows. We present related work on malware
classification in the Related Work section. The Background section discusses relevant background
for this work. The Approach section describes our proposed deep learning framework. We present
experimental settings and evaluation on different datasets in the Experiments section. The Advantages
section lists the advantages of our proposed method. Finally, we conclude and discuss some interesting
paths for future work in the Conclusion section.

RELATED WORK

Previous work on malware classification can be broadly classified into two categories: non-machine
learning methods and machine learning-based methods

Non-Machine Learning Methods: In the past, malware was detected using static or dynamic
signature-based techniques (Idika & Mathur, 2007). Static analysis uses syntax or structural properties
of the program in order to detect malware even before the program under inspection executes. However,
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malware developers use various encryption, polymorphism and obfuscation techniques (You &
Yim, 2010) (Sung, Xu, Chavez, & Mukkamala, 2004) to overcome these detection algorithms. In
the dynamic approach, malware is executed in a virtual environment and its behavior is analyzed in
order to detect harmful actions during or after the program execution. Although dynamic analysis of
malware is a promising approach, it is still very complex and time consuming (Nataraj, Karthikeyan,
Jacob, & Manjunath, 2011). The major drawback of classical signature-based detection is that it is
not scalable and its effectiveness can be undermined with the growing variants of malware (Rieck,
Holz, Willems, Diissel, & Laskov, 2008). Therefore, we adopt another approach which is based on
intelligent machine learning algorithms.

Machine Learning-Based Methods: In order to address the limitations of the aforementioned
methods and inspired by the fact that variants of malware families typically share similar behavior
patterns (Nataraj, Karthikeyan, Jacob, & Manjunath, 2011), anti-malware organizations started
to develop more sophisticated classification methods based on data mining and machine learning
techniques (Siddiqui, Wang, & Lee, 2008). These techniques use different feature extraction (i.e. data
representation) methods to build more intelligent malware detection systems.

Rieck et al. (2008) proposed a learning-based approach for automatic classification of malware.
They analyzed the behavior of 10,072 malware samples that were labeled and divided into 14 malware
families by an anti-virus software. Based on their analysis, a string feature vector (i.e. frequency of
some specific strings) was generated for each malware sample. Then, an SVM-based classifier was
trained that produced a classification accuracy of 88% on the dataset. Schultz et al. (2001) proposed
a Naive Bayes classifier for malware classification. Their approach makes use of strings and byte
sequences as features. They were able to achieve as much as twice the accuracy when compared
with the traditional signature-based methods. The drawback of these methods is that using extracted
strings from a malware executable as features does not provide robust performance because malware
authors can easily change them. Kolter et al. (Kolter & Maloof, 2004) tried to classify malicious
executable using byte-sequence n-grams (i.e. a contiguous sequence of n hexadecimal values from
a given malware file) as features. They trained different types of classifiers (Naive Bayes, decision
trees, support vector machines, etc.) and then evaluated and compared each classifier performance
for different sizes of n-grams. However, these shallow learning techniques are not very scalable
with the growing number of malware samples. Another drawback is that these methods are not fully
automated, which implies that it is first necessary to determine the best feature representation based
on the available malware file types and then design feature representations (or extraction by hand),
which is followed by retraining of an associated classifier. In order to tackle these problems, we
develop a deep learning architecture that is robust and more general in nature.

Nataraj et al. (2011) present a strategy closely related to our proposed method, in particular in
the way that the malware files are pre-processed. This method uses a binary vector (a binary string of
zeros and ones) that represents a malware executable to generate a grayscale image. We also convert
the malware binary files to grayscale images following their method. In order to characterize and
classify the generated malware images, they used a standard image feature descriptor, GIST (Oliva
& Torralba, 2001) (Torralba, Murphy, Freeman, Rubin, & others, 2003), to compute texture features.
Then, the grayscale malware images are classified using k-nearest neighbor algorithm. Since their
feature extractor only captures the global image texture, malware developers can easily attack this
approach by swapping sections in malware binary or by adding some redundant data. Another problem
with their approach is that it is not scalable as their learning algorithm complexity grows with the
increase in number of malware samples.

Drew et al. (Drew, Moore, & Hahsler, 2016) performed malware classification on the Microsoft
Malware dataset (Microsoft, 2017) using modern gene sequence classification tool and achieved
97.42% accuracy. They expanded upon their work later (Drew, Hahsler, & Moore, 2017) to include
new feature extraction and ensemble techniques for the files generated by the Interactive Disassembler
Tool (IDA) in the dataset and achieved higher accuracy of 98.59%. Ahmadi et al. (2016) extracted
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and fused 13 different groups of features that specifically target the Microsoft Malware Dataset.
They trained a classifier based on the XGBoost (Chen & Guestrin, 2016) technique and achieved an
accuracy of 99.77% on the training set of the Microsoft malware classification dataset. The winning
team (Wang, Liu, & Chen, 2017) of the Microsoft Malware Classification Challenge (BIG 2015)
(Microsoft, 2017) used a highly complex combination of features and trained a classifier based on
the XGBoost (Chen & Guestrin, 2016) technique that achieved an accuracy of 99.87% on the training
set of the Microsoft malware dataset. Although these works achieve high performance on Microsoft
malware dataset, they are designed to target higher performance on specific datasets. In contrast, our
aim in this work is to build a more generic framework (i.e. a technique that is not dataset specific)
which can be used with any type of malware sample.

All the previously discussed methods use conventional machine learning techniques. Even though
deep learning has already demonstrated its superiority due to its multilayer deep architecture, it has
not been yet well-explored in the area of malware classification. Convolutional neural networks
(CNN) are distinguished from some existing approaches in that they are able to learn the feature
representation from the data itself. This approach of learning the feature representation from the data
is a more intuitive way to address the challenge posed by the huge rise in the number of malware
classes and degree of variability. Hardely et al. (2016) proposed a deep learning framework for malware
detection (i.e. to say a file is a malware or not). Their method achieved very high detection accuracy
(95.64%) which demonstrates the usefulness of deep architectures for malware analysis. However,
in this paper we are interested in the more challenging problem of malware classification, which is
essential to analyze the behavior of different malware families in order to deal with the ever-growing
body of malware in the wild.

A recent method in (Gibert Llauradé, 2016) is also closely related to our proposed method. This
work applies a CNN for malware classification. The author experimented with 3 different architectures
by adding an extra block (a block consists of a convolutional layer followed by a Max-pooling layer)
each time to its base model. However, their model is still very shallow in nature. In computer vision,
researchers have shown that deeper architectures (i.e. network with many layers and huge number of
parameters) increases the image classification performance (Simonyan & Zisserman, 2014). Another
closely related work by (Raff et al., 2017) proposed a neural network for malware classification that
operates on the raw bytes sequences. Different from them, we consider the approach of converting
malware to images. In summary, this paper is an attempt to leverage the existing CNN-based state-
of-the-art image classification techniques to solve malware classification.

BACKGROUND

A Convolution Neural Network (CNN) is a feed-forward neural network that is biologically inspired,
in particular by the organization of animal visual cortex (Convolutional neural network, 2017). CNN
is the current state-of-the-art neural network architecture for image classification problem. CNN is
comprised of neurons with learnable weights and biases. CNNs mainly consist of the following three
components (Intro to Convolutional Neural Networks, 2017):

1. Convolutional layers: These layers apply a certain number of convolution operations (linear
filtering) to the image in sequence. Typically these filters extract edge, color, and shape
information from the input image. Basically the filters operate on subregions of an image and
perform computation such that it produces a single value as output for each subregion. The output
(say x ) of this layer is typically forwarded to a non-linear function (called Relu activation) which

is defined as f (x) = max (0, :L') .
2. Pooling layers: This layer is responsible for downsampling (i.e. reducing the spatial resolution
of the input layers) the data produced from convolution layers so that processing time can be
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reduced, and computational resources can handle the scale of the data. It is the result of pooling

operation that the number of learnable parameters is reduced in the subsequent layers of the

network. Max pooling is a commonly used pooling technique that keeps the maximum value in
aregion (e.g. 2 X 2 non-overlapping regions of data) and discards the remaining values.

3. Fully connected layers: This layer performs classification on the output generated from convolution
layers and pooling layers. Every neuron in this layer is connected to every neuron present in
the previous layer. This type of layer is typically followed by a Dropout layer that improves the
generalization capability of the model by preventing over-fitting which is commonly occurring
problem in deep learning domain.

Our proposed CNN is stack of multiple convolutional layers, pooling layers and fully connected
layers. Given a malware sample as an input, the CNN predicts N scores (N = number of
malware classes) where each score indicates how likely the malware sample belongs to a
particular malware class. The class with highest score is the predicted or final class label
for the given malware sample.

APPROACH

In this section, we discuss the problem definition and proposed solution methodology.

Problem Definition

The problem tackled in this paper can be divided in the following two parts: 1) Given a dataset D of
malware files, assign a class label ¢ to each unlabeled malware file; ii) Given a part of malware file,
assign class label c to it.

Although shallow learning methods, such as Support Vector Machines (SVM), Decision Trees
(DT), and Artificial Neural Networks (ANN) can be used to handle the malware classification task,
Convolutional Neural Networks (CNN) could help us achieve much superior performance on this
task. In this paper, we explore CNN-based architecture for malware classification.

Visualizing Malware as Image

Malware authors usually change a portion of the previously available code to produce new malware
(Nataraj, Karthikeyan, & Manjunath, 2015). If we represent malware as an image, then these small
changes can be easily tracked. Inspired by this and previous work (Nataraj, Karthikeyan, Jacob, &
Manjunath, 2011), we visualize malware binary files as grayscale images. Figure 2 demonstrates the
process of converting malware binary files to grayscale image.

Firstly, a given malware binary file is read in a vector of 8-bits unsigned integers. Secondly, the
binary value of each component of this vector is converted to its equivalent decimal value (e.g. the
decimal value for [00000000] in binary is [0] and for [11111111] is [255]) which is then saved in a
new decimal vector representing the malware sample. Finally, the resulting decimal vector is reshaped
to a 2D matrix and visualized as a grayscale image. Selecting width and height of the 2D matrix (i.e.
the spatial resolution of the image) mainly depends on the malware binary file size. We use the spatial
resolution provided by Nataraj et al. (2011) while reshaping the decimal vectors. Figure 3 visualizes
some examples of generated grayscale malware images for malware belonging to different families.

MODEL OVERVIEW

We use a Convolution Neural Network (CNN) for malware classification which we refer to as M-CNN
throughout the remainder of the paper. Our model architecture is based on VGG-16 (Simonyan &
Zisserman, 2014). Input to our network is a malware image and output is set of scores/confidences
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Figure 2. Overview of malware visualization process. Firstly, the malware binary file is divided into 8-hit sequences which are
then converted to equivalent decimal values. Finally, this decimal vector is reshaped and a grayscale image is generated that
represents the malware sample.

Malware Binary Binary to 8 bit vector 8 bit vector to
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Figure 3. Examples of malware grayscale images belonging to different malware families. These images are acquired from Malimg
Dataset. We can see that malware samples from same family are visually similar. Note that images shown above are rescaled
for better visualization.
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for various malware classes. We finally select the class with maximum score as our prediction for
the given malware sample.

Following (Simonyan & Zisserman, 2014), our CNN architecture consists of 16 weight layers
including 13 convolution layers and 3 fully connected layers. The convolutional layers have filters
of size 3x3 and are divided into 5 groups where each group is followed by a 2x2 max-pooling layer
that down samples the output. The number of filters in the first group of convolutional layers is 64
which increases by a multiple of 2 after each max-pooling layer, resulting in 512 filters in the last
group of convolution layers. We then have 3 fully connected layers with dropout layers. The last fully
connected layer produces output of a size that matches with the number of malware classes in the
dataset. Figure 4 shows an overview of our proposed CNN architecture (M-CNN).

Learning

Since malware is labeled with a class (i.e. family) name, we employ a learning method that optimizes
a classification loss. We use cross-entropy loss to train our network. The loss L for a training data y
is defined as follows:

96



International Journal of Digital Crime and Forensics
Volume 12 « Issue 1 « January-March 2020

Figure 4. Overview of our proposed CNN architecture (M-CNN). The network takes a malware image as an input and produces
a set of scores of equal size to the number of malware classes (NClasses) in the dataset as an output at the end. We pick the
top-scoring class as the predicted class label for the given malware sample provided as input.
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Where fw is the score for the j* class and fy . is the score for the correct class of data. The

parameters of the model are learned using stochastic gradient descent (SGD), which tries to minimize
the loss incurred on the training data.

EXPERIMENTS
In this section, we discuss the malware datasets, experiments and the evaluation scheme.

Datasets and Experimental Setup

We conduct experiments on the following two challenging malware datasets:

1. Malimg Dataset: This dataset (Nataraj, Karthikeyan, Jacob, & Manjunath, 2011) has a total of
9,339 malware samples that are represented as grayscale images. Each malware sample in the
dataset belongs to one of the 25 malware families. Also, the number of samples belonging to a
malware family vary across the dataset. In our experiments, we randomly select 90% of malware
samples in a family for training and the remaining 10% for testing. At the end, we have 8,394
malware samples for training and 945 samples for testing.

2. Microsoft Malware Dataset: In 2015, Microsoft hosted a Kaggle competition for malware
classification (Microsoft, 2017). In this challenge, Microsoft released a huge dataset (almost half
a terabyte when uncompressed) consisting of 21,741 malware samples. This dataset is divided in
two parts, 10,868 samples for training and the other 10,873 samples for testing. Each malware
sample belongs to one of 9 different malware families (i.e. Ramnit, Lollipop, Kelihos_ver3,
Vundo, Simda, Tracur, Kelihos_ver1, Obfuscator. ACY and Gatak). Like the Malimg dataset, the
distribution of malware samples over classes in the training data is not uniform and the number
of malware samples of some families significantly outnumbers the samples of other families.
Each file has a class label where each label is represented by an integer from 1 to 9, where ‘1’
represents the first malware family in the above list, and ‘9’ the last one. There are two files that
represent each malware sample, .bytes file that contains the raw hexadecimal representation of
the file’s binary content with the executable headers removed and .asm file that contains the
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disassembled code extracted by the IDA disassembler tool. In our experiments, we only use the
.bytes files to generate the malware grayscale images. We experiment with two different setups
involving this dataset: 1) Setup-A: following previous work (Drew, Moore, & Hahsler, 2016)
(Drew, Hahsler, & Moore, 2017), the original training set (10,868 malware samples) is class-
wise randomly divided into two subsets where the first set consists of 90% malware files (9,776)
and the rest 10% (1092) is used for testing; 2) Setup-B: we follow the original train-test split
which is provided by Microsoft (i.e. 10,868 samples for training and the other 10,873 samples
for testing).

All the experiments are conducted on 64-bit Ubuntu 14.04 Intel Core i17-5820K CPU (3.30GHz)
with 64GB RAM and a NVIDIA Titan X GPU with 12GB memory. We implement our framework
using the Torch machine learning library (Collobert, Kavukcuoglu, & Farabet, 2011). We set the
initial learning rate to be 0.001 which is reduced by a factor of 10 every 20 epochs where 1 epoch
means exposing a learning algorithm to the entire set of training data once. We set weight decay and
momentum to 0.0005 and 0.9, respectively. We initialize the parameters in M-CNN network with the
VGG-16 (Simonyan & Zisserman, 2014) pre-trained weights. We also randomly shuffle the training
data in every epoch.

EXPERIMENTS AND EVALUATION

Our experiments are divided into two categories: 1) when we have access to whole malware image;
2) when only part of the malware image is available. The goal of the first set of experiments is to
determine classification performance when whole malware data is fed to the model, whereas the second
set of experiments is conducted to determine whether or not our proposed network can identify the
class of a malware sample by seeing only a portion of it. Note that we convert all the malware binary
files in the datasets to grayscale images using the method described in Section APPROACH. For the
Microsoft malware dataset, we only used the .bytes files to generate the grayscale malware images. To
evaluate the performance of the proposed model, we report the performance of different methods in
terms of accuracy which simply refers to the percentage of malware samples that are labeled correctly.

1. Classification with whole malware image

We evaluate our proposed network when the input is the whole malware image. We also compare
the performance with several baseline methods.

Apart from comparing with some previous works, we also implement our own baseline. We
extract GIST (Oliva & Torralba, 2001) (Torralba, Murphy, Freeman, Rubin, & others, 2003) features
(a handcrafted feature that computes texture features) from each malware image. Next, we train a
multi-class Support Vector Machine (SVM) classifier on both of the datasets. We call this baseline
GIST+SVM, which achieves accuracy of 93.52% on the Malimg datasets and 88.74% on the Setup-A
of Microsoft malware dataset. These results are shown in Table 1.

Our proposed network M-CNN is trained for 25 epochs with a batch size (a set of training data
that is forwarded to the model at once) of 6 for the Malimg dataset and a batch size of 8 when training
on Microsoft malware dataset. M-CNN achieved the best performance with a classification accuracy
of 98.52% on the testing set of Malimg dataset and 98.99% on the Setup-A of Microsoft malware
dataset. Our method outperforms several baseline methods by a huge margin on both of the datasets
as can be seen in Table 1.

In addition, when evaluated on the training set of Microsoft malware dataset with Setup-B, our
M-CNN model achieves very high classification accuracy of 99.97% where only 3 samples where
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Table 1. Classification performance on whole malware images

Malimg Dataset Microsoft Dataset: Setup-A Microsoft Dataset: Setup-B
Method Accuracy Method Accuracy Method Accuracy
Nataraj et al. Drew et al. .
2011) 97.18% 2016) 97.42% Gibert (2016) 99.76%
GIST+SVM Drew et al. Ahmadi et al.
(ours) 93.23% 2017) 98.59% 2016) 99.77%
Winner (Wang,
M-CNN (ours) 98.52% GIST+SVM 88.74% Liu, & Chen, 99.87%
(ours)
2017)
M-CNN (ours) 98.99% M-CNN (ours) 99.97%

misclassified. This performance is 0.1% higher than the accuracy of the Microsoft Kaggle challenge
winner’s solution which had 15 misclassified malware samples. See Table 1 for details.

Figure 5 shows the behavior of the network on the two datasets during training and testing. We
compute the performance of the network at various epoch on both training and testing set. The plots
suggest that the network performance improves with the increase in the number of training epochs.
Figure 6 and Figure 7 show the confusion matrix for Microsoft dataset with Setup-B and Malimg,
respectively.

Lastly, we evaluate M-CNN on the test set of Microsoft malware dataset, which is same as the test
set of Setup-B. We submitted our predictions to the evaluation server which evaluates the submissions
based on multi-class logarithmic loss

1 N M
logloss = — N Zzy,;jlog (p,j)

i=1 j=1

where N is the number of malware samples, m is the number of malware classes, Y. is 1 if the

prediction is correct and O otherwise, and iy is the predicted probability (Microsoft, 2017). Table
2 shows the performance of different methods in terms of logloss. note that our performance is not

Figure 5. Accuracy on different datasets at different epochs. The curve in blue denotes test accuracy, whereas the curve in red
denotes training accuracy. Left: M-CNN performance on the Malimg dataset. Right: M-CNN performance on the Microsoft dataset
with Setup-A.
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Figure 6. Confusion matrix of our M-CNN network when tested on the Microsoft dataset with Setup-B.

Confusion Matrix

Output Class

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 28 24 25
Target Class

directly comparable with the best method as they use both .bytes and .asm files in their method,
whereas we only use .bytes files for training our model. we achieve the best performance when
compared with methods that only use .bytes files.

2. Classification with part of the malware image

We perform another set of experiments to examine the performance of M-CNN when only part
of the malware image is given as input. We crop each malware image at a random position to generate
several cropped versions of the same malware image. The cropping size is randomly selected in such
a way that the final cropped image represents 50% or more of the original malware image. Figure
8 shows an example of a malware image and its cropped versions as a result of random cropping at
different positions. During the training process, all of the cropped versions of a malware image are
resized to the original malware image size (i.e. 224 X 224) and fed to the network.
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Figure 7. Confusion matrix of our M-CNN network when tested on the Malimg dataset. Note that the number along the diagonal
represents number of samples correctly classified in a particular class, whereas the % represents the percentage of malware
samples belonging to that class in the dataset. The last column shows the class-wise accuracy achieved by our model.

Confusion Matrix

Output Class

1 2 3 4 5 6 7 8 9
Target Class

We modify our training procedure so that our M-CNN model can correctly classify cropped
malware images. We call this modified model M-CNN-C. We firstly train M-CNN-C model for 5
epochs on the whole malware images and then when the model is partially trained, we start training
with randomly cropped malware images. As mentioned above, these cropped images are rescaled
to the original malware image size before being forwarded to the model. From epoch 6 onwards,
we train network with 25% randomly selected original training malware images (i.e. these are not
cropped) and 75% randomly cropped and resized images. We train our M-CNN-C for 40 epochs on
the Malimg dataset and for 42 epochs on the Microsoft malware dataset.

Table 3 shows the performance of our M-CNN and M-CNN-C in different cropping settings.
We experiment with 3 different image configurations: 1) No Cropping: where both the models are
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Table 2. Performance of different methods on original test

Method Files used Logloss on test
Gibert (2016) .bytes 0.1176
Drew et al. (2016) .bytes 0.2228
Drew et al. (2017) .bytes + .asm 0.0479
Ahmadi et al. (2016) .bytes + .asm 0.0063
Winner (Wang, Liu, & Chen, 2017) .bytes + .asm 0.0028
M-CNN (ours) .bytes 0.0571

Figure 8. Examples of random cropping on a malware image

{ | Cropping

evaluated on original malware images; 2) Random Cropping: where models are tested on malware
images with random cropping sizes; and 3) 50% Cropping: where models are evaluated on malware
images with strictly 50% of random cropping. M-CNN trained on whole malware image performs
poorly on both the datasets when tested on randomly cropped image (2nd last row in the table). M-CNN
performance further drops when tested with half-cropped malware images (last row in the table).
M-CNN-C improves the classification accuracy by more than 25% compared with M-CNN when
tested with cropped malware images from Malimg dataset. M-CNN-C also performs significantly
well compared to M-CNN on Microsoft malware dataset with Setup-A.

We believe the performance gain by M-CNN-C over M-CNN on cropped malware images can
be attributed to two factors. First, the cropping procedure creates variants of malware in the same
class which helps the model learn a more discriminative representation of malware originating from

Table 3. Quantitative results for classification accuracy of various methods tested with cropped malware images. M-CNN refers
to our base network which is trained with original malware images, whereas M-CNN-C refers to M-CNN trained with cropped
malware images.

Malimg Dataset Microsoft Dataset Setup-A
Image configurations
M-CNN M-CNN-C M-CNN M-CNN-C
No Cropping 98.52% 98.41% 98.99% 99.08%
Random Cropping 72.80% 97.35% 78.57% 96.34%
50% Cropping 32.17% 94.39% 50.82% 86.36%
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different classes. Second, parallel training with whole original images is helpful and important because
it enables the model to keep track of the original overall structure of the malware family.

Furthermore, we perform visual analysis of the M-CNN model to show the most important regions
of malware images that the model is using to correctly classify that image. Inspired by (Selvaraju
et al., 2016), we show in Figure 9 the class activation maps for some malware images from both
the datasets. These class activation maps highlight the subregions of the malware image where the
model focuses in order to predict its class. For example, when the model is given a malware sample
that has vertical dark stripes (5th row and 3rd column in the figure), it looks at the distinctive stripes
it contains in order to predict its class. For some of the class activation map examples (such as in
4th row and 2nd column), we see that the model is focusing on large area of the malware image in
order to classify it. In this case, since the model could not find any finer discriminative regions like
the previous example, it looks at the broader region to determine the class of the malware sample. In
summary, this class activation maps indicate the different distinctive regions where the CNN looks in
performing the classification, and also shows that in some instances these are highly localized while
in others they are more diffusely located requiring broader analysis of the file contents.

ADVANTAGES

There are multiple advantages of the proposed framework over previous methods which are as follows:

1. This is the first attempt in the literature concerning malware classification to perform classification
even if only a part of the malware sample is given. One very interesting application of this can
be seen in network security. When sharing a file through any network, the receiver does not
typically receive the file at once, instead it is transmitted in parts. Thus, using our framework, we
can detect and classify whether or not the file contains malware even before having it completely
transmitted to the system. If malware is found then we can immediately stop the file transfer and
prevent the attack.

2. Even though our model is trained with only half of the available training data (we use only the
.bytes files and do not use the .asm files for the Microsoft malware dataset (see the Experiments
section for more details), it achieves superior performance which demonstrates that our proposed
model is a quick learner, i.e., our proposed model can learn discriminative features of malware
families with less information as compared to other approaches that use both files in their methods.

3. Our framework is a generic in nature. Existing methods are highly specialized and tailored
specifically for one system or task. For example, most of the other methods based on the Microsoft
malware dataset extracted features manually using all of the available files which may not be
generalize to other malware datasets, and their extraction methods were also focused on the
given dataset. However, our framework is general and can operate on any malware file as long
as the binary representation of that file can be acquired, which is usually the case irrespective
of operating system.

4. The generated images significantly reduce the space needed for storing large datasets of malware.
For example, the original Microsoft malware dataset .bytes files have a total size of almost 51
GB, whereas the corresponding grayscale images use only 615 MB of disk space.

5. Our model is very fast in predicting a class label for a given malware sample. The usual time
required to classify a new malware sample is significantly less than most existing methods. Only
a fraction of a second is needed to forward a new malware image to the model and obtain the
predicted class label.
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Figure 9. Class activation maps from M-CNN. The final class score is mapped back to the previous layers to generate the class
activation maps. These activation maps highlight the malware class-specific discriminative image regions.
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CONCLUSION

Malware is increasingly posing a serious security threat to computer systems. It is essential to analyze
the behavior of malware and categorize samples so that robust programs to prevent malware attacks
can be developed. Towards this endeavor, we have proposed a deep convolutional neural network
(CNN) architecture for malware classification. We first convert malware samples to grayscale images in
order to train a CNN for classification. Experimental results on two benchmark malware classification
datasets demonstrate that our proposed model performs better than state-of-the-art methods. We
trained our CNN such that it can correctly classify samples even if only portion of a malware sample
is provided, which we believe we are the first to do in the body of work addressing malware detection.
Through extensive experiments on two malware datasets, we showed the effectiveness of proposed
CNN for malware classification.
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In future work, we plan to incorporate Spatial Transformer Networks (STN) (Jaderberg, Simonyan,
Zisserman, & others, 2015) in the proposed neural architecture. The motivation behind this is that
it may not be necessary that whole malware images carry discriminative information that can help
in classification, i.e., some region in a malware sample can help in distinguishing their family. STN
is a tool that can enable capture of such discriminative information which will result in further
improvements to classification accuracy, including handling more extensive changes to existing
malware categories.
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