
DOI: 10.4018/IJDCF.2020070102

International Journal of Digital Crime and Forensics
Volume 12 • Issue 3 • July-September 2020

﻿
Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

15

User Identity Hiding Method of Android
Yi Zhang, Institute of Information Engineering, Chinese Academy of Sciences, China

ABSTRACT

With an 86.1% global market share, Android takes the top spot smartphone operating system. Due to 
its open environment, Android suffers from various kinds of attacks, which cause a serious privacy 
leakage problem. To protect users’ privacy information, this article proposes a user identity hiding 
method of Android. The method constructs a hidden user identity in Android based on the multi-
user mechanism. In particular, by hiding information related to hidden user, the method makes it 
invisible to normal user. The method can quickly switch the identity of normal user and hidden 
user by passwords. Thus, the method can deal with privacy information under hidden user identity 
while processing regular information under normal user identity. Compared with traditional security 
methods of Android, this method significantly improves the security of android devices without 
arousing any suspicion. Experimental results show the effectiveness of the method that it not only 
achieves ideal hiding effect on user identity, but also implements quick switch without sacrificing 
the performance of system.

Keywords
Android, Multi-User, User Identity Hiding

INTRODUCTION

Nowadays, smartphone is widely used in large variety of areas, such as communication, shopping 
online, map navigation, getting latest news, etc. which make it an integral part of people’s lives. 
Thus, a great deal of privacy information in smartphones, such as payment accounts, bank statement, 
personal photo, location information, address book and so on, become one of our most valuable 
treasure. Accordingly, malicious attacks on the privacy information of our smartphone are growing 
fast year by year. As the most widely used intelligent mobile operating system on market, Android 
is the primary target of all kinds of malware attacks (Xu et al., 2016). Considering the great value 
of privacy information stored in our phones, it is of great significance to investigate on different 
measures of improving the security level of Android devices.

To protect users’ privacy information, researchers adopt a method of multi-system isolation 
in Android devices. It provides multiple running environments on a single physical device, which 
are independent and do not interfere with each other. By providing isolated environment for secret 
information, it can protect users’ privacy effectively. In recent study (Huber et al., 2015), the authors 
propose a security architecture for Android devices based on operating system-level virtualization 
technology. Nevertheless, the security architecture requires deep customization for Android system, 
making it very complicated to implement. The “Platinum” phones of Coolpad use hardware isolation 

This article, originally published under IGI Global’s copyright on July 1, 2020 will proceed with publication as an Open Access article 
starting on January 27, 2021 in the gold Open Access journal, International Journal of Digital Crime and Forensics (converted to gold Open 
Access January 1, 2021), and will be distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/

licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium, provided the author of the original work and 
original publication source are properly credited. 



International Journal of Digital Crime and Forensics
Volume 12 • Issue 3 • July-September 2020

16

technique to achieve dual-system through two different ROMs (Techweb, 2017). However, the 
technique requires hardware customization, which is not fit for common models. In general, the 
traditional multi-system methods mainly focus on providing an independent and secure operating 
environment for users’ privacy information, but it also tells attackers that users’ privacy information 
is stored in the security system. In fact, there are very few ways to cover up the running environment 
of multi-system. So, it is easy to arouse suspicion when multi-system technology is used as privacy 
protection method. Besides, the switch of multi-system is usually complicated which may seriously 
impact users’ experience.

In addition, smartphone manufactures design a variety of confidential cabinets and private spaces 
to store users’ privacy information. For example, the mobile phone of Huawei provides a confidential 
cabinets function. Users can use it to store secret files like pictures, audio, video and so on. Only 
users who know the password of confidential cabinets will be able to see the secret files, but it tells 
attackers the existence and exact position of secret information. Once attackers crack the password 
of the confidential cabinets, he can directly obtain users’ secret information.

In this paper, we propose a user identity hiding method based on Android device to protect users’ 
privacy information. The method implements dual-system on mobile phone based on the multi-user 
mechanism of Android system. Compared with the multi-system of mobile phone with virtualization 
technology, our method is simple to implement and has little impact on system performance. 
Compared with hardware isolation technology of the “Platinum” phones, our method is implemented 
on software level. So it is independent to specific hardware devices, which makes it more flexible and 
applicable to different makers of smartphones. Furthermore, our dual-system method can make the 
storage of the users’ regular information and privacy information further isolated from each other. 
The method constructs a hidden user identity, which is invisible to normal user. One can deal with 
privacy information under hidden user identity while processing regular information under normal 
user identity. Even malware detection cannot find users’ privacy information through conventional 
detection methods. In general, this paper’s contributions are:

•	 We develop a new kind of dual-system on mobile phone based on the multi-user mechanism 
of Android system to protect users’ privacy. Compared with the multi-system of mobile phone 
with virtualization technology and hardware customization, our dual-system method is more 
convenient and effective without sacrificing the performance of the system;

•	 We construct a hiding method to achieve the identity of hidden user is invisible to the normal 
user. The method can prevent the conventional detection approach and common logical technique 
from obtaining users’ privacy information. Thus, the method significantly improves the security 
of android devices without arousing any suspicion;

•	 We realize the quick, secure login and switching function between dual users. In addition, 
we improve the security of users’ privacy information through the behavior monitoring and 
data encryption.

The rest of the paper is organized as follows. In Section 2, we will present some related work 
on privacy protection measures of Android system. Section 3 shows the design of our method. In 
Section 4, we present the experimental results and analysis of the proposed method. Finally, the paper 
is concluded in Section 5.

RELATED WORK

In recent years, privacy protection of Android has become a hot issue and main concern of researchers 
and mobile phone manufacturers, which is drawing more and more attention from all over the world. 
Researchers have put forward a variety of solutions in the privacy protection problem of Android.



International Journal of Digital Crime and Forensics
Volume 12 • Issue 3 • July-September 2020

17

Some researchers use virtualization techniques to create isolated running environments. For 
example, AirBag (Wu et al., 2014) presents a lightweight OS-level virtualization approach. The 
approach assumes that there is a trusted OS kernel and the user will install untrusted apps onto 
phones. In order to isolate and prevent untrusted apps from infecting normal systems or stealthily 
leaking private information, AirBag dynamically creates an isolated virtual environment to ensure 
their transparent “normal” execution. They mainly focus on the preliminary analysis of Android 
applications before their execution in the trusted container. However, this kind of isolation will affect 
the functionality of untrusted apps at some extent.

Different from the purpose of AirBag, Huber et al. (2015) propose a secure architecture for 
OS-level virtualization on mobile devices. They achieve data confidentiality by isolating containers 
and restricting them to a set of minimal controlled functionality. In addition, the architecture defines 
specific channels for communication between components and develops a stacked Linux Security 
Modules (LSM) concept using SELinux and a custom LSM. However, their secure architecture is 
complex and has a certain impact on system performance.

In addition, some research work focuses on improving the existing security mechanism or refining 
the security strategy of Android system (Liang, 2015; Ongtang, 2012). Some researchers (Gibler, 2012; 
Nauman, 2010; Shen, 2014) propose solutions to the problem of Android permission mechanism. In 
order to enhance the security of Linux kernel, researchers introduce SELinux to the Android system 
(Bugiel, 2013; Shabtai, 2010; Smalley, 2013), providing a more rigorous access control strategy. 
TaintDroid (Enck et al., 2014) mainly focuses on the personal data. It aims to detect when sensitive 
data leaves the system via untrusted applications and to facilitate analysis of applications by phone 
users or external security services.

In smartphone market, the “Platinum” brand of Coolpad launches a typical dual-system mobile 
phone. It uses hardware isolation method and has two independent running systems, open system 
and security system (Techweb, 2017). Open system is normal mobile phone system, where users 
can perform tasks that require less security, such as playing games and watching video. The open 
system also has a cool function of housekeeping to achieve real-time monitoring of mobile phone 
system. In security system, all apps have passed the official safety certification. Users can perform 
operations that require relatively high confidentiality. However, the device uses two different ROMs 
to implement dual-system, requiring hardware customization. So it is improper for common models 
and difficult to popularize.

Android system supports multi-user mechanism on a single device since version 4.2. The 
mechanism tells user accounts and application data apart (AOSP, 2017). The first user created during 
the initial process is primary user, which is always running on the device. No one can remove the 
primary user except the operation of factory reset. Any user added to the device later is secondary 
user. In particular, primary user can remove secondary users while secondary users cannot affect other 
users on device. Temporary secondary user is named as guest user that is optional to be deleted when 
it is useless. A single device only allows one guest user at a time. When multiple users exist on device 
simultaneously, each user is allocated with a unique workspace to place its installed applications. 
According to the multi-user mechanism of Android system, there is no authority for secondary user 
to access the privacy information or call the applications of other ones. But for primary user, it has 
the authority to remove applications or even the entire workspace established by secondary users.

DESIGN

To protect users’ privacy information, we propose a user identity hiding method on the basis of multi-
user mechanism of Android system. In the method, we construct two default users named normal 
user and hidden user which exist on a single device simultaneously. Under the identity of normal 
user, people can carry out ordinary operation with low sensitivity. While under the identity of hidden 
user, people can deal with information that ranked with higher security demands, such as individual 



International Journal of Digital Crime and Forensics
Volume 12 • Issue 3 • July-September 2020

18

privacy or payment accounts. Thus, our method can separate the sensitive operation from ordinary 
operation, which significantly reduces the risk of information leakage. In particular, we achieve the 
functionality that hidden user is invisible to normal user, which ensure the security that detectors 
cannot find hidden user by conventional detection approaches. What’s more, we prevent the normal 
user from perceiving, manipulating and getting data of the hidden user. As a result, our method can 
realize the protection of privacy information by identity of hidden user. In addition, we improve the 
security of privacy information in the identity of hidden user through the Behavior Monitoring (BM) 
and Data Encryption (DE).

Hiding Method
The basic design of our method is to construct two users according to the multi-user mechanism. In 
our method, we inject the code of adding new user during the process of starting user management 
service of the system. When a user launches the system, user management service will examine 
whether a hidden user exists. If the hidden user is non-existent, user management service will call the 
function of adding new user. Therefore, there are two default users in the system: the primary user 
as the normal user, a secondary user as the hidden user. In order to implement the hiding effect of 
secondary user, we modify the specific function related to multi-user in Android system. As Figure 
1 shows, the information related to multi-user in the Android system includes two parts: the basic 
functions provided by the Android system and deep information.

Multiple users in Android have isolated workspace and apps data. However, the primary user 
can create, delete and switch to the secondary user. Any user can affect the installed apps for all 
users. The Android system provides these functions to users through some operating interface, such 
as the list of users, the list of applications installed in the phone, the storage allocation and so on. 
The information mainly exists in the APP of system setting. In order to prevent normal user from 
controlling and perceiving hidden user through these functions provided by Android system, we 
modify the permissions of normal user and secondary user. Such as the function (getUsers()) of 
getting users’ information at the user management service class (UserManagerService.java) and the 
function (getInstalledApplications()) of getting applications that have been installed to the system at 
the package management service class (PackageManagerService.java). The user management service 

Figure 1. Operation related to multi-user of Android system



International Journal of Digital Crime and Forensics
Volume 12 • Issue 3 • July-September 2020

19

(UserManagerService.java) is responsible for managing multiple users of Android system, such as 
creation, deletion, query and so on. The package management service is responsible for managing 
packages of the Android system, including installation, uninstallation, query and so on. Under the 
identity of primary user, the function (getInstalledApplications()) can get applications of all users 
installed in system. The storage allocation information is displayed according to the function’s 
(getUsers()) execution result. When apps call these functions, system will determine whether the 
current user is hidden user. If the current user is not hidden user, these functions will not obtain the 
information of hidden user. Even if other users and hidden user install the same application, other 
users’ modification to the application will not affect the hidden user.

The deep information refers to the relevant content of the hidden user that users can obtain 
indirectly. The content includes system processes information, file directory information, configuration 
file information etc. The methods of getting deep information mainly include USB debugging and the 
third party detection tools. The access to the information is achieved mainly through adb command or 
service interface provided by the system. ADB (Android Debug Bridge) is a powerful command-line 
tool that lets users communicate with Android device. It provides some command (e.g.: ps, ls, am, pm) 
that can gets the information of system. For example, ps command can get the process information 
that system is running. Activity management service (AMS, ActivityManagerService.java) is a 
kernel service of Android system. It is responsible for the management and dispatching of application 
process and the four components (Activity, Service, Broadcast and Content Provider) in Android 
system. For example, AMS provides an interface (getRunningAPPProcess()), by which we can also 
get the process information that system is running. Therefore, we modify the relevant adb command 
and service interface. Users cannot obtain the information of hidden user through adb command or 
third-party tools. At the same time, we also disguise the relevant configuration files and ensure that 
users with local root privileges cannot get the information of hidden user as well. Furthermore, we 
close the USB debugging function by modifying the configuration file of Android system directly.

Behavior Monitoring (BM)
The goal of BM is to achieve real-time monitoring on users’ privacy information. It can detect 
abnormal behaviors and responses to these behaviors quickly. In particular, BM prevents other users 
from any operations related to hidden user.

The architecture of Android system is constituted of three layers, Linux kernel, system architecture 
layer and applications layer (Tam et al., 2017). Based on applications layer, users can monitor behavior 
of applications through the broadcast mechanism of Android system (Enck et al., 2009). However, the 
system broadcast limits the monitoring scope, making it is not comprehensive enough. At the system 
architecture layer, users can hook the Dalvik/ART virtual machine to monitor behaviors of applications 
(Jingya et al., 2016). However, this method only applies to the services which implemented by Java, 
and it does not work on the C/C++ services.

By intercepting system calls at the kernel level (Jeong, 2014; Pan, 2014), users can monitor all 
of the system’s file access operations, and get more comprehensive behavior information. At the 
same time, the system modification and influence on performance of monitoring at kernel layer 
are far less costly than that at a framework layer. Therefore, we monitor and handle the application 
behaviors by intercepting system calls. First, we need to get the system call table (sys_call_table), 
and then modify the address of system calls that we want to intercept, making it point to our custom 
function. Therefore, we can implement the monitoring function for specific system calls. The main 
goal of our method is to protect privacy information of users, so we mainly modify the system calls 
associated with the file operation.

Data Encryption (DE)
The function of DE is to encrypt specific files in hidden user. We set a special folder in hidden user. 
When users store a file within the folder, the system will prompt the user to input a password. The 



International Journal of Digital Crime and Forensics
Volume 12 • Issue 3 • July-September 2020

20

system will encrypt all documents stored in this folder automatically. When applications access 
encrypted files, the system prompts for password. If the input is error for three times consecutively, 
the system locks the files for a predefined time during which any access is prohibited. If the password 
is correct, the system decrypts the file and save the plaintext file temporarily. After a certain time, 
system will delete the plaintext file.

We use the symmetric encryption algorithm AES-256 to encrypt files. The security of the 
symmetric encryption algorithm relies heavily on the safety of the key (Mane, 2015). Therefore, the 
system does not directly keep the key and only saves its hash value. We use the SHA-256 algorithm 
to calculate hash value.

User Switch
In order to achieve login and switch function between dual users, we modify the execution logic of 
Android system password authentication, making sure that user can enter different system by inputting 
corresponding password on login interface. Figure 2 shows the process of our design. When the user 

inputs a password on login interface, system will execute the function (checkPassword()), which 
provides a password authentication service. If the password matches the current user unsuccessfully, 
the function that we have modified will match with the other user. If the password matches successfully, 
the function will call the switch function (switchUser()), which provides switch service between 
different users. Meanwhile, in order to achieve seamless switch between dual users, we modify the 
user switch function. When user switches to another one, system will pop up a window to remind the 
user. We remove this window by modifying the program and avoid re-authentication after switching. 
The switch function by password only works for normal user and hidden user.

RESULT EVALUATION

We implement a prototype of the proposed method based on Android 6.0.1 source code and test it 
on Nexus 6P device. There are two default users after the initialization of the device. The user can 
enter the hidden user only after he has set up the normal user’s lock password. We set up a default 
password for hidden user during the initialization of the normal user’s lock password. Then on login 

Figure 2. Login process



International Journal of Digital Crime and Forensics
Volume 12 • Issue 3 • July-September 2020

21

interface, when user input the default password of hidden user, system will switch to hidden user 
after it confirms the password, and vice versa. In this way, the user can enter different system with 
different passwords. Users will not see the switching trace during the switch process between dual 
users. It is important to note that only users who know the default password can enter the hidden 
user. According to our program, users can only switch identity between normal user and hidden user 
through passwords. In addition, other original functions of the system remain unchanged. We also 
test WeChat, music, video and other apps, all of which can run successfully as normal.

Security
The goal of our method is to hide the identity and privacy information of hidden user. When users 
enter the normal user or other secondary users, they will not find the hidden user. Figure 3(a) is users 
list of the normal user (the primary user). As we can see, the normal user creates a secondary user 
called new user and the hidden user is not in the users list. As Figure 3(c) shows, users list of the 

secondary user also does not have the hidden user. Therefore, the user cannot switch to the hidden 
user. The normal user also cannot control the hidden user. Similarly, other place of the device also 
will not have the information of hidden user. Figure 4(a) shows the apps list of the normal user and (b) 
is apps list of the hidden user. The hidden user installed two new apps, which will not appear in the 
normal user and the secondary user. In addition, users also cannot find the files of the hidden user in 
the file system of the normal user and other users. Therefore, users cannot find and control the hidden 
user through functions provided by Android system if they do not know the password of the hidden 
user. To be clear, we set a complex password for the hidden user that consists of multiple symbols.

We hide the identity and privacy information of the hidden user in the normal user and other 
users. At the same time, users also cannot find the hidden user identity through adb command. In 
addition, the BM prevents other users from any form of operations related to hidden user. As Figure 

Figure 3. Users list



International Journal of Digital Crime and Forensics
Volume 12 • Issue 3 • July-September 2020

22

5(a) shows, in the common Android devices, users can see the process information of all users in the 
system by “ps” command or other tools. In Our system, users cannot see the hidden user’s information, 
as the Figure 5(b) shows. Users also cannot switch to the hidden user by “am” command and get 
information of the hidden user by “pm” command. Even if the detectors have root privileges, the “ls” 

Figure 4. Apps list

Figure 5. Result of ps command



International Journal of Digital Crime and Forensics
Volume 12 • Issue 3 • July-September 2020

23

command will not display the catalog information of the hidden user and the “adb pull” command 
will not obtain the data of the hidden user.

Most third-party tools on Android devices rely on functionality provided by Android system. For 
example, in Android forensics, the most common logical technique relies on the Content Providers 
built into the Android platform. AFLogical is an Android forensics logical technique. The AFLogical 
app takes advantage of the Content Provider architecture to gain access to data stored on the device. 
Similar to Commercial Android logical tools, the device must enable USB debugging for AFLogical to 
extract the data. The Content Providers currently supported by AFLogical include Brower Bookmarks, 
Brower Searches, Calendars, Calendar Events and Call Log Calls and so on (Hoog, 2011). When 
the user installs AFLogical to the normal user, the app can get the above information of the normal 
user only after he enables USB debugging successfully. However, due to our modifications to the 
Android system, the app will not find identity and privacy information of the hidden user without 
arousing any suspicion. Because we limit the root privileges, other tools with root privileges also 
cannot obtain the data of the hidden user. Our method can prevent the common logical techniques 
and avoid the leakage of data stored in the hidden user.

Performance
PCMark for Android introduces a fresh approach to benchmarking smartphones. It measures the 
performance and battery life of the devices as a complete unit rather than a set of isolated components 
(Futuremark, 2017). We run the PCMark on the Nexus 6P with stock Android and with our system on 
Android 6.0.1. As Figure 6 shows, the test result of performance is 3831 with stock Android and 3772 
with our system on the Nexus 6P. The performance impact of our system in PCMark is about 1.5%.

We measure the switching time between the normal user and the hidden user. The average of the 
tests is 82 ms. However, it consumes about 330 ms switch from privileged container to unprivileged 
container and 300 ms switch from unprivileged container to privileged container, in Huber et al. 

Figure 6. Result of PCMark workbench test



International Journal of Digital Crime and Forensics
Volume 12 • Issue 3 • July-September 2020

24

(2015) devise the secure architecture. The “Platinum” phones of Coolpad takes about 500 ms to 
switch between different systems, using fingerprint, as the Figure 7 shows. It will take more time 
using normal switching mode.

CONCLUSION

In this paper, we develop a user identity hiding method based on Android device to protect users’ 
privacy. Based on the multi-user mechanism of Android system, we construct a hidden user identity 
in Android devices. At the same time, by modifying the system logic of locking screen, we can 
quickly switch the identity of normal user and hidden user by entering two different passwords on 
login interface. Covered with a normal user identity, detectors cannot find the existence of hidden 
user identity by conventional detection methods. Then, the method can hide the information stored in 
the hidden user which help to protect users’ privacy. In order to fulfill the goal, we hide the specific 
information related to multi-user mechanism of Android system. We further propose the behavior 
monitoring and data encryption methods to protect users’ privacy. By intercepting system calls related 
to file operations, we achieve system monitoring on file operations. Moreover, the security of users’ 
privacy information is further improved by utilizing data encryption in our method. Experimental 
results show the effectiveness and convenience of our method that it not only achieves ideal hiding 
effect on user identity, but also implements quick switch without sacrificing the performance of system.

Figure 7. Switch time



International Journal of Digital Crime and Forensics
Volume 12 • Issue 3 • July-September 2020

25

REFERENCES

A better benchmark for Android devices. (2017). Futuremark. Retrieved from https://www.futuremark.com/
benchmarks/pcmark-android

Bugiel, S., Heuser, S., & Sadeghi, A. R. (2013, August). Flexible and Fine-grained Mandatory Access Control 
on Android for Diverse Security and Privacy Policies. Proceedings of the USENIX Security Symposium (pp. 
131-146). Academic Press.

Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B. G., Cox, L. P., & Sheth, A. N. et al. (2014). TaintDroid: 
An information-flow tracking system for realtime privacy monitoring on smartphones. ACM Transactions on 
Computer Systems, 32(2), 5. doi:10.1145/2619091

Enck, W., Ongtang, M., & McDaniel, P. (2009). Understanding android security. IEEE Security and Privacy, 
7(1), 50–57. doi:10.1109/MSP.2009.26

Gartner Says Worldwide Sales of Smartphones Grew 9 Percent in First Quarter of 2017. (2017, May 23). Gartner. 
Retrieved from http://www.gartner.com/newsroom/id/3725117

Gibler, C., Crussell, J., Erickson, J., & Chen, H. (2012). AndroidLeaks: Automatically Detecting Potential 
Privacy Leaks in Android Applications on a Large Scale. Trust, 12, 291–307.

Hoog, A. (2011). Android forensics: investigation, analysis and mobile security for Google Android. Elsevier. 
doi:10.1016/B978-1-59749-651-3.10001-9

Huber, M., Horsch, J., Velten, M., Weiss, M., & Wessel, S. (2015, November). A secure architecture for operating 
system-level virtualization on mobile devices. Proceedings of the International Conference on Information 
Security and Cryptology (pp. 430-450). Springer International Publishing.

Jeong, Y. S., Lee, H. T., Cho, S. J., Han, S., & Park, M. (2014, March). A kernel-based monitoring approach 
for analyzing malicious behavior on android. Proceedings of the 29th Annual ACM Symposium on Applied 
Computing (pp. 1737-1738). ACM. doi:10.1145/2554850.2559915

Jingya, Y., Senlin, L., & Shuai, Z. (2016). Research on Method of Android System Malware Behavior Monitoring 
Based on Multi-level and Cross-view Analysis. Netinfo Security, (7), 40-46.

Liang, H., Wu, D., Xu, J., & Ma, H. (2015, November). Survey on privacy protection of android devices. 
Proceedings of the 2015 IEEE 2nd International Conference on Cyber Security and Cloud Computing (CSCloud) 
(pp. 241-246). IEEE. doi:10.1109/CSCloud.2015.21

Mane, R. R. (2015). A Review on Cryptography Algorithms, Attacks and Encryption Tools. International Journal 
of Innovative Research in Computer and Communication Engineering, 3(9), 8509–8514.

Nauman, M., Khan, S., & Zhang, X. (2010, April). Apex: extending android permission model and enforcement 
with user-defined runtime constraints. Proceedings of the 5th ACM symposium on information, computer and 
communications security (pp. 328-332). ACM. doi:10.1145/1755688.1755732

Ongtang, M., McLaughlin, S., Enck, W., & McDaniel, P. (2012). Semantically rich application‐centric security 
in Android. Security and Communication Networks, 5(6), 658–673. doi:10.1002/sec.360

Pan, X., Zhongyang, Y., Xin, Z., Mao, B., & Huang, H. (2014, September). Defensor: Lightweight and efficient 
security-enhanced framework for Android. Proceedings of the 2014 IEEE 13th International Conference on 
Trust, Security and Privacy in Computing and Communications (TrustCom) (pp. 260-267). IEEE.

Shabtai, A., Fledel, Y., & Elovici, Y. (2010). Securing Android-powered mobile devices using SELinux. IEEE 
Security and Privacy, 8(3), 36–44. doi:10.1109/MSP.2009.144

Shen, F., Vishnubhotla, N., Todarka, C., Arora, M., Dhandapani, B., Lehner, E. J., & Ziarek, L. et al. (2014, 
September). Information flows as a permission mechanism. Proceedings of the 29th ACM/IEEE international 
conference on Automated software engineering (pp. 515-526). ACM.

Smalley, S., & Craig, R. (2013, February). Security Enhanced (SE) Android: Bringing Flexible MAC to Android. 
In NDSS (Vol. 310, pp. 20-38).

https://www.futuremark.com/benchmarks/pcmark-android
https://www.futuremark.com/benchmarks/pcmark-android
http://dx.doi.org/10.1145/2619091
http://dx.doi.org/10.1109/MSP.2009.26
http://www.gartner.com/newsroom/id/3725117
http://dx.doi.org/10.1016/B978-1-59749-651-3.10001-9
http://dx.doi.org/10.1145/2554850.2559915
http://dx.doi.org/10.1109/CSCloud.2015.21
http://dx.doi.org/10.1145/1755688.1755732
http://dx.doi.org/10.1002/sec.360
http://dx.doi.org/10.1109/MSP.2009.144


International Journal of Digital Crime and Forensics
Volume 12 • Issue 3 • July-September 2020

26

Yi Zhang is a master of computer technology in University of Chinese Academy of Sciences. She received her 
bachelor of information security in 2015 from Beijing Jiaotong University.

Supporting Multiple Users. (2017, June). AOSP. Retrieved from https://source.android.com/devices/tech/admin/
multi-user

Tam, K., Feizollah, A., Anuar, N. B., Salleh, R., & Cavallaro, L. (2017). The evolution of android malware and 
android analysis techniques. ACM Computing Surveys, 49(4), 76. doi:10.1145/3017427

The First Mobile Security Forum Coolpad Helps Secure Market. (2016, April 25). Techweb. Retrieved from 
http://www.techweb.com.cn/digitallife/2016-04-25/2321952.shtml

Wu, C., Zhou, Y., Patel, K., Liang, Z., & Jiang, X. (2014, February). AirBag: Boosting Smartphone Resistance 
to Malware Infection. In NDSS. Academic Press.

Xu, M., Song, C., Ji, Y., Shih, M. W., Lu, K., Zheng, C., & Lee, S. et al. (2016). Toward engineering a secure 
android ecosystem: A survey of existing techniques. ACM Computing Surveys, 49(2), 38. doi:10.1145/2963145

https://source.android.com/devices/tech/admin/multi-user
https://source.android.com/devices/tech/admin/multi-user
http://dx.doi.org/10.1145/3017427
http://www.techweb.com.cn/digitallife/2016-04-25/2321952.shtml
http://dx.doi.org/10.1145/2963145

