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ABSTRACT

Steganalysis technology judges whether there is secret information in the carrier by monitoring the 
abnormality of the carrier data, so the traditional information hiding technology has reached the 
bottleneck. Therefore, this paper proposed the coverless information hiding based on the improved 
training of Wasserstein GANs (WGAN-GP) model. The sender trains the WGAN-GP with a natural 
image and a secret image. The generated image and secret image are visually identical, and the 
parameters of generator are saved to form the codebook. The sender uploads the natural image (disguise 
image) to the cloud disk. The receiver downloads the camouflage image from the cloud disk and 
obtains the corresponding generator parameter in the codebook and inputs it to the generator. The 
generator outputs the same image for the secret image, which realized the same results as sending 
the secret image. The experimental results indicate that the scheme produces high image quality and 
good security.
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INTRODUCTION

Network communication and information technology have developed rapidly in the era of increasing 
net-workization. Cloud computing has provided enough space for individuals and enterprised to 
store multimedia data(Khan et al., 2018). Users can use the cloud to store and share data. There are 
two ways to prevent image information from leaking: encryption and information hiding (Guo et al., 
2011). Encryption technology of image is to ensure the security of images, which uses digital image 
matrix features to change pixels according to the transformation rules of images in space or transform 
domain to achieve encrypted values (Liu et al., 2013; Wang et al., 2005; Samidha & Agrawal, 2013; 
Hemalatha et al., 2013). However, it will cause image distortion and make the image into a form of 
noise or texture, which may cause suspicion of the attacker and increase the possibility of information 
leakage, loss and tampering (Dang & Chau, 2000). The significant information was embed into the 
carrier by modifying the carrier data (e.g. digital image, video, audio, etc.) to realize the hiding of 
the important information. The procedure of information hiding avoids the attention of attackers 
(Sakkara & Somashekar, 2012; Zhou & Chen, 2006; Zhang et al., 2003). Moreover, digital image 
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contains a number of information, and it is the most widely used as an ideal information hiding 
carrier and it is the most widely used as an ideal information hiding carrier (Liang&Wang, 2007; 
Qian&Xu, 2018; Qian & Zhang, 2016; Wang & Zhang, 2002; Ren&Sui, 2002). Technology of the 
classical image information hiding constitutes of spatial domain information hiding and transforms 
domain information hiding. The methods of the spatial domain information hiding include Least 
Significant Bit (LSB)(Chan & Cheng, 2004), Adaptive Least Significant Bit (Yang&Weng, 2008), 
Pixels Value Differencing (PVD)(Wu&Tsai, 2003), S-UNIWARD(Holub&Fridrich, 2014), and 
WOW (Holub & Fridrich, 2012) etc. The methods of the transform domain include Discrete Fourier 
Transform (Chaumont & Puech, 2006), Discrete Cosine Transform (Cox&Kilian, 1996), and Discrete 
Wavelet Transform (Lin&Horng, 2008) information hiding and so on. All of these methods embed 
secret information according to certain rules through modifying the vector, and consequentially 
leave modified marks on the vector. Therefore, the information hiding methods mentioned above 
are difficult to resist detection of various steganalysis methods. The principles of typical information 
hiding have been shown in Figure 1.

Objective to effectively resist the test of steganalysis methods, Zhou et al. used the new conception 
of coverless information hiding, and compared with the classic information hiding method, the 
coverless information hiding doesn’t need to encode the significant information into the carrier 
(Zhou&Cao, 2016). In (Zhou&Cao, 2016), the bag-of-words model is used to extract the visual 
keywords of the image. To indicate information that needs to be hidden, this realizes the hiding of 
the text information in the image. The method wouldn’t the modify the carrier. However, a large 
number of codebook needs to be built, which has large storage overhead and small hiding capacity. 
In (Zhang&Qian, 2016), the structural information hiding is proposed, but the object library that 
synthesizes the dense carrier needs to be segmented from a large number of normal image libraries, 

Figure 1. Typical model of information hiding
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so the method is inefficient. This paper proposed coverless information hiding based on WGAN-GP 
model. The scheme doesn’t change cover image and can be effectively prevented from being detected 
by the steganography analysis tool. The work mainly includes the following points.

1. 	 The WGAN-GP network was built and trained with disguise and secret images. As the model was 
stabilized, the parameters of generator were saved to build the parameters of generator codebook.

2. 	 The generator is only available on both sides. The camouflage image uploaded by the sender 
doesn’t contain any information of the secret image. Even if the attacker finds the disguise image, 
but does not know the generator network structure, the secret image can’t be cracked. 

3. 	 First, the receiver downloads the disguise image, then obtains the corresponding parameters of 
generator from the codebook, and then sends them to the generator to generate an image The 
method doesn’t modify the secret image, which enhances the security of communication.

RELATED WORKS

Generative Adversarial Network (GAN)
A GAN mainly consists of two unaided networks: the generative network (G) and the discriminative 
network (D). The G is just like the counterfeiting team, and the D is just like the police trying to 
detect counterfeit money. The two sides change their methods to each other until the counterfeit cannot 
be distinguished from the real one (Goodfellow et al., 2014). The structure of GAN is displayed in 
Figure 2:

In Figure 2 G gets a stochastic noise and outputs a picture through the noise, represented as
G z( ) , and D determines whether a picture is a true picture. Its input is true data, and then its output 
is 1, which means it is a real picture. If the input is a pseudo sample such asG z( ) , the output is 0, 
which means the input is a fake picture.

In the training process, the G and the D are continuously optimized, and the purpose of G is to 
generate a more realistic image to deceive D as much as possible. The target of D is which image is 
generated by G, and which one is a real image. The above process can be expressed as the following 
formula (1): The loss function formula of G of WGAN is (1) formula:

minmax ( , ) [log ( )] [log( log ( (
~ ( ) ~ ( )G D x p x z P z

V D G E D x E D G
data z

� � �1 zz)))]. 	 (1)

The fixed G optimizes D, and the function of the D is formula (2):

Figure 2. Structure of GAN
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max ( , ) [log( ( ))] [log( ( ( )))~ ( ) ( )D x p x x p zV D G E E D x E D G z
data z

� � �


1 ]] 	 (2)

The fixed D optimizes the G, and the G loss function is the formula (3):

min ( , ) [log( ( ( )))]
~ ( )G

V D G E D G z
x pz z

� �1 	 (3)

The true data was expressed by x , the noise of the input G was expressed by Z , and G Z� �  is 
the data generated by the G. p zz ( )was the noise variable distribution.D x� �  was the probability 
that the D judges whether the data is real. When the G is fixedly generated, the optimization of the 
D can be understood as follows: the input is from the real data, the D optimizes the network structure 
to output 1 itself, the input comes from the generated data, and the D optimizes the network structure 
to output 0; When the D is fixed, G optimizes its own network to output its own samples as much as 
possible with real data, and after the generated samples pass the discrimination of D, D outputs a 
high probability. However, the GAN has problems such as unstable model and difficult training. 
WGAN is an improvement after GAN. The main improvement is that the last layer of the D removes 
the sigmoid. The loss of the G and the D does not take the log . WGAN solves the phenomenon of 
instability GAN training and network collapse (Arjovsky et al., 2017).

The loss function of the D of WGAN is as following:

− −E f x E f xx p w x p wg r~ ~[ ( )] [ ( )] 	 (4)

The loss function formula of G of WGAN is as follows:

−E fw xx pg~ [ ( )] 	 (5)

pg  is the distribution of generators on dataset x. Up to now, the network structure of WGAN is 
still widely used, but there are still problems of training difficulties and slow convergence speed in 
the actual experiment process of WGAN, which are not obvious compared with traditional GAN 
(Zhou et al., 2016).

Improved Training of Wasserstein GANs (WGAN-GP)
WGAN fails to limit D to 1-lipschitz function, which is equivalent to the expression (6):

D Lipschitz xD x for all x� � � � �1 1|| ( ) || 	 (6)

For a differentiable function, the differential function is a 1-Lipschitz function if and only if the 
modulus of the gradient is less than or equal to 1 for any x . Add a condition to the target expression 
of discriminator, and the target expression of D is (7):

V G D E D x E D x D x
D x p x p x xdata G

( , ) max{ [ ( )] [ ( )] max( ,|| ( ) ||~ ~� � � ��� 0 ��1) }dx 	 (7)
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The added condition is that the modulo of all gradients does not satisfy the item less than or equal 
to 1, assigns a penalty parameter to these items, calculates the penalty value and accumulating all the 
penalty values. When the accumulated penalty is large enough, it will the dragged value eventually 
leads to such a D is no longer the most solvable.

V G D E D x E D x E
D x p x p x pdata G penalty

( , ) max{ [ ( )] [ ( )] [max( ,~ ~ ~� � � � 0 ||| ( ) || )]}� �xD x 1 	 (8)

The purpose of the entire WGAN is to gradually move closer and the area between and between 
must have a substantial impact on the discriminator. Therefore, the range of x  in the penalty term is 
reduced to ppenalty , which is the region between pG  and pdata , and the target expression is converted 
from (7) to (8).

V G D E D x E D x Ex p xD x p x p x penaltydata G
( , ) max{ [ ( )] [ ( )] [(||~� � �

 

� �� �D x( ) || ) ]}1 2 	 (9)

The closer the penalty is to 1, the faster the training, the less the penalty, the better the effect. 
The expression can be written as (9) (Gulrajani et al., 2017).

PROPOSED METHOD

Inspired by inputting WGAN-GP random noise to generate handwritten fonts, one image is used 
instead of random noise to generate another image. In this article, the camouflage image that has 
nothing to do with the secret image to the generator. G generates a visually identical image to a secret 
image. In the paper first put forward the coverless information hiding based on WGAN-GP model. 
The content includes the following parts.

Codebook Database
The camouflage image (img) and the secret image (IMG) were transmited to the G and D of the 
WGAN-GP model respectively. After the model is trained to be stable, the G’s parameters of the 
IMG image generated by the img image through the G are saved. In this experiment, 100,000 images 
were extracted from the ImageNet (Deng et al., 2009) dataset (the color images were changed to 
grayscale images and the size of these iamges were changed to 256 256× ), and the IMG image and 
img image were 50,000. Or say, the codebook constructs of G’s parameters that generate 50,000 
IMG’ images from 50,000 img images. The process of creating the codebook is shown in Figure 3.

Our WGAN-GP model
The WGAN-GP model is build, and the network parameters of G are initialized. At first, we construct 
the WGAN-GP model, then initialize the model parameters, and finally train the model with the img 
image and the IMG image. The sender inputs the img image and the IMG image into the WGAN-GP 
for training, and retains the parameters of G after the model is stable. The process of sender hiding 
is shown in Figure 4.

Firstly, the receiver downloads the img image from the cloud disk, and then obtains the parameters 
of the corresponding G from the codebook, and transmits the img image and the parameters of G to 
the G to generate an IMG’ image. And the process of the receiver reveals the IMG’ image is shown 
in Figure 5.
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The Process of Experiment 
The dispatcher and the receiptor agree in advance to use the same G (only the sender and the receiver 
have). The sender trains the WGAN-GP with img images and IMG images, and the parameters of G 
and img images are uploaded to the cloud disk after the model training is stabilized. First, the receiver 

Figure 3. Create the codebook
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passes the img image and the parameters of G to the G, and then produces an IMG’ image that is 
visually the same with the IMG image. The process of experiment is shown in Figure 6.

EXPERIMENTAL RESULTS AND ANALYSIS

Experimental Environment and Data Sets
Experimental environment is based on the GPU for NIVIDIA GeForce 1080, the version of tensorflow 
is 1.11.0, and the application is Python 3.5. 100,000 images were extracted from the ImageNet dataset 
for experiments, including 50,000 images of the img image and the IMG image, and then randomly 
extracted 1000 images for verification. There are 65536 neurons, 64 neurons and one neuron in 
input layer, in hidden layer and output layer, respectively of WGAN-GP discriminant network. In the 
generative network of WGAN-GP model, there are 65536 neurons, 64 neurons and 65536 neurons 
in the input layer, in the hidden layer and in the output layer, respectively. 

Image Quality
Disguised image is regarded as an img image, and the secrect image is regarded as an IMG image. 
As the number of training increases, as can be seen from Figure 7, a noise image is generated when 

Figure 4. The WGAN-GP model proposed in the paper

Figure 5. The G model proposed in the paper
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the number of iterations is 1000, and the image contour can be seen when 5000-10000 times. The 
generated image gradually approaches the IMG image A at 50000 times, and if the number of trainings 
is enough, the generated image can replace the secret image. The Figure 7 shows the result of the 
experment.

The receiver inputs the IMG image and the relevant to parameters of the G into G, and the 
generated IMG’ image changes very slightly compared with the original IMG image, which is difficult 
to distinguish visually. In Figure 8, the first line is the img image, the secondly line is the generated 
IMG’ image, and the third line is the original IMG image.

The IMG’ images are visually identical to the IMG image in Figure 8. Moreover visually verifying 
the four pairs of images exemplified in Figure 8, and 1000 pairs of images were randomly extracted 
from the ImageNet data set, the histogram analysis of the IMG’ and the IMG image is displayed in 
Figure 9 (a, b, c, d, e, f, g, h).

Peak Signal to Noise Ratio (PSNR) is an objective standard for evaluating images. It is used 
to measure the quality of processed images (Hore & Ziou, 2010). The PSNR value is usually used 
to measure the satisfaction of a certain processing program. It is the logarithmic value of the mean 
square error between the original image and the processed image (the maximum value of the signal 
is squared, which is the number of bits per sample). Its unit is dB, and the larger the value, the less 
distortion. The formula for calculating PSNR is as follows: 

PSNR
MSE

n

=
−

10
2 1

10
log ( ) 	 (10)

Figure 6. The process of experiment

Figure 7. The process of generating IMG’ images as the number of trainings increases
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Structural Similarity Index (SSIM) is an index to measure the similarity between two images 
(Bruzzone et al., 2017). Among the two images used in ssim, one is unprocessed image and the other 
is processed image. The calculation formula of SSIM is as follows:

SSIM x y
c c

c c
x y xy

x y x y

( , )
( )( )

( )( )
=

+ +

+ + + +

2 2
1 2

2 2
1

2 2
2

µ µ σ

µ µ σ σ
	 (11)

Where µ
x

 represents the average of x , µ
y

 is the average of y , σ
x
2  is the square of x , and the 

variance of σ
y
2  is y , where σ

xy
 is the covariance of x  and y . c k L

1 1
2= ( )  and c k L

2 2
= ( )2  are 

constants used to maintain stability. L  is the dynamic range of pixel values.k
1
=0.01 ,k

2
=0.01 . The 

value the range of SSIM is (0, 1). The value of SSIM is equal to 1 when the two images are the same 
(Table 1). 

From the sensory effect and error histogram of several a-h images above, the IMG’ image is 
very similar to the IMG image. The PSNR and SSIM values of several images further prove the 
feasibility of the method.

SECURITY

The img image is transferred to G, the IMG’ image is generated, and parameters of the retained 
generator are transmitted to the G to form different generators for G1, G2...and Gn. The stable 
generators trained by the img images and the IMG images in Figure 8 are G1, G2, G3 and G4, 

Figure 8. The visual effect of the IMG’ image generated after the model is stabilized
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respectively, and the generated images are the IMG’ images in Figure 10, respectively. Figure 10 shows 
that only the img image and its corresponding G can generate image that are visually identical to the 
IMG image, otherwise only the noise image can be obtained. Only the sender and the receiver have 
the G. In other words, the attacker can get the IMG’ image that is visually same as the secret image 
only by obtaining the img image and the corresponding G, which verifies the security of the method.

Figure 9. Four examples on the ImageNet dataset

Table 1. Comparison of PSNR(DB) and SSIM values of IMG and IMG’image

Compare Image PSNR(db) SSIM

(a)IMG and (b)IMG’ 35.0611 0.9362

(c)IMG and (d)IMG’ 34.7566 0.9584

(e)IMG and (f)IMG’ 33.7891 0.9429

(g)IMG and (h)IMG’ 35.1429 0.9457
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CONCLUSION

The method uses the WGAN-GP network for information hiding. The receiver only needs to download 
the disguise image, obtains the corresponding parameters of generator from the codebook data, 
and passes the disguise image and the parameters of generator to the generator to output an image, 
could realize the same results as sending the secret image. The results of the experimental show that 
the method has a well effect on the quality of the image and safety of the communication. But the 
disadvantage is that each disguise image corresponds to a generation model, and the shortcomings 
of this model will be improved in combination with the encryption algorithm in the next work.

Figure 10. Security verification



International Journal of Digital Crime and Forensics
Volume 13 • Issue 4 • July-August 2021

68

ACKNOWLEDGMENT

The paper was supported by the National Natural Science Foundation of China (No. 61672354), the 
Key Programs for Science and Technology Development of Henan Province (No. 172102210335), 
and Key Scientific Research Projects in Henan Province (No.16A520058, 19B510005, 18A510014) 
we would like to thank the anonymous reviewers for their valuable suggestions.



International Journal of Digital Crime and Forensics
Volume 13 • Issue 4 • July-August 2021

69

REFERENCES

Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein gan. arXiv preprint arXiv:1701.07875.

Chan, C. K., & Cheng, L. M. (2004). Hiding data in images by simple LSB substitution. Pattern Recognition, 
37(3), 469–474. doi:10.1016/j.patcog.2003.08.007

Chaumont, M., & Puech, W. (2006, September). A DCT-based data-hiding method to embed the color information 
in a JPEG grey level image. In 2006 14th European Signal Processing Conference (pp. 1-5). IEEE.

Cox, I. J., Kilian, J., Leighton, T., & Shamoon, T. (1996, September). Secure spread spectrum watermarking 
for images, audio and video. In Proceedings of 3rd IEEE International Conference on Image Processing (Vol. 
3, pp. 243-246). IEEE. doi:10.1109/ICIP.1996.560429

Dang, P. P., & Chau, P. M., (2000). Image encryption for secure internet multimedia applications. IEEE 
Transactions on Consumer Electronics, 46(3).

Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Li, F. F. (2009, June). Imagenet: A large-scale hierarchical 
image database. In 2009 IEEE conference on computer vision and pattern recognition (pp. 248-255). IEEE. 
doi:10.1109/CVPR.2009.5206848

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., & Bengio, Y. (2014). Generative 
adversarial nets. Advances in Neural Information Processing Systems.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. C. (2017). Improved training of wasserstein 
gans. Advances in Neural Information Processing Systems, 5767–5777.

Guo, Q., Liu, Z., & Liucora, S. (2011). Image watermarking algorithm based on fractional fourier transform and 
random phase encoding. Optics Communications, 284(16-17), 3918–3923. doi:10.1016/j.optcom.2011.04.006

Hemalatha, S., Acharya, U. D., & Renuka, A. (2013). A Secure Color Image Steganography In Transform 
Domain. International Journal on Cryptography & Information Security, 3(1).

Holub, V., & Fridrich, J. (2012, December). Designing steganographic distortion using directional filters. In 2012 
IEEE International workshop on information forensics and security (WIFS) (pp. 234-239). IEEE. doi:10.1109/
WIFS.2012.6412655

Holub, V., Fridrich, J., & Denemark, T. (2014). Universal distortion function for steganography in an arbitrary 
domain. EURASIP Journal on Information Security, 2014(1), 1. doi:10.1186/1687-417X-2014-1

Hore, A., & Ziou, D. (2010, August). Image quality metrics: PSNR vs. SSIM. In 2010 20th International 
Conference on Pattern Recognition (pp. 2366-2369). IEEE.

Khan, K., Shaheen, M., & Wang, Y. (2018). Using Sparse Matrices to Prevent Information Leakage in Cloud 
Computing. In 2018 IEEE 6th International Conference on Future Internet of Things and Cloud (FiCloud). 
IEEE Computer Society. doi:10.1109/FiCloud.2018.00070

Liang, G. L., Wang, S. Z., & Zhang, X. P. (2007). Steganography in binary image by checking data-carrying 
eligibility of boundary pixels. Journal of Shanghai University, 11(3), 272–277. doi:10.1007/s11741-007-0317-2

Lin, W. H., Horng, S. J., Kao, T. W., Fan, P., Lee, C. L., & Pan, Y. (2008). An efficient watermarking method 
based on significant difference of wavelet coefficient quantization. IEEE Transactions on Multimedia, 10(5), 
746–757. doi:10.1109/TMM.2008.922795

Liu, Z., Li, S., Liu, W., Liu, W., & Liu, S. (2013). Image hiding scheme by use of rotating squared sub-image 
in the gyrator transform domains. Optics & Laser Technology, 45, 45. doi:10.1016/j.optlastec.2012.07.004

Qian, Z., Xu, H., Luo, X., & Zhang, X. (2018). New framework of reversible data hiding in encrypted jpeg 
bitstreams. IEEE Transactions on Circuits and Systems for Video Technology, 1–1.

Qian, Z., & Zhang, X. (2016). Reversible data hiding in encrypted images with distributed source encoding. IEEE 
Transactions on Circuits and Systems for Video Technology, 26(4), 636–646. doi:10.1109/TCSVT.2015.2418611

Ren, Z. B., Sui, Y. X., & Yang, Y. H., & Yang, H. J. (2002). Study of the MSB Information-hiding Technique 
in a Carrier Image. Optics and Precision Engineering, 10(2), 182–187.

http://dx.doi.org/10.1016/j.patcog.2003.08.007
http://dx.doi.org/10.1109/ICIP.1996.560429
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1016/j.optcom.2011.04.006
http://dx.doi.org/10.1109/WIFS.2012.6412655
http://dx.doi.org/10.1109/WIFS.2012.6412655
http://dx.doi.org/10.1186/1687-417X-2014-1
http://dx.doi.org/10.1109/FiCloud.2018.00070
http://dx.doi.org/10.1007/s11741-007-0317-2
http://dx.doi.org/10.1109/TMM.2008.922795
http://dx.doi.org/10.1016/j.optlastec.2012.07.004
http://dx.doi.org/10.1109/TCSVT.2015.2418611


International Journal of Digital Crime and Forensics
Volume 13 • Issue 4 • July-August 2021

70

Xintao Duan received the Ph.D. degree from Shanghai University, Shanghai, China, in 2011. He is currently an 
Associate Professor with the College of Computer and Information Engineering, Henan Normal University. His 
major research interests include image processing, deep learning, and information security.

Baoxia Li received the B.S. degree from Henan Normal University, China, in 2017. She is currently pursuing the 
M.S. degree with the College of Computer and Information Engineering, Henan Normal University. Her research 
interests include image processing, deep learning, and image steganography.

Daidou Guo received the B.S. degree from the Henan Institute of Science and Technology, China, in 2017. He 
is currently pursuing the M.S. degree with the College of Computer and Information Engineering, Henan Normal 
University. His research interest includes coverless information hiding.

Kai Jia received the B.S. degree from Pingdingshan University, China, in 2016. He is currently pursuing the M.S. 
degree with the College of Computer and Information Engineering, Henan Normal University. His research interests 
include image processing, deep learning, and image steganography.

En Zhang received the Ph.D. degree from the Beijing University of Technology. He held a Postdoctoral position 
with the State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of 
Sciences, Beijing, China. He is currently an Associate Professor with the College of Computer and Information 
Engineering, Henan Normal University, China. His research interests include outsourcing computation, secure 
multiparty computation, and rational cryptography.

Chuan Qin received the B.S. degree in electronic engineering and the M.S. degree in signal and information 
processing from the Hefei University of Technology, Anhui, China, in 2002 and 2005, respectively, and the Ph.D. 
degree in signal and information processing from Shanghai University, Shanghai, China, in 2008. Since 2008, he 
has been with the Faculty of the School of Optical-Electrical and Computer Engineering, University of Shanghai 
for Science and Technology, where he is currently a Professor. He was with Feng Chia University, Taiwan, as a 
Postdoctoral Researcher, from 2010 to 2012. His research interests include image processing and multimedia 
security. He has published more than 110 papers in these research areas.

Sakkara, S., & Somashekar, K. (2012). Integer wavelet based secret data hiding by selecting variable bit length. 
International Journal of Computers and Applications, 48(19), 7–11. doi:10.5120/7454-0458

Samidha, D., & Agrawal, D. (2013). Random image steganography in spatial domain. Academic Press.

Wang, S. Z., Zhang, X. P., & Zhang, K. W. (2002). Steganographic technique capable of withstanding RQP 
analysis. Journal of Shanghai University, 6(4), 273–277. doi:10.1007/s11741-002-0049-5

Wang, Y., Zheng, D. L., Ju, L., Zheng, D. L., & Wei, Y. G. (2005). The spatial-domain encryption of digital 
images based on high-dimension chaotic system. In IEEE Conference on Cybernetics & Intelligent Systems. IEEE.

Wu, D. C., & Tsai, W. H. (2003). A steganographic method for images by pixel-value differencing. Pattern 
Recognition Letters, 24(9-10), 1613–1626. doi:10.1016/S0167-8655(02)00402-6

Yang, C. H., Weng, C. Y., Wang, S. J., & Sun, H. M. (2008). Adaptive data hiding in edge areas of images 
with spatial LSB domain systems. IEEE Transactions on Information Forensics and Security, 3(3), 488–497. 
doi:10.1109/TIFS.2008.926097

Ye, Y., Shan, J., Bruzzone, L., & Shen, L. (2017). Robust registration of multimodal remote sensing images based 
on structural similarity. IEEE Transactions on Geoscience and Remote Sensing, 55(5), 2941–2958. doi:10.1109/
TGRS.2017.2656380

Zhang, X. P., Qian, Z. X., & Li, S. (2016). Prospect of digital steganography research. Journal of Applied 
Sciences (Faisalabad), 34(5), 475–489.

Zhang, G. C., Wang, R. D., & Zhang, Y. J. (2003). Digital image information hiding technology based on iterative 
blending. Chinese Journal of Computers.

Zhou, X., & Chen, J. G. (2006). Information hiding based on double-random phase encoding technology. Journal 
of Modern Optics, 53(12), 1777–1783. doi:10.1080/09500340600624189

Zhou, Z. L., Cao, Y., & Sun, X. M. (2016). Coverless information hiding based on bag-of-words model of image. 
Journal of Applied Sciences (Faisalabad), 34(5), 527–536.

http://dx.doi.org/10.5120/7454-0458
http://dx.doi.org/10.1007/s11741-002-0049-5
http://dx.doi.org/10.1016/S0167-8655(02)00402-6
http://dx.doi.org/10.1109/TIFS.2008.926097
http://dx.doi.org/10.1109/TGRS.2017.2656380
http://dx.doi.org/10.1109/TGRS.2017.2656380
http://dx.doi.org/10.1080/09500340600624189

