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ABSTRACT  

Our aim is to provide a solution for multidimensional data warehouse's reduction based on 

analysts’ needs which will specify aggregated schema applicable over a period of time as well as 

retain only useful data for decision support. Firstly, we describe a conceptual modeling for 

multidimensional data warehouse. A multidimensional data warehouse’s schema is composed of 

a set of states. Each state is defined as a star schema composed of one fact and its related 

dimensions. The derivation between states is carried out through combination of reduction 

operators. Secondly, we present a meta-model which allows managing different states of 

multidimensional data warehouse. The definition of reduced and unreduced multidimensional 

data warehouse schema can be carried out by instantiating the meta-model. Finally, we describe 

our experimental assessments and discuss their results. Evaluating our solution implies executing 

different queries in various contexts: unreduced single fact table, unreduced relational star 

schema, reduced star schema and reduced snowflake schema. We show that queries are more 

efficiently calculated within a reduced star schema.  

Keywords: multidimensional design, data reduction, experimental assessment 

INTRODUCTION 

Nowadays, decision support systems are mostly based on Multidimensional Data Warehouse 

(MDW). A MDW schema is based on facts (analysis subjects) and dimensions (analysis axis). A 

fact includes analysis indicators while dimensions contain analysis parameters. The analysis 

parameters are organized according to their hierarchical level in order to classify the parameters 

from the lowest granularity to the highest granularity. 

In a MDW, data is stored permanently and new data is steadily added. Hence, a MDW stores a 

huge volume of data in which the analyst may well get lost during her/his analyses. On the other 

hand, the relevance of MDW data decreases with time: detailed information is generally 

considered relevant for recent data (Skyt, Jensen, & Pedersen, 2008), while more aggregated 

information can usually satisfy the needs of analysis with older data. For instance, a decision-

maker may have interest in analyzing published news by subthemes for the last four years, but 



this level of granularity may be proved inappropriate if the analysis was carried out over an older 

period because most of today’s subthemes did not exist before: it is impossible to carry out 

analyses over published news by subthemes but by a higher granularity level which stays stable 

over time, such as news’ theme.  

Facing large volumes of both relevant and irrelevant data, our aim is to increase the 

performance of query treatment and especially to facilitate the analysts’ task by providing only 

pertinent data over time. Our aim is to provide a multidimensional analysis framework adapted 

to analysts' needs, allowing them to remove the temporal granularity levels which are irrelevant 

for their analyses. As detailed data value decreases with time, we implement selective deletions 

at low levels of granularity. This reduction is achieved mainly through progressive data 

aggregation: older data is synthesized.  

This paper is composed of the following sections: Section 2 describes a state of the art of data 

reduction. Section 3 defines our conceptual model of multidimensional data based on reductions. 

Section 4 presents a meta-model for managing MDW composed of states. Section 5 provides 

experimental assessments to evaluate our solution in various implementation environments. 

RELATED WORK 

Reducing data allows us both to decrease the quantity of irrelevant data in decision making and 

to increase future analysis quality (Udo & Afolabi, 2011). In the context of decision support, data 

reduction is a technique originally used in the field of data mining (Okun & Priisalu, 2007; Udo 

& Afolabi, 2011). 

In the DW context, (Garcia-Molina, Labio, & Yang, 1998) were the first to define solutions 

for data deletion. More precisely, they study data expiration in materialized views so that they 

are not affected and can be maintained after updates with the help of a set of standard predefined 

views. 

In the multidimensional area, (Chen et al., 2002) propose an architecture allowing the 

integration of data streams into a MDW and reduce the size. The size reducing is predefined and 

automatically executed by partially aggregating the data cube; it makes sure the detailed 

information is only available during a time interval. Nevertheless, this work only focuses on the 

fact table. (Skyt et al., 2008) presents a technique for progressive data aggregation of a fact. This 

study intends to specify data aggregation criteria of a fact due to higher levels of dimensions. 

The authors also provide techniques to query reduced multidimensional objects. As mentioned in 

(Iftikhar & Pedersen, 2011), this work is highly theoretical but it fails to provide us a concrete 

example of implementation strategy. In (Iftikhar & Pedersen, 2011), a gradual data aggregation 

solution based on conception, implementation and evaluation is proposed. This solution is based 

on a table containing different temporal granularities: second, minute, hour, month and year. 

This previous work only focuses on the fact table. (Iftikhar & Pedersen, 2010, 2011) use a 

temporal table for gradual data reduction. None of the previous work takes into account analysts’ 

needs. Our goal is more ambitious as it aims to study data reduction of the complete 

multidimensional schema that depends only on the users’ needs. We intend to provide a 

consistent analysis environment and thus facilitate the analyst’s task by limiting the analysis to 

semantically consistent data.  

  



CONCEPTUAL MODELING  

We aim at specifying aggregated schemata over time in order to keep only useful data for 

decision support. All dimensions and facts may be reduced to different granularity levels 

according to analyst’s needs. The useless information is deleted from MDW in order to provide 

only relevant data for analyses. 

Case Study 

The case study shows a multidimensional schema progression that fulfills the analyst's needs. A 

MDW fed by RSS streams allows decision-makers to analyze the number of published news 

from her/his favorite websites. A decision-maker expresses her/his needs as followed: (a) during 

the last four years, news analysis is carried out with reference to lowest levels of granularity: 

subtheme, city and publication date; (b) in the previous period from 2010 to 2000, analyses are 

summarized according to news’ theme, country mentioned in the news and month of publication, 

because no daily analysis referring to subtheme and city is required; (c) before 2000, only 

aggregated information about published news by quarter and by continent makes sense. 

The following three figures represent the conceptual multidimensional schemas fulfilling 

user’s needs. Each schema is based on the graphic notation called star schema introduced in (M. 

Golfarelli, Maio, & Rizzi, 1998). A star schema is based on a subject of analysis (fact) related to 

different dimensions. Each fact contains of one or more indicators. For instance, in figure 1 the 

fact named “FNews” is composed of two indicators: number of published news (NBN) and a set 

of key words appeared in news (KeyWords). A dimension models an analysis axis; it reflects 

information according to which subjects of analysis are to be dealt with. For instance, the 

“FNews” fact is connected to 3 dimensions: DTheme, DGeography and DTimes. Dimension 

attributes (also called parameters or levels) are organized according to one or more hierarchies. 

Hierarchies represent a particular vision (perspective) of a dimension.  

 

Figure 1.  MDW schema valid from 2010 to 2014 

. 
  



Figure 2.  MDW schema valid from 2000 to 2010 

 

Figure 3.  MDW schema valid from 1990 

to 2000 

 

 

Concepts 

We define a reduced MDW as a set of star schemas called states. Each state is valid for a certain 

period and is modeled with a star schema composed of one fact and several dimensions. The 

current state is the valid state of the MDW at present. Past states correspond to a succession of 

reduced states over time. Each past state is defined from a previous one with a reduction 

function.  

Let us define N such as N  = {n
i
,..., n

k
} is a finite set of names, N ¹Æ.   

Definition 1. A MDW is defined by S = (n
S
 ; E ; Map) where 

· n
S
ÎN  is the name of the MDW 

· E = {E1 ;… ; En} is a set of states composing the MDW 

· Map: E ® E | Map(Ek) = Ek+1 is a reduction function defining the state named Ek+1 

obtained by the reduction of Ek. 

Let us define F and D such as F = {F1,..., Fn} is a finite set of facts, n ³ 1 and D = {D1,..., Dm} 

is a finite set of dimensions, m ³ 2. 

Definition 2. A state is a star schema defined for a temporal period such as Ei = (Fi ; Di ; Ti) 

where 

· FiÎF is a fact representing a subject of analysis 

· Di = {DTIMES ; D1 ;… ; Dm}ÍD  is a set of dimensions associated to the fact with 

necessarily a temporal dimension denoted DTIMES 

· Ti = [  ;  [ is a temporal interval defined on the DTIMES dimension and associated 

to the state Ei. 

To define Ti, we adopt a linear and discrete time model approaching time in granular way 

through time observation units (Wang, Bettini, Brodsky, & Jajodia, 1997; Ravat & Teste, 2000). 

A temporal grain is an integer relative to a time unit; we adopt the standard time units 



manipulated through functions: Year, Quarter, Month, Day... For instance, Year (1990) defines 

the instant “1990” for the year time unit.  

An instant is a temporal grain. We note Tnow the current instant which is characterized by its 

dynamic nature, ie. Tnow changes constantly as time goes by. A time interval is defined by a 

couple of instants noted “tstart” and “tend”. These instants can be fixed (temporal grains) or 

dynamic (defined with the instant “Tnow”). 

Example. The following figure represents three states of our case study. It illustrates the 

principle of states derived by the reduction. This MDW is defined as follows: E = {E1 ; E2 ; E3} 

with Map = { (E1, E2) ; (E2, E3) } where  

· E1 = (FNEWS ;{DTHEME ; DTIMES ; DGEOGRAPHY} ; [Year(Tnow)-4 ; Year(Tnow)[) 

· E2 = (FNEWS ;{DTHEME ; DTIMES ; DGEOGRAPHY} ; [Year(Tnow)-14 ; Year(Tnow)-4[) 

· E3 = (FNEWS ; {DTIMES ; DTHEME} ; [Year(1990); Year(Tnow)-14[). 

 

Figure 4.  Reduction principle of multidimensional schemas 

 

The current state denoted E1 is associated to the validity interval [Year(tnow)-4; 

Year(Tnow)[ corresponding to [2010; 2014[. The instances of this state correspond to news 

published between 2010 and 2014 only, according to the DTIMES dimension. In the same way, the 

state named E2 stores data related to news published between 2000 and 2010, whereas the state 

denoted E3 stores data related to news published prior to 2000. 

In figure 4, Year(1990) is a fixed instant representing the date when the database was created. 

In this figure, we can also find time-variant intervals (moving over time) defined by the 

following instants: Year(Tnow)-14, Year(Tnow)-4 and Year(Tnow). So, next year, Year(Tnow) = 

2015, Year(Tnow)-4 = 2011 and Year(Tnow)-14 = 2001. At each change of year, the states denoted 

E1, E2 and E3 will be instantly updated. 

Definition 3. A fact, denoted Fi, "iÎ[1..n], is defined by (n
Fi

, M
Fi

) where 

· n
Fi
ÎN  is the fact name 

· M
Fi

 = {m1,..., mpi} is a set of measures or indicators.  

Definition 4. A dimension, denoted Di, "iÎ[1..m], is defined by (n
Di

, A
Di

, H
Di

), where 

· n
Di
ÎN is the dimension name 



· A
Di

 = { ,..., } is the set of the attributes of the dimension 

· H
Di

 = { ,..., } is a set of hierarchies.  

Hierarchies organize the attributes of a dimension, from the finest graduation (root parameter, 

IDDi) to the most general graduation (extremity parameter, AllDi). Thus, a hierarchy defines the 

valid navigation paths on an analysis axis. 

Definition 5. A hierarchy, denoted Hj (abusive notation of , "iÎ[1..m], "jÎ[1..hi]) is 

defined by (n
Hj

, P
Hj

, ≺
Hj

, Weak
Hj

), where 

· n
Hj
ÎN is the hierarchy name; 

· P
Hj

 = { ,..., } is a set of attributes called parameters, P
Hj 
Í A

Di
; 

· ≺Hj
 = {(p

Hj
x, p

Hj
y) | p

Hj
x Î P

Hj
 Ù p

Hj
y Î P

Hj
 } is an antisymmetric and transitive binary 

relation between parameters. Remember that the antisymmetry means that (p
Hj

k1 ≺
Hj

 

p
Hj

k2) Ù (p
Hj

k2 ≺
Hj

 p
Hj

k1) Þ p
Hj

k1 = p
Hj

k2 while the transitivity means that (p
Hj

k1 ≺
Hj

 p
Hj

k2) 

Ù (p
Hj

k2 ≺
Hj

 p
Hj

k3) Þ p
Hj

k1 ≺
Hj

 p
Hj

k3. 

· Weak
Hj

 : P
Hj

 ®  is an application that associates to each parameter a set of 

dimension attributes, called weak attributes (2
N
 represents the power set of N).  

Example. The E3 state of the figure 3 is composed of one fact and two dimensions and it is 

valid from 1990 to 2000. The fact table named FNews contains a measure notated NBN. The 

dimension DGeography contains the hierarchy HGeo on which the parameters are organized 

according to their granularity level: from the lowest level Continent to the highest level ALL_G. 

The other dimension is named DTIMES, it is graduated by the attributes Quarter, Year and ALL_T 

on the hierarchy HTimes. 

The formal representation of state E3 is as follows:  

E3 = (FNEWS ; { DGEOGRAPHY ; DTIMES } ; [t1990 ;t2000[) where 

· FNEWS = (FNews; { NBN }) 

· DGEOGRAPHY = (DGEOGRAPHY; {Continent, ALL_G }; {HGeo}) 

· DTIMES = (DTIMES; {Quarter, Year, ALL_T}; {HTime}). 

We take the hierarchy HTimes as an example to illustrate the abstract representation for a 

hierarchy. 

HTimes = (n
HTimes

, P
HTimes

, ≺
HTimes

, Weak
HTimes

) where 

· n
HTimes

 = HTimes 

· P
HTimes

 = {Quarter, Year, ALL_T} 

· ≺HTimes
 = {(Quarter, Year); (Year, ALL_T)} 

· WeakHTimes = Æ. 

iD
a1

i

i

D

ra

iD
H1

jH
p1

j

j

H

qp

jH
iD
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Reduction Operators 

Deriving the reduced schema denoted Ek+1 from a schema denoted Ek is performed through the 

composition of reduction operators. We define the set of these operators as O = {RollUp
reduce

; 

Drop
reduce

; Add
reduce

; Slice
reduce

} as the minimum core of elementary operators to define a new 

state. Two categories of operators are available: 

· Schema reduction operators (cf. Table 1) allow to delete attributes (parameters, weak 

attributes and measures), and 

· Instance reduction operators (cf. Table 2) reducing value domains of the dimension 

without modifying its schema. 

The RollUp
reduce

 operator provides a new state in which the specified dimension is reduced by 

removing all the attributes under the parameter that is specified in the operator. If the specified 

parameter is an extremity parameter like , the dimension is completely removed in the 

reduced state; if the specified parameter is at the lowest granularity level like , no parameter 

will be removed from the dimension.  

The Drop
reduce

 operator provides a new state in which the fact is reduced by the deletion of a 

specified measure. On the contrary , the Add
reduce

 operator permits to add a new measure in the 

fact of a new state. 

 

Table 1. Reduction operators on schemata. 

Operators 

RollUp
reduce

(Ek ; Drollup ; prollup ; Tk+1) = Ek+1 

Inputs Ek = (Fk ; Dk ; Tk) : initial state; 

Drollup Î Dk : dimension dedicated to a reduction; 

prollup Î A
Drollup

 : reduction parameter of the Drollup dimension; 

Tk+1 = [  ;  [ is the temporal interval of validation for state Ek+1. 

Output Ek+1 = (Fk+1 ; Dk+1 ; Tk+1) reduced state such as 

Fk+1 = Fk ; 

Dk+1 = Dk \ { Drollup } È { Dnew }
 (*)

 with Dnew = (n
Dnew

 ; A
Dnew

 ; H
Dnew

) 

n
Dnew

 = n
Dold

 

A
Dnew

 = { axÎA
Drollup

 | ax = prollup Ú "HjÎH
Drollup

, prollup ≺
Hj

 ax } 

H
Dnew

 = { HxÎH
Drollup

 | n
Hx

 = n
Hj

 Ù P
Hx

 = { pyÎP
Hj

 | py = prollup Ú prollup ≺
Hj

 py } Ù 

≺
Hx

 = { (p
Hj

x1, p
Hj

x2)Î≺
Hj

 | p
Hj

x1 = prollup Ú prollup ≺
Hj

 p
Hj

x1 } Ù Weak
Hx

 : = { (px1, 

A
Hx

x1)ÎWeak
Hj

 | pyÎP
Hj

 }. 

Tk+1 = [  ;  [ Ù  = -1 

Drop
reduce

(Ek ; mdrop ; Tk+1) = Ek+1 



Inputs Ek = (Fk ; Dk ; Tk) : initial state ; 

mdrop Î Mk is a measure of Fk. 

Tk+1 = [  ;  [ is the temporal interval of validation for state Ek+1. 

Output Ek+1 = (Fk+1 ; Dk+1 ; Tk+1) reduced state such as 

Fk+1 = (n
Fk

, M
Fk

 \ { mdrop }) ; 

Dk+1 = Dk.  

Tk+1 = [  ;  [ Ù  = -1 

Add
reduce

(Ek ; madd ; Tk+1) = Ek+1 

Inputs Ek = (Fk ; Dk ; Tk) : initial state ; 

madd Î Mk is a measure not presented in Fk. 

Tk+1 = [  ;  [  is the temporal interval of validation for state Ek+1. 

Output Ek+1 = (Fk+1 ; Dk+1 ; Tk+1) reduced state such as 

Fk+1 = (n
Fk

, M
Fk

 Ù { madd }) ; 

Dk+1 = Dk.  

Tk+1 = [  ;  [ Ù  = -1 

(*)
 If A

Dnew
 = { } then Dk+1 = Dk \ { Drollup } 

The Slice
reduce

 operator provides a reduced state in which the instances of the specified 

dimension denoted DSlice is reduced. The dimension instances that satisfy the predicate denoted 

predslice are kept in the new state. 

 

Table 2. Reduction operators on instances. 

Slice
reduce

(Ek ; Dslice ; predslice ; Tk+1) = Ek+1 

Inputs Ek = (Fk ; Dk ; Tk) : initial state ; 

Dslice Î Dk : dimension dedicated to a reduction; 

predslice : selection predicate on a domain denoted dom(Dslice) of Dslice. 

Tk+1 = [  ;  [ is the temporal interval of validation for state Ek+1. 

Output Ek+1 = (Fk+1 ; Dk+1 ; Tk+1) reduced state such as 

Fk+1 = Fk ; 

Dk+1 = Dk with dom(Dslice) = { viÎdom(Dslice) | predslice(vi) = TRUE }. 

Tk+1 = [  ;  [ Ù  = -1 

Example. In the previous example, we defined two reduced states. Each of them is defined by 

a reduction function. These functions are defined bellow. The first Map function, composed of 



three RollUp
reduce

 operators and one Drop
reduce

 operator, permits to define the E2 state. The 

second Map function composed of two RollUp
reduce

 operators permits to define the E3 state. 

From 2000 to 2010, the analyst would like keep only number of published news (NBN) as 

measure and summarize his analyses according to news’ theme, country and publication month. 

So firstly we delete the undesired measure KEYWORDS; then we remove all the attributes under 

the parameter PTHEME; next the parameters under PCOUNTRY on dimension DGEOGRAPHY are also 

removed from the schema; at last we reduce the granularity level of the dimension DTIMES until to 

the level of parameter PMONTH. We obtain a combination of reduction operators permitting to get 

the E2 state as followed:   

· RollUp
reduce 

(RollUp
reduce 

(RollUp
reduce 

(Drop
reduce 

(E1; KeyWords; [Year(Tnow)-14 ; 

Year(tTow)-4[); DTHEME ; PTHEME ; [Year(Tnow)-14 ; Year(Tnow)-4[) ; DGEOGRAPHY ; 

PCOUNTRY ; [Year(Tnow)-14 ; Year(tTow)-4[);DTIMES ; PMONTH ; [Year(Tnow)-14 ; Year(tTow)-

4 [)= E2 ; 

For the period before 2000, the analyst want to keep only some aggregated information about 

number of published news by quarter and by continent. Therefore first of all we remove the 

whole dimension DTHEME by specifying a removal of granularity until to the extremity parameter 

ALL_TH; then the dimension DGEOGRAPHY is summarized until to the level of parameter 

PCONTINENT, while for the other dimension DTIMES we remove all the granularities lower than 

PQUARTER. We can apply the following reduction function in order to obtain the E3 state:  

· RollUp
reduce 

(RollUp
reduce 

(RollUp
reduce 

(E2; DTHEME ; ALL_TH ; [Year(1990) ; Year(Tnow)-

14[) ; DGEOGRAPHY ; PCONTINENT ; [Year(1990) ; Year(Tnow)-14[); DTIMES ; PQUARTER ; 

[Year(1990) ; Year(Tnow)-14[) = E3. 

IMPLEMENTATION IN R-OLAP ENVIRONMENT  

Based on the conceptual presentation of MDW and its definition, we implement our solution in a 

relational framework. Firstly we present our implementation architecture in order to visualize the 

relationships between implementation components. Then we define a conceptual modeling of 

metamodel permitting to manage MDW composed of states. At last we implement and 

instantiate our metamodel in DBMS Oracle to obtain a relational modeling.  

Architecture of implementation 

We have defined a metamodel which aims to concretizing and implementing the concepts 

previously defined. Our metamodel allows decision-makers to manage and query MDW. As 

showed in figure 5, both reduced and unreduced MDW can be defined through instantiation of 

metamodel. Reduced MDW is composed of several states, while unreduced MDW is defined as a 

particular case of MDW composed of only one state. 

  



Figure 5.  Implementation architecture 

 

Conceptual modeling of metamodel 

The graphical notation of our conceptual metamodel below is based on static class diagram that 

contains only static elements (the attributes) without dynamic components (the methods).  

 

Figure 6.  UML class diagram of the metamodel  

 
 



Table 3. Data dictionary of the metamodel 

Code Description Type Constraints 

datee ending date of a star schema  DATE  

dates starting date of a star schema   DATE  

id identifier of a meta-element  INTEGER >0 

ida identifier of a attribute INTEGER >0 

idd identifier of a dimension  INTEGER >0 

idf identifier of a fact INTEGER >0 

idh identifier of a hierarchy  INTEGER >0 

idm identifier of a measure INTEGER >0 

name  name of a meta-element  VARCHAR  

pos 
position of a parameter or a weak 

attribute on a hierarchy of a dimension  
INTEGER 

>0 

typa type of attribute at a level  VARCHAR 
'Parameter', 'Weak 

Attribute' 
 

As we can see from the figure 6, the metamodel embodies all the concepts discussed above. 

Firstly, as all of the elements possess a name regardless of its type, the name of element along 

with its identifier are centralized and managed by the class notated Meta_Element. This class is 

the base of our metamodel, all the rest are considered as specialized classes of Meta_Element.  

Secondly the notion of state Ei = (Fi ; Di ; Ti)  is represented by the association class 

Meta_star. This association class possesses a temporal interval between a start date (DateS) and 

an end date (DateE).  

Thirdly, fact and the dimension are embodied respectively by the classes Meta_Fact and 

Meta_Dimension. Each of these classes possesses a recursive association denoted Derive 

pointing to itself. This link permits to connect a derived fact or dimension in a state to the 

original fact or dimension, in this way we implement the reduction function permitting to define 

a derivate state obtained after the reduction of original MDW. 

Fourthly, by definition a fact contains a set of measures while a measure belongs to one and 

only one fact. This rule is expressed by the relationship notated Contain between the class 

Meta_mesure and the class Meta_fact. 

Last but not the least, the attributes are organized on hierarchies of dimension according to 

their granularity level: from the finest graduation (root parameter, IDDi) to the most general 

graduation on hierarchy (ALLDi). The ternary association in our metamodel permits us to 

materialize the relationships among dimension, hierarchy, level and attributes. What’s more, the 

antisymmetric and transitive binary relation between attributes on a hierarchy is represented by 

the attributes Pos and Typa in the association class Meta_Level. The position of an attribute at a 

level shows its granularity level in comparison to the others, while the type shows if the attribute 

belong to parameter or weak attribute on hierarchy. 

Relational modeling of metamodel 

We implement the conceptual metamodel in DBMS Oracle and then instantiate it with the MDW 

proposed in our case study. To better illustrate modeling principles, the following figures and 

explanations take data instances related to the state E1. In order to distinguish state E1 with the 



original MDW before reduction, during model implementation we add “_E1” as suffix to the 

name of dimensions and fact in state E1, while the name in original MDW before reduction is not 

suffixed.  

First of all, as we mentioned in the previous section, the class Meta_Element includes all the 

elements in a MDW. Since each element possessed a unique identifier and a name, these two 

common attributes are centralized and managed by Meta_Element (cf. the following figure). 

 

Figure 7.  Content of Meta_element  

 

Then, the concept of state is implemented with the help of association Meta_star which 

connects a dimension to a fact with a defined period of validation. As we can see from the figure 

below, the fact FNEWS_E1 is connected with three dimensions, namely DTIMES_E1, 

DGEOGRAPHY_E1 and DTHEME_E1. The validation period between fact and dimension 

defined by a beginning and an ending date corresponds to the temporal interval associated to the 

state E1.  

 

Figure 8.  Content of Meta_star 

 

Next, the association denoted Derive is translated to a foreign key named IDP (shorted for ID-

Parent) in the relational model. As we can see from the following two figures, the foreign key 

IDP permits to associate respectively the dimensions and the fact in state E1 to the parent 

dimensions and parent fact in the original MDW before reduction. For instance, son dimension 

DGEOGRAPHIY_E1 is associated to parent dimension named DGEOGRAPHY. In this way the 

reduction function denoted Map(Ek) = Ek+1 in a MDW is embodied in our metamodel.  



Figure 9.  Content of Meta_Dimension 

 

Figure 10.  Content of Meta_Fact 

 

 

Moreover, as a fact contains one or several measures and a measure belongs to one and only 

on fact, a foreign key IDF (shorted for ID-Fact) pointed to Meta_Fact is added in 

Meta_Measure after translating the conceptual model to the relational model (cf. figure 11).  

 

Figure 11.  Content of Meta_Measure 

 
 

At last, the following figure shows the content of association Meta_Level which connects an 

attribute to a hierarchy on a dimension. As we can see from this figure, the attributes on 

dimension DTIEMS_E1 are organized on two hierarchies: HTIMES and HWEEK. Each hierarchy 

organizes the attributes according to their granularity level. For instance, hierarchy HTIMES 

starts from attribute IDDATE at position 1 and ends up with extremity attribute ALL_T at position 

5. By definition, a parameter may be associated with one or several descriptive attributes (weak 

attributes) on the same level. That explains why two attributes of different types MONTH 

(parameter) and MONTHALPH (weak attribute) share the same position on hierarchy HTIMES. 

 

Figure 12.  Content of Meta_Level 

 
  



EXPERIMENTAL ASSESSMENTS 

Open issues 

In the previous sections, we have defined a conceptual modeling supporting data reduction. By 

implementing our conceptual model in R-OLAP environment along with a generic meta-model, 

we have shown the feasibility of complete data reduction in MDW. However, the benefits of data 

reduction for the query execution efficiency still need to be proved through experimental 

assessments.  

Objective 

Since one objective of MDW is to accelerate data restitution in the OLAP context (Matteo 

Golfarelli & Rizzi, 2009), the execution time is undoubtedly a primordial indicator to evaluate 

the query execution efficiency. Therefore, our experimental assessments aim at studying if data 

reduction can improve query execution time, and if it does, to what extent the query execution 

time can be improved in reduced MDW. The query execution time can be presented in intrinsic 

format (e.g. elapsed time of each query) or in ratio (e.g. relative gain of execution time). As we 

aim at measuring relative amelioration or degradation levels of query execution times in reduced 

MDW, intrinsic indicators are of little use. Thus, the ratio relative gain of execution time is used 

as the first indicator of our experimental assessments.  

Meanwhile, we also compare the execution cost for each query computed in unreduced and 

reduced MDW. The execution cost is a unitless index provided by EXPLAIN PLAN command of 

Oracle 11g. It is closely related to the query execution time: the higher the execution cost, the 

more important the theoretical execution time becomes in a given system. Yet, there is still a 

different between these two indicators: the execution time is less sensitive than execution cost 

when it comes to some relatively small datasets. For instance, accessing to a dataset with 100 

tuples and another dataset with 5000 tuples could be simultaneous with today’s highly powerful 

machines. As a result the execution time of queries concerning these two datasets will both be 1 

which is the minimum value returned by EXPLAIN PLAN command. But the execution cost for 

accessing to the dataset with 5000 tuples will be far more important than to the dataset with 100 

tuples, because the CPU and I/O costs for computing more tuples are higher than computing less 

tuples. Therefore, the execution cost may be in proportion to execution time for queries computed 

in relatively large datasets. But for small datasets, it is entirely possible that we obtain the same 

execution time with very different execution costs. Due to this reason, we use execution cost as a 

complementary indicator. 

Many factors should be taken into account while we compare the execution time and the 

execution cost.  

· The first objective is to study if queries are more efficiently calculated within unreduced 

than reduced MDW. To do so we use two types of MDW: unreduced MDW and reduced 

MDW. 

· The second objective is to study if the scale factor of MDW brings amelioration or 

degradation on query execution efficiency. We vary the number of tuples within non-

temporal analysis axis. By consequence, different scale factors are defined for each type 

of implementation mentioned above. 



· The third objective aims at understanding influences on query execution efficiency 

brought about by different implementation strategies. Thus, for each type of MDW we 

define two different implementations: 

o  For unreduced R-OLAP databases, an implementation based on one single table 

and another implementation based on a fact table and different dimension tables 

are proposed. 

o For reduced R-OLAP databases, a denormalized R-OLAP implementation and a 

normalized R-OLAP implementation are proposed. 

· The fourth objective consists in finding out if queries of different types can all benefit 

from data reduction. To this end, we propose 2 types of queries widely used: 

o Queries manipulating all the data of reduced database states (containing only joins 

and no selection criteria on non-temporal dimensions).  

o Queries manipulating a part of data in certain states (containing conditions 

restrictions on the data). 

· The fifth objective lies in finding out if different aggregation and regrouping functions 

improve or decrease the query execution efficiency in unreduced and reduced MDW. We 

include five frequently used aggregation functions, namely SUM, MAX, MIN, COUNT 

and AVG. Meanwhile, influences of classical regrouping function (GROUP BY) and its 

extensions (GROUP BY ROLLUP and GROUP BY CUBE) are also taken into account 

during our experimental assessments. 

Protocol  

The experimental assessment consists in comparing some key indicators of query execution 

efficiency while applying different types of queries to different types of R-OLAP databases in a 

given implementation framework. The test protocol details our implementation framework, the 

choice of key indicators, the data collection for unreduced and reduced MDW and the list of 

queries to be executed.  

Implementation framework  

We carry out the experimental assessments with DBMS Oracle 11g in the following framework: 

OS: Red Hat Enterprise Linux Server release 5.9 (Tikanga), 2 x Intel(R) Xeon(R) E5410  @ 

2.33GHz with 4 cores , 5GB of RAM and SAS 10K as disks. 

Even though our framework does not provide the best DBMS tuning nowadays, it will not 

affect the results of experimental assessments neither. That is because our objective is not to see 

how fast a query can be computed in a particular machine: it aims to find out if different 

implementations of MDW with and without reduction have influence on query execution 

efficiency; and if it does, to what extent the efficiency of query execution can be improved 

within a certain implementation under a given implementation framework. In order to reduce the 

influence of irrelevant variables, different databases are implemented with the same DBMS 

(Oracle 11g) and the same DBMS tuning (OS, CPU, RAM, disk drive). To further minimize the 

influence brought by the implementation framework, we carry out several times the same 

experimental assessments and then calculate the average of experimental results.  



Data Collection 

There are several benchmarks designed for MDW nowadays, such as TPC-DS
1
. Based on a 

single predefined MDW, these benchmarks execute a set of queries in order to measure the 

performance of machine that hosts a MDW (Darmont, Bentayeb, & Boussaid, 2007). As part of 

our experimentations whose aim is to demonstrate the efficiency of reduced multidimensional 

schema rather than the capacity of a particular machine, a set of multidimensional schema would 

be more appropriate. Since the existing benchmarks do not permit to evaluate the impact of 

different modeling solutions to a given system (Darmont et al., 2007), we have decided to 

propose our own experiment environment by using synthetic data which turn out to be more 

adequate to our demonstration.  

In order to make experimental assessments, we implement two types of R-OLAP databases 

with the Oracle DBMS and each type has two different implementations.  

Unreduced R-OLAP databases 

The first type of MDW corresponds to databases without reduction. Its first implementation is 

called Global Star, consists in an unreduced R-OLAP implementation based on 4 tables 

(DTheme, Dgeography, Dtimes and Fnews). The second implementation is called Global Table 

in which we merge the three analysis axis (dimensions Dtheme, Dgeography and Dtimes) with 

the fact table (Fnews); consequently this implementation is composed of a single table that 

encompasses both fact and dimensions. 

The population of analysis axes was done as follows:  

· The dimension Dtimes contains all dates from 01/01/1990 to 31/12/2013. 

· The two other dimensions contain random data defined by generation of synthetic data. In 

order to avoid the bias, allocation of random data was made so that father attribute of a 

hierarchy does not have the same number of sons while respecting the integrity 

constraints of strict hierarchies: any son attribute of a hierarchy has a single father 

attribute (cf. Table 4). 

We have defined various scale factors of non-reduced databases by ranging the tuple numbers 

of the dimensions Dtheme and Dgeography from 10 to 40 tuples. 

· |Dgeography| = 10, 20, 30, 40 tuples 

· |Dtheme| = 10, 20, 30, 40 tuples 

· |Dtime| = 8401 tuples (from 01/01/1990 to 31/12/2013) 

· |Fnews| = | Dgeography | x | Dtheme | x | Dtime | = 840 100 to 13 441 600 tuples. 

The following table describes different values associated to the attributes of non-temporal 

dimension: 

  

                                                           
1 http://www.tpc.org/tpcds/ 



Table 4. Implementation details of the dimensions in Global Star and Global Table. 
|Dgeography| x |Dtheme| Contents of the dimension Dgeography Contents of the dimension Dtheme 

10x10 2 Cities, 2 Countries , 1 Continent 2 Subthemes, 2 Themes 

20x20 4 Cities, 3 Countries, 2 Continent 4 Subthemes, 3 Themes 

30x30 6 Cities, 4 Countries, 2 Continent 6 Subthemes, 4 Themes 

40x40 8 Cities, 5 Countries, 3 Continent 8 Subthemes, 5 Themes 

Even though the dimensions Dtheme, Dgeography and Dtimes are integrated in fact table of 

Global Table, the implementation details of MDW Global Table are the same as MDW Global 

Star. 

Reduced R-OLAP databases 

The second type of MDW corresponds to reduced databases. This type consists of three states 

according to the case study presented in this article (cf. figure 4). We have defined two 

implementations of reduced databases: a denormalized implementation and a normalized 

implementation (cf figure 13). The operations permitting to get the different states of MDW were 

implemented with the help of triggers in Oracle DBMS. 

 

Figure 13.  R-OLAP schemata of reduced MDW 

 
(a) Denormalized R-OLAP star schema (b) Normalized R-OLAP snowflake schema 

  



Query lists 

We have defined two types of SQL queries manipulating different tables and different states. 

Table 5 contains queries with only joins, while table 6 shows queries containing both joins and 

restriction predicates on non-temporal dimensions.  

The following queries are divided into 3 subgroups: the first subgroup contains queries from 

Q1 to Q8 that manipulate 1, 2 or 3 dimensions in one state; the second subgroup contains queries 

from Q9 to Q12 manipulating 1, 2 or 3 dimensions in two states; the last subgroup contains 

queries Q13 and Q14. The last two queries manipulate only one or two dimensions in three states 

because it is impossible to define a query manipulating 3 dimensions in 3 states, by the reason 

that the state denoted E3 is only composed of 2 dimensions. 

 

Table 5. Queries without restriction predicates on non-temporal dimensions. 
 Queries (Aggregation function SUM) States Dimension 

Q1 Number of news for the last three years  E1 DTime 

Q2 Number of filtered and un-filtered news in 2008 E2 DTime 

Q3 Number of news before 2000 E3 DTime 

Q4 Number of news by city from 2010 to 2012 E1 DTime, DGeography 

Q5 Number of news by theme in each quarter from 2000 to 2005 E2 DTime, DTheme 

Q6 Number of news by continent in each year before 2000 E3 DTime, DGeography 

Q7 Number of news by city, country, subtheme and month in 

2012 

E1 DTime, DGeography, 

 DTheme 

Q8 Number of news by theme, country and continent from 2000 to 

2005 

E2 DTime, DGeography, 

 DTheme 

Q9 Monthly number of news since 2000 E1; E2 DTime 

Q10 Annual number of news per theme from 2002 to 2012 E1; E2 DTime, DTheme 

Q11 Number of news per year and continent from 1990 to 2009 E2; E3 DTime, DGeography 

Q12 Number of news by country, continent and theme from 2002 to 

2012 

E1; E2 DTime, DGeography, 

 DTheme 

Q13 Number of news per year E1; E2; E3 DTime 

Q14 Number of news per year by continent E1; E2; E3 DTime, DGeography, 

Three subgroups are proposed for queries with restriction predicates: the first subgroup 

includes queries from Q1 to Q3 that manipulate one dimension in one state; the second subgroup 

contains queries from Q4 to Q6 manipulating two dimension in two states; the third subgroup 

concerns queries from Q7 to Q9 manipulating one dimension in three states.  

 

Table 6. Queries with restriction predicates on non-temporal dimensions. 
 Queries (Aggregation function SUM) States Dimension 

Q1 Number of news about the subtheme X from 2010 to 2012 E1 DTheme 

Q2 Number of news about the theme X from 2010 to 2012 E1 DTheme 

Q3 Number of news about all the themes from 2010 to 2012 E1 DTheme 

Q4 Number of news per month about the theme X in the country Y 

since 2000 

E1, E2 DGeography, DTheme 

Q5 Number of news per month about the theme X in the continent Y 

since 2000 

E1, E2 DGeography, DTheme 

Q6 Number of news per month about all the themes in the continent Y 

since 2000 

E1, E2 DGeography, DTheme 

Q7 Number of news per year on the continent X E1; E2; E3 DGeography 

Q8 Number of news per year on the continent Y (the news of continent E1; E2; E3 DGeography 



X is three times more than those of continent Y) 

Q9 Number of news per year on all the continents E1; E2; E3 DGeography 

Results and discussions 

Influence of data reduction 

The first objective is to find out if reduced MDW can improve query execution efficiency. We 

execute queries without restriction predicates in 10x10 MDW. When it comes to a relatively 

small dataset, the execution cost is a more sensitive indicator than the execution time indicator. 

Therefore, in this section we compare only the execution cost of each query computed in the 

10x10 MDW (the least voluminous MDW). 

 

Figure 14.  Execution cost of queries without restriction predicate in 10x10MDW  

 

As we can see from the figure 14, regardless of different implementation strategies, the query 

execution cost in unreduced MDW (the column with stripe and the gray column in the figures 

above) is more important than in reduced MDW (the white and black columns in the figures 

above). We can safely conclude that data reduction does help improving query execution 

efficiency. However, the problem of querying performance is not so obvious in a small dataset, 

like the previously used 10x10 MDW. In the next section we increase the volume of MDW to 

see influence of MDW’s scale factor on query execution efficiency.  

Influence of MDW’s scale factor  

We vary the size of the MDW from 10x10 to 40x40. We execute the same 14 queries containing 

only joins and without restriction predicate. The following figures show the execution cost of 

each query computed in 20x20, 30x30 and 40x40 MDW. 
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Figure 15.  Execution cost in 20x20, 30x30 and 40x40MDW 

 

 

 

As we can see from the figure 15, queries are always more efficiently computed in reduced 

MDW than unreduced MDW. Within each version of MDW, the average gain of cost is between 

90.86% in the MDW 10x10 and 91.68% in the MDW 40x40.  
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In the figures 16 and 17, we analyze the cardinalities of query results in order to verify if the 

cardinalities of results is related to query execution cost. Even though we have obtained diverse 

result cardinalities (cf. ordinate axis), the proportion stays similar from one MDW version to 

another.  

 

Figure 16.  Query results’ cardinalities in 10x10 MDW  

 
Figure 17.  Query results’ cardinalities in 40x40 MDW 

 

In the figure 18, we can see whatever the database volume, the execution time gain is 

significant: over 97% (cf. red curve with diamond). We should also notice that in spite of the 

important augmentation of volume of fact tables (cf. smooth green curve) which leads to a slight 

augmentation of query results’ cardinalities (cf. blue curve with dot), the average gains stay 

practically stable along with the cardinality augmentation: the average gain increases from 

96.91% for the size 10 X 10 to 97.09% in size 40 X 40. Thus we can conclude that the more the 

database volume increases, the more the execution time gain in a reduced MDW is important.  
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Figure 18.  Average gain of execution time for the 4 versions of MDW 

 

Influence of implementation strategy 

Figure 19 shows the average execution time of queries computed in each implementation of 

unreduced and reduced MDW. As we can see from this figure, regardless of the MDW versions, 

the lowest execution times are always performed in reduced MDW called Reduced Star: MDW’s 

content is reduced and the table number is limited. The highest average execution time for 

unreduced MDW ranges from 3432 (Global Table database 10 x 10) to 52941 (Global Table 

database 40 x40) and this average execution time has increased by 1443%. As for Reduced Star 

MDW, the average execution time ranges from 106 to 1554, and it has increased by 1366%, 

lower than 77% compared to the unreduced Global Table MDW.  

 

Figure 19.  Average execution time for the different versions of MDW 

 

Comparison between Reduced Star and Global Table 

Now we focus our study on the most voluminous version of MDW (40x40) in order to analyze 

the relative gain of execution time between Reduced Star and Global Table (cf. figure 20). As is 
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shown by the linear line which estimates the gain of execution time, we can notice that the more 

tables the query manipulates, the more important the gain of execution time becomes, all the 

while staying proportionally similar.  However, by refining our study, we can find the more 

states the query manipulates, the less important the time earning becomes but it still stays in the 

same order of magnitude: 

· For the queries manipulating a single state (Q1 to Q8), the gains varies from 95.12% (Q7) 

to 99.99% (Q3) with an average of 98.10%; 

· For the queries manipulating two states (Q9 to Q12), the gains varies from 94.90% (Q10) 

to 99.96% (Q11) with an average of 96.61%; 

· For the queries manipulating three states (Q13, Q14), the gains varies from 94.93% (Q7) 

to 94.94% (Q3) with an average of 94.935%. 

 

Figure 20.  Relative gain of execution time in percentage between Reduced Star and Global 

Table in 40x40 MDW 

 

Comparison between Reduced Star and Reduced Snowflake 

Within a relatively small scale of database volume (i.e. from 10x10 to 40x40 in figures 14 and 

15), the difference of execution time between two implementations of reduced MDW (Reduced 

Star and Reduced Snowflake) is quite low. But when we increase MDW’s volume until to 60x60, 

we find the gain of execution time in Reduced Star becomes more significant: about 56.2% (cf. 

figure 21). Notice that the only difference between these two implementations is in Reduced Star 

each dimension forms a unique table while in Reduced Snowflake dimensions are normalized so 

that each hierarchical level forms an independent table. The normalization in Reduced Snowflake 

regroups data in high granularity levels into new tables in order to avoid information 

redundancy. By consequence the space required for data storage is reduced in Reduced 

Snowflake, but the number of joins needed between tables while executing a given query 

becomes greater. Performing joins is less time-efficient when the database research certain scale 

factors. That explains why the difference of execution time between Reduced Star and Reduced 
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Snowflake becomes more and more important with the augmentation of MDW’s volume (from 

7% in 10x10 to 56% in 60x60).  

 

Figure 21.  Relative gain of execution time in percentage between Reduced Star and Reduced 

Snowflake 

 

Influence of query’s type 

In this section we aim at analyzing the impact of restriction criteria in queries. We focus only on 

40 x 40 MDW which is the most voluminous. The queries of this second experimental 

assessment are defined in the table 6. 

The following figures show execution costs and cardinalities of results for the four 

implementations. Contrary to our expectations, the gains between unreduced and reduced MDW 

remain in the same proportions whether we apply restriction or not. Indeed, this gain ranges from 

95.11% (Q9) to 98.95% (Q4) with an average of 95.87% while the average gain of the queries 

without restriction predicates was over 97%. Moreover, whatever the scope of the restriction 

predicates (primary key, attribute containing different values or not), the standard deviation is 

not very high (0.1). 

 

Figure 22.  Execution cost of 9 queries containing restriction predicates 
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Figure 23.  Cardinalities of 9 queries containing restriction predicates 

 

In addition, even if execution costs of Q7 and Q8 are similar, we can notice that the cardinality 

of the result of Q7 is three times higher than the cardinality of the result of Q8. This is because 

the DBMS should review all the tuples of the tables before returning the query result. So even if 

some strict selection criteria exclude lots of data from query result, the execution costs in 

reduced and unreduced MDW remain proportionally the same and reduced MDW are always 

more efficient than unreduced MDW.  

Influence of aggregation and regrouping functions 

This section consists in discussing if different aggregation and regrouping functions have 

influences on the improvement of query execution efficiency in reduced MDW.  

Aggregation functions  

The aggregation function we use in the previous experimental assessments is SUM. To see if 

aggregation functions have an influence on experiment results, we replace SUM with other 

commonly used aggregation functions in OLAP analysis, such as MAX, MIN, COUNT, AVG, and 

we rerun the entire experimentations. At last we get exactly the same execution cost, execution 

time and cardinalities regardless of what aggregation function we apply to the queries. Thus we 

can conclude that the common aggregation functions have no influence on query execution 

efficiency. For simplicity, we apply only the SUM function to the next experimental assessments 

which evaluate the impacts of different regrouping functions.  

Regrouping functions 

All 14 queries contain the classical SQL regrouping clause, namely GROUP BY. However, for 

certain queries, extensions of classical SQL regrouping clause are also applicable. For instance, 

Q12 can sustain the GROUP BY ROLLUP clause if subtotals of published news by city and 

continent are required. In the same way, extensions like GROUP BY ROLLUP and GROUP BY 

CUBE are both applicable to Q7 and Q8 to calculate subtotals for all possible combinations.  
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In order to study the impacts of different regrouping functions, we apply GROUP BY 

ROLLUP and/or GROUP BY CUBE to queries containing more than one analysis axis, namely 

Q5, Q6, Q7, Q8, Q10, Q11, Q12 and Q14. Before carrying out these tests, our intuition was the 

execution time between these three aggregation modes would be quite different and thus modify 

the gains of execution cost. Nevertheless, the execution cost and time of the same query are 

exactly the same regardless of different regrouping functions. The average gain is always in the 

same order of magnitude 94.86%.  

CONCLUSION 

This paper provides a contribution in the context of MDW. Our objective is to specify 

aggregated schema over time in order to retain only the data useful for decision support 

according to the needs of users. Firstly, we define a conceptual model that specifies MDW 

schemata composed of states varying over time. Each state consists of a star schema and is 

defined with a mapping function, itself defined with reduction operators based on an extension of 

classical OLAP operators adapted to the reduction context. We defined a minimum core of 

elementary operators { RollUp
reduce 

; Drop
reduce 

; Add
reduce;

 Slice
reduce

 } in order to carry out not 

only schema reduction operations but also instances reduction operations.  

Secondly, an implementation in R-OLAP environment is described. The basis of our 

implementation is the metamodel allowing the management of reduced and unreduced MDW. 

The metamodel is presented both at conceptual and relational levels. By instantiating the 

metamodel, we can obtain reduced MDW composed of a set of states and unreduced traditional 

MDW. 

Finally, we defined experimental assessments. Evaluating our solution consists in executing 

different queries in various environments: R-OLAP schema without reduction, single fact table 

schema without reduction as well as star and snowflake schemata with reductions. We use 

multidimensional databases with different sizes; the fact table size ranges from 840,100 to 

13,441,600 tuples. Whatever the data warehouse volume, the execution time gain between 

unreduced and reduced databases is up to 97%. Moreover, the more the data warehouse volume 

increases, the more the execution cost and time gain is important. These gains remain in the same 

proportions when we apply restriction predicates or not on the queries, neither the cardinality of 

the result affects this gain. Finally, the execution cost is independent of the regrouping SQL 

clauses. 

In the future, we intend to extend our conceptual proposal in order to integrate other operators 

in the definition of the reduction function. We also intend to propose a graphical tool for 

querying a MDW with a set of states and presenting the analysis’ result through a graphical 

interface. This extension requires the definition of algebra along with a graphical language 

suitable for reduced data model. At last we wish to apply the principles of reduction to a reel data 

case study of analytic domain such as banking or insurance.  
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