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ABSTRACT

A novel statistical maximal information coefficient (MIC) that can detect the nonlinear relationships 
in large data sets was proposed by Reshef et al. (2011), with emphasis being placed on the equitability, 
which is a very important concept in data exploration. In this paper, an improved algorithm for 
approximation of the MIC (IAMIC) is proposed for the development of the equitability. Based on 
quadratic optimization processes, the IAMIC can search for a more optimal partition on the y-axis 
rather than use that which was obtained simply through the equipartition of the y-axis, to enable 
it to come closer to the true value of the MIC. It has been proved that the IAMIC can search for a 
local optimal value while using a lower number of iterations. It has also been shown that the IAMIC 
provides higher accuracy and a more acceptable run-time, based on both a mathematical proof and 
the results of simulations.

Keywords
Accuracy, Big Data, Equitability, MIC, Quadratic Optimization

1. INTRODUCTION

With the large amounts of data that are being generated in various fields, and particularly in the 
biological and geological information field (Shekar and Xiong, 2007; Ester et al., 2000; Meyer-
Schoenberger and Cukier, 2013; Surhone et al., 2010; Wang and Yuan, 2014) information field, which 
is growing exponentially (Hastie et al., 2009; Howe and Rhee, 2008), there is a critical need to extract 
the meaning from the large datasets that are obtained (Frankel and Reid, 2008; United Nations Global 
Pulse, 2012; McKinsey Global Institute, 2011; Rajaraman and Ullman, 2011; Vatsavai et al., 2012). 
However, the real-world data is always dirty, which prevents researchers to reveal the real meaning 
behind the data (Hernandez and Stolfo, 1998; Kim et al., 2003; Dasu, 2003; Smets, 1996). Reshef 
et al. (2011) proposed a new measure to identify relationships between two variable pairs, called the 
maximal information coefficient (MIC), and it is an interesting approach that can be used to discover 
relationships between variables in large data sets because of two properties: generality and equitability. 
Generality of MIC means it can detect more interesting relationships, including functional or not, not 
limited to certain functional types as Pearson correlation coefficient or Spearman rank correlation 
coefficienct, etc. Furthermore, Equitability ensures MIC to explore the datasets impartially, with no 
inclinations to specific relation types.

MIC is a powerful tool for mining the correlation between random variables, which quantify the 
relationship to the range from 0 to 1. The closer to 1 means closer relationship, oppositely closer to 
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0 says more likely two independent variables. However, the algorithm used by Reshef et al. (2011) 
to compute the MIC can only obtain an approximation. In this case, the accuracy of the algorithm 
will directly affect similarity judgement. The experiment shows that with the improvement of the 
accuracy of MIC, the rank of pairs according to MIC value changes, and especially some pairs 
of variables rank much higher. In other words, the accuracy of MIC has a great influence on the 
measure of dependence for each pair. Because some pairs that are strongly related are more likely 
be overlooked results from low accuracy of MIC, so as MIC come closer to its true value, we can 
detect more valuable associations.

Moreover, the standard approximation algorithm to compute the MIC resulted in some deviations 
from the equitability property. Therefore, the need remains to fully explore its properties to enhance 
the MIC.

Here, we propose an improved approximation algorithm for MIC, called the IAMIC, which offers 
a better solution coupled with a reasonable run-time. A mathematical proof of the ability to search for 
extreme values that requires fewer iterations is also provided. A comparison between the proposed 
algorithm and the original MIC algorithm provided by Reshef et al. is also given.

Also, the MIC has lower statistical power than distance correlation methods (Szeleky et al., 
2007; 2009) in many important relationships, as noted by Simon and Tibshirani (2012), and it is 
claimed that this power drawback could cause MIC to lose its advantage for general use. In this paper, 
we propose a probable hypothesis to argue the case of the low power problem of MIC based on the 
results of our experiments.

The rest of this paper is organized as follows. In section 2, the logic flow of the IAMIC is presented. 
In section 3, the mathematical proof of the improvement offered by the IAMIC is provided. In section 
4, the IAMIC is compared with the algorithms used by Reshef et al. in terms of their effectiveness and 
accuracy. In Section 5, the work focuses on a discussion of the assumption of associations between 
the MIC with power and the IAMIC. Section 6 summarizes the work that has been done previously 
in this field.

2. AN IMPROVED APPROXIMATION ALGORITHM FOR MIC

Reshef et al. (2013) modified the original algorithm to produce an approximation algorithm that was 
less efficient but had greater accuracy, which exhaustively searched an equipartition of the y-axis for 
up to 20 rows to find the best subpartition into 2 or 3 rows for all grids with 2 or 3 rows, respectively, 
instead of a simple equipartition of the y-axis into 2 or 3 rows. As the experimental results have shown, 
this more exhaustive algorithm has better equitability than the original algorithm, which meant that 
the deviations from the equitability of the original MIC values were a result of the accuracy of the 
approximation algorithm, rather than the nature of the MIC.

Reshef et al. (2013) also stated that the use of the approximation algorithm affects the equitability, 
which motivates us to propose an improved approximation algorithm, which is presented in this paper, 
to generate a better characteristic matrix, making it possible to obtain higher MIC values to improve 
the equitability in an acceptable run-time. Also, the experiments with the exhaustive algorithm have 
inspired us to search for a more optimal y-axis partition than the y-axis equipartition.

In our work, we attempt to find a better partition on the y-axis than the simple equipartition by 
quadratic optimization as an alternative to the exhaustive searching method. We then provide a simple 
improved algorithm called IAMIC for MIC. Specifically, the logical path of quadratic optimization 
is described as follows: given a specific number of rows y1, first equipartition the y-axis into y1 rows 
and optimize the x-axis in the manner of Reshef et al. (2011). Second, select the grid partition of 
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integers (x1, y1) with the largest normalized mutual information and get a detailed partition of size x1. 
Then, fix the partition of size x1 on the x-axis and optimize the y-axis into y1 rows, and then calculate 
the largest normalized mutual information under the new partition of integers (x1, y1) to replace the 
original value given in the characteristic matrix. After generation of the whole characteristic matrix, 
we select the maximum score in the characteristic matrix as the MIC.

In other words, the IAMIC uses quadratic optimization on the y-axis just once to search for a 
more optimal y-axis partition, rather than the approach of the exhaustive method. For each row of 
the characteristic matrix generated by the algorithm of Reshef et al., we attain a better solution based 
on the largest value of this row. To present the IAMIC clearly, the detailed steps used to produce the 
characteristic matrix are listed in Table 1. The parameter B in Table 1 is the function of sample size 
that was introduced by Reshef et al. (2011).

Given y=2, the simple algorithm simulation process is shown in Figure 1 (a) to Figure 1 (e).
Actually, on the y-axis equipartition of Figure 1 (a), the grid partition that is displayed as Figure 

1 (b) achieves the largest mutual information, simply by using the original algorithm of Reshef et al. 
(2011). Also, the IAMIC adds the rest of the steps (Figure 1 (c)-(e)) to search for the optimal grid. 
From the above statements, the equipartition on the y-axis is a subset of the quadratic optimization 
on the y-axis with the same partition on the x-axis; thus, the quadratic optimization on the y-axis 
achieves a better maximal normalized mutual information score than all the scores in one row of the 
original characteristic matrix under the condition of y-axis equipartition. The new IAMIC algorithm 
improved the maximum score of the original characteristic matrix for each row, while the MIC has the 
largest score in the characteristic matrix, and thus the MIC calculated by the use of the IAMIC can 
possibly achieve greater accuracy. The degree of improvement is equivalent to that of the improved 
exhaustive algorithm, which is proven later in section 4.

Make m equal B/2, which is the upper limit of the y values. Also, if we make kx be the number 
of clumps on the x-axis, then the time complexity of the standard algorithm introduced by Reshef et 
al. (2011) was O mk xyx( )2 . Similarly, let ky be the number of clumps on the y-axis, while the IAMIC 
includes two parts, where one is used to find the optimal solution on the x-axis and the other is the 
second optimal process of the y-axis, and thus we can conclude that the run time is O mk xy mkx y yx( )2 2+ , 
which is a constant multiplied by the time complexity of the algorithm introduced by Reshef et al. 
(2011).

Table 1. The pseudocode of the proposed algorithm

Input      A set of ordered pairs and some parameters

Process a) 
b) 
c) 
d) 
e) 
f)

for y∈{2,3,…B/2}, given y1= y {
equipartition y-axis to y1 rows 
for x∈{2,3,…B/y1}{
calculate the largest mutual information I(x,y1)
     } 
let x=x1, and I(x1,y1) is the largest normalized mutual information of all I(x,y1)
fix the optimal partition of x1 on x-axis 
for the pair of integers (x1,y1), let |y2|=|y1|, calculate the largest normalized mutual information I(x1,y2) 
and replace y1 by y2.
} 
Switch the axes, repeat the above steps and obtain the maximal scores

Output The characteristic matrix M(x,y), each element of which is the largest normalized mutual information 
achieved by any x-by-y grid
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3. MATHEMATICAL PROOF OF THE IMPROVEMENT OF IAMIC

Previously, we proposed an exhaustive quadratic optimization approach for computation of the MIC 
(EQOMIC), which is time consuming but offers high accuracy. In this section, we aim to prove that 
the equitability improvement of the IAMIC is equivalent to that of the EQOMIC.

Figure 1. The simple process of algorithm simulation



International Journal of Data Warehousing and Mining
Volume 13 • Issue 1 • January-March 2017

80

First, we introduce the EQOMIC algorithm. For each element of the characteristic matrix, we 
conduct a search of the optimal grid by a second optimization on the y-axis. To be specific, given a 
y-axis partition of size y1, we then compute the largest mutual information for each grid partition ((x, 
y1), x∈{2,3,…, B/ y1}) using the algorithm provided by Reshef et al. (2011) and fix every kind 
(x∈{2,3,… B/ y1}) to repartition the y-axis to correspond to the x-axis partitions. Analogously, the 
time complexity of this more complex algorithm is O mk xy mkx y yx( )2 2 2+

However, in the IAMIC, we simply fix the x-axis partition only, which is the maximum I(x, y1). 
Then, for a given y row, we search for the largest value in the EQOMIC results by repartitioning the 
y-axis once only. This means the two algorithms described above for computation of the MIC are 
equivalent, and thus we can search for a local extremum while using fewer iterations.

Now, we prove that the IAMIC can reduce the EQOMIC time complexity under the premise that 
the MIC accuracy remains the same.

First, we prove that the IAMIC leads to the same MIC value as EQOMIC. In IAMIC, after 
dividing the y-axis equally and fixing the y-axis partition Q r r n

l
= = ={ ,..., }0

0
, we let 

P c c m
l

= = ={ ,..., }0
0

 be an x-axis partition that maximizes H P H P Q( ) ( , )− . Therefore, for 
any other partition setP c c m

l
' { ' ,..., ' '}

'
= = =0

0
,if H P H P Q H P H P Q( ') ( ', ) ( ) ( , )− ≤ − , then 

we know from the definition of maximal mutual information that P P' ⊆ . Then, we fix this x-axis 
partition and repartition the y-axis, as we did in EQOMIC. Let S s s n

t
' { ' ,..., ' }

'
= = =0 1

0
 and 

S s s n
t

= = ={ ,..., }0 2
0

 be the possible y-axis partition sets caused by P '  and P , respectively. 
Then, we have S S' ⊆ . Because this y-axis partition size should be equal to | |Q , we select Q

1
 and 

Q
1
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1 1
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= − + . This means 

that proving that MIC accuracy is retained is equivalent to proving the following inequality.
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Because S S' ⊆ , we can also pick Q
1
'  from S . The following inequality is obvious.
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Let F P P I P Q I P Q( , ') ( ; ') ( '; ')= −
1 1

. Then, we obtain the following function.

F P P H P H P Q H P H P Q( , ') [ ( ) ( , ')] [ ( ') ( ', ')]= − − −
1 1

	 (3)

Theorem 1. We will have that F P P( , ')≥ 0 .
Proof. Suppose three have three situations.

1. 	 If Q
1
'  simply divides the point sets belonging to the different x clumps into the different y 

clumps, i.e. Q
1
'  does not go through any point set that was partitioned by P , we get the 

idea that H P H P Q( ) ( , ')− =
1

0  from the supporting online material (SOM) of the work 
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of Reshef et al. (2011). Because P P' ⊆ , that means even though Q
1
'  does not go through 

any point sets partitioned by P , it may go through some point sets that were partitioned by 
P ' . Thus, it is easy to find that H P H P Q( ') ( ', ')− ≤

1
0  from the SOM. In this situation, 

F P P( , ')≥ 0 . This situation is present in Table 2-A.
If Q

1
'  goes through some point sets that were partitioned by P , we then choose the simplest 

state to establish the mathematical derivation. Because P P' ⊆ , every clump that is divided 
by P '  is equal to some adjacent clumps that were divided by P . Assume that clump D

k
'  

is generated by P '  and that D
l
 and D

l+1  are generated by P . Let D D D
k l l
' = + +1 , and 

Q
1
'  just crosses D

l
, separating it into D

l1
 and D

l2
. Suppose that D

l1
, D

l2
, and D

l+1  contain 
u
1
, u

2
, and v

1
 points, respectively; then from the SOM of Reshef et al. (2011), we learned 

the following equation.
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where u
1
 and u

2
 are constants, and x  is variable.

Based on G x'( )  and G x''( ) ,
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Because G x''( )> 0 , we then have G x G x
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Recall that 
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Therefore, F P P( , ') ≥ 0 . This situation is present in Table 2-B.

3. 	 If Q1 '  crosses more than one point set, as Reshef et al. indicated in their SOM [1], we achieve 
the optimal solution when we draw the x-axis partition on the edges of clumps (runs of consecutive 
points that fall in the same row of the y-axis partition); this means that the key factor for 
maximization of mutual information is the partitioning of more clumps to gather points. Because 
the region obtained from P  is a kind of subdivision of that obtained from P ' , in the same y 
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partition Q1 ' , P  will make the points gather together more effectively, resulting in larger mutual 
information. Thus, F P P( , ') ≥ 0 . This situation is present in Table 2-C.

In conclusion, F P P( , ') ≥ 0 .
Therefore, I P Q I P Q I P Q( '; ') ( ; ') ( ; )1 1 1≤ ≤ . This means that the IAMIC leads to the same MIC 

value as the EQOMIC.
Now, we prove that the IAMIC reduces the time complexity. As we described above, in EQOMIC, 

every time we compute the largest possible mutual information under a specific partition size, that 
represents an element in the feature matrix. Thus, in EQOMIC, we must perform n2 computations. 
However, when we use IAMIC, the largest possible mutual information that we compute at one time 
represents the maximum value of one row in the feature matrix. Therefore, we need only perform n 
computations in total.

4. EXPERIMENTS AND COMPARASIONS

It has been proved that the IAMIC provides higher accuracy with an acceptable time performance, as 
described above. In this section, we present the performance of the IAMIC in terms of the experimental 
results for two aspects: the characteristic matrix and the equitability. The experiments show that the 
IAMIC realizes a better equitability.

4.1. Imrovements of the Characteristic Matrix
For each function in Table 3, we first generated one dataset of 2300 points spaced evenly along the 
curve described by the function, each of which is displayed in Figure 2 (a0)-(e0); then, we created 
another dataset with the same sample size by adding uniform vertical noise, as shown in Figure 3 (f0)-
(j0), in which R2 (the coefficient of determination) equals 0.64. We then compute the characteristic 

Table 2. EQOMIC and IAMIC
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matrix of the two data sets using both the original algorithm and the new algorithm. In this work, we 
set the value of the exponent α as 0.7 in the function B(n) = nα, and we only show the results for the 
range where 1 < x≤15 and 1 < y ≤15.

Figure 2 (a1)-(e1) and Figure 3 (f1)-(j1) correspond to the visualizations of the characteristic 
matrices of the relationships shown in Figure 2 (a0)-(e0) and Figure 3 (f0)-(j0), respectively, where 
the characteristic matrices are generated by the previous algorithm of Reshef et al. (2011).

Figure 2 (a2)-(e2) and Figure 3 (f2)-(j2) correspond to the visualizations of the characteristic 
matrices of the relationships shown in Figure 2 (a0)-(e0) and Figure 3 (f0)-(j0), respectively, where 
the characteristic matrices are created by the IAMIC algorithm that is provided in this work.

Figure 2 (a3)-(e3) and Figure 3 (f3)-(j3) correspond to the visualizations of the residual matrices 
of the relationships shown in Figure 2(a0)-(e0) and Figure 3 (f0)-(j0), respectively, where the residual 
matrices are produced by 10 times (x1-x2)(x∈{a,b,…,e}).

4.2. Improvement of the Equitability
Here, we select the 16 different functional relationships that are described in Table 3. For each 
relationship, we produce a noiseless data series with a sample size n=1000 and 249 additional 
data series with the same sample size by adding incremental uniform vertical noise to analyze the 
equitability. We also iterate the above steps 100 times. Figure 4 (a) shows the results of the standard 
algorithm for approximation of the MIC, while Figure 4 (b) shows the results of using the IAMIC to 
calculate the MIC under the same conditions, which comes closer to the true value of the MIC and 
develops the equitability of the reported MIC values.

The legend of Figure 4 (a)-(b) is shown in Figure 4 (c), which lists all the colors that correspond 
to each type of functional relationship.

In this paper, we also add Gaussian noise rather than uniform vertical noise to perform the 
same equitability analysis that was performed in Figure 4, except that we define the function of the 
exponential as x∈[0, 10] instead of x∈[0, 1] in Table 4. Figure 5(a)-(c) correspond to Figure 4(a)-(c), 
respectively.

5. MIC AND POWER

While the MIC has the advantage of equitability, Simon and Tibshirani (2012) indicated that the MIC 
has lower statistical power than distance correlation, which is another measure of the dependence 

Table 3. The function list
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given by Székely and Rizzo (2009). Sometimes, the MIC is less powerful than Pearson correlation. 
Because of the power drawbacks, it has been said that the MIC is not an appropriate measure for data 
exploration. Here, we run the same simulations to compare the power of the values calculated with 
IAMIC in our paper to that of the values calculated with MIC in Reshef et al (2011), which is computed 
by the standard approximation algorithm, Pearson correlation and distance correlation (dcor).

It is shown that the improved algorithm has greater accuracy, and thus the IMIC comes closer 
to the nature of the MIC values. Also, as shown in Figure 6, the IMIC is always more powerful than 
the MIC, and IMIC has higher power than dcor for the Circle function in particular, so we propose 
an assumption that the approximation algorithm affects the power of the MIC rather than the intrinsic 
behavior of the MIC. Because the current algorithm cannot reach the true value of the MIC, the 
conclusion that the MIC has serious power deficiencies is arbitrary. In other words, if a globally optimal 
algorithm is found for the MIC, there may be little difference between the MIC and other methods in 
terms of power properties. Consequently, the power issues of the MIC may have to be reconsidered.

Figure 2. A comparison of the characteristic matrices of noiseless relationships
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6. RELATED WORK

A variety of data mining algorithms are provided to expose the relation ship between variables (Wang 
et al., 2011; Wu et al., 2014). Working on the basis of mutual information, which was first introduced 
by Linfoot (1957), Reshef et al. (2011) suggested a new statistical method, the MIC, which could 
identify arbitrary relationships between pairwise variables. They proposed a new concept where, if 
there is an association between two variables, a grid can be drawn on the scatter plot of the pairwise 
variables, while the MIC searches for the optimal grid resolution.

Several main properties of the MIC were also introduced, including equitability. Equitability 
means that the MIC will give similar scores to different functional relationships with similar noise 

Figure 3. A comparison of the characteristic matrices of noisy relationships
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levels or similar R2 (coefficient of determination) values. By comparison with other methods, including 
mutual information estimation, distance correlation, the Spearman correlation coefficient, principal 
curve-based methods, and maximal correlation, the MIC showed its equitability property through 
simulations. The MIC has now been applied in various fields, including clinical data, genomics 
and virology applications, as shown in the literature (Lin et al., 2012; Das et al., 2012; Anderson et 
al., 2012). Also, Karpinets et al. (2012) and Zhang et al. (2013) suggested that MIC would help to 
improve their applications.

The proposal of the MIC has had a considerable effect on many fields and has received high 
acclaim. Speed (2011) stated that the MIC, which can be used to determine nonlinear correlations 
in data sets equitably, had reached the crest of the domain called mutual information that had been 
developing for more than 50 years. Nature Biotechnology (2012) also showed great interest in MIC 
and asked eight experts to discuss its usefulness.

However, the MIC also stimulated questions. Simon and Tibshirani (2012) noted that the MIC 
would cause too many false positives in data analysis because of its low power. Gorfine et al. (2012) 
argued that the equitability of the MIC was less practical than a new test, HHG (Heller et al., 2012), 
for data exploration by simple power comparisons. Kinney and Atwal offered a mathematical proof 
to support mutual information rather than the MIC.

In a recent follow-up study, Reshef et al. (2013) proposed that the use of the approximation 
algorithm affects the equitability through the comparison to a lower efficiency algorithm that provides 
a more intensive search for optimal grids, and suggested that the essence of the MIC does not lead to 
the deviations from equitability of the recently reported MIC values. In particular, Reshef et al. had 
been expecting the approximation algorithms to have better accuracy-time tradeoffs.

Figure 4. Comparison of the equitability

Figure 5. Comparison of the equitability
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Using MIC with high accuracy for data minging can avoid losing some important pairs of variables 
that are closely related. For example, we apply MIC with two different algorithms to global indicators 
from the WHO datasets, which is provided in Reshef et al. (2011), and select 11 relationships (A-K) 
of D-value are more than 0.1.D-value means the difference of MIC valure calculated by two different 

Table 4. Descriptions of the functions
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accuracy algorithms. From Table 5, the relationship A ranks at 2763 when using standard algorithm, 
but increased to 71 after using an improved algorithm. The rank of other relationships also changed 
to a large extent.

Table 5 indicates that when MIC is used as the measure of dependence for general recommend 
system or data minging system, the approximation with low accuracy will result in the deficiency 
of some important variables in the process of feature engineering, and then reduce the accuracy of 
recommend system or data mining system.

In the research for MIC, an unavoidable problem is to find the global optimum MIC, reshef 
provide a violent search algorithm to get a better approximation. However, because of the extensive 
computation, the mesh partition is limited. On the other side, MIC is limited between two vectors. 
In fact, those relationships could generate between multi-vectors. That is to say, those vectors, 
which seem have no relationship, may do have strong relationship between multi-vectors. And 
those researchers found that the power value of MIC, which represents the effect of the algorithm 

Figure 6. Comparison of power performance
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on statistics, is low. And if the low power value could not be explained reasonably, the reliability of 
MIC would be greatly reduced.

Hence, the research presented in this paper intends to provide that an improvement over the 
original approximation algorithm that was developed by Reshef et al (2011).

7. CONCLUSION

In this paper, the IAMIC iterative optimization algorithm has been proposed, which produces results 
that are close to the real MIC results by searching just n times, compared to the n2 computations 
required for the previous method. This algorithm, which is based on the axis equipartition method 
of Reshef et al. (2011), has presented a new concept for optimization of the partition on the y-axis 
to approximate the MIC with better accuracy. Mathematical analysis supports the fact that IAMIC 
can find the local maximum value to enable it to develop the important equitability property of the 
MIC. We also verified the performance improvement of IAMIC experimentally.

Finally, we recreated the experiments of Simon and Tibshirani (2012) using our algorithm. Our 
experimental results indicated that the power drawback is not an intrinsic defect of the MIC, and may 
draw researchers’ attention back to this potential power issue.

The next step of our research will concentrate on calculation of the global maximum value of 
the MIC with acceptable time complexity. We believe that this process may reveal the essence of the 
MIC at a deeper level.

ACKNOWLEDGMENT

This work was supported in part by a grant from National Natural Science Fund of China (61472039) 
and National Key Research and Development Program (2016YFC0803000 and 2016YFB0502603).

Table 5. The comparasion of rank scores

Relationship D-value RankIMIC Rank MIC

A 0.46306 71 2963

B 0.18028 89 459

C 0.14498 90 321

D 0.12688 47 155

E 0.12479 75 210

F 0.12204 54 165

G 0.11485 56 147

H 0.1135 44 126

I 0.10588 95 207

J 0.10308 18 86

K 0.10159 81 183
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