
DOI: 10.4018/IJDWM.2018040103

International Journal of Data Warehousing and Mining
Volume 14 • Issue 2 • April-June 2018

﻿
Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

37

Dynamic Itemset Hiding Algorithm for 
Multiple Sensitive Support Thresholds
Ahmet Cumhur Öztürk, İzmir Institute of Technology, İzmir, Turkey

Belgin Ergenç, İzmir Institute of Technology, İzmir, Turkey

ABSTRACT

This article describes how association rule mining is used for extracting relations between items in 
transactional databases and is beneficial for decision-making. However, association rule mining can 
pose a threat to the privacy of the knowledge when the data is shared without hiding the confidential 
association rules of the data owner. One of the ways hiding an association rule from the database is 
to conceal the itemsets (co-occurring items) from which the sensitive association rules are generated. 
These sensitive itemsets are sanitized by the itemset hiding processes. Most of the existing solutions 
consider single support thresholds and assume that the databases are static, which is not true in real 
life. In this article, the authors propose a novel itemset hiding algorithm designed for the dynamic 
database environment and consider multiple itemset support thresholds. Performance comparisons 
of the algorithm is done with two dynamic algorithms on six different databases. Findings show 
that their dynamic algorithm is more efficient in terms of execution time and information loss and 
guarantees to hide all sensitive itemsets.

Keywords
Dynamic Itemset Hiding, Itemset Hiding, Multiple Sensitive Support Thresholds, Privacy Preserving Association 
Rule Mining

1. INTRODUCTION

Data mining is the process of extracting knowledge from data with the help of statistics, artificial 
intelligence, machine learning and database systems. Association rule mining is one of the data mining 
tasks. It was first proposed by (Agrawal and Srikant, 1994) and is used for discovering correlated 
items transactional databases. Association rule mining process has mainly two steps; the first step is 
called frequent itemset (co-occurring items) generation and the second step is called rule generation 
where meaningful rules are generated from the discovered frequent itemsets. The second step is 
straightforward and similar in all proposed algorithms; as a result, association rule mining algorithms 
focus on the first step which is computationally expensive. For this reason, terms association rule 
mining and itemset mining are used interchangeably.

Lately many organizations use itemset mining tasks for short or long-term planning and strategical 
decision making. In modern business, organizations also share data with each other or with third 
parties in order to provide extraction of knowledge for mutual benefit. Similarly, itemset mining tasks 
are applied on this shared data however this may pose security threat for strategical and sensitive 
information of data owners.

The importance of this threat is well explained with a scenario given in (Clifton and Marks, 1996). 
Suppose BigMart supermarket chain is negotiating with DedTrees Paper Company for selling their 



International Journal of Data Warehousing and Mining
Volume 14 • Issue 2 • April-June 2018

38

products, and DedTrees offers to reduce their price if BigMart agrees to share sales database. After 
BigMart agrees to share the sales database, DedTrees applies itemset mining task on this database 
and finds out that people who purchase skim milk also purchase Green paper. Dedtrees Company then 
runs a coupon marketing campaign that gives 50 cents off for each purchase a Dedtrees product. The 
campaign cuts heavily sales of Green paper and as a result Green paper has to increase prices because 
of the low sales amount. In the next negotiation with DedTrees, they are unwilling to reduce their 
prices because they reach their goal. As a result, the BigMart suffers serious losses to competitors. 
This scenario shows that before the data is shared with other parties, the database owner should 
take precautions to protect its strategical and sensitive knowledge from being discovered by itemset 
mining task. Privacy preserving itemset mining is the problem of preserving the sensitive itemsets 
from being discovered in case of data sharing.

The most popular approach for sanitizing sensitive and frequent itemsets is to decrease their 
frequency (support) under predefined support threshold. Such a modification operation of converting 
the original database D into a sanitized database D’ is called frequent itemset hiding. A well designed 
frequent itemset hiding algorithm should hide all given sensitive itemsets while keeping the loss of 
non-sensitive itemsets, production of new artificial frequent itemsets and the distortion done on the 
database at minimum. Most proposed frequent itemset hiding approaches allow user to define a single 
support threshold for each sensitive itemset and assume that the databases are static (Amiri, 2007; Li 
et al., 2007; Weng et al., 2008; Dehkordi and Dehkordi, 2016; Verykios et al., 2004; Pontikakis et al., 
2004; Hong et al., 2013; Cheng et al., 2016). Single support threshold barrier does not suit the nature 
of different itemsets; in transactional databases, frequency of some sensitive itemsets may be too high 
while some sensitive itemsets may be too low. Assigning unique single sensitive support threshold for 
each sensitive itemsets may result in decreasing the frequency of some itemsets more than required.

On the other hand, transactional databases are dynamic; they get updates continuously. When 
dynamicity of the databases is considered applying a sensitive itemset hiding algorithm from the start 
will result in redundant execution time and memory allocation. In (Dai and Chiang, 2010; Jadav et 
al., 2014) dynamic sanitization algorithms are proposed; they either do the sanitization on the whole 
database or on the update only. The proposed approach in (Dai and Chiang, 2010) uses a tree like data 
structure to speed up the execution time and does the sanitization on the whole database. This approach 
is good for minimizing the side effects and achieving optimum sanitization however the data structure 
used is inadequate for dense databases when the given set of sensitive itemsets contains a certain 
number of overlapping items. As the number of overlaps increase it becomes impossible to uncover 
all sensitive itemset supporting transactions from this data structure. These supporting transactions 
are called sensitive transactions and uncovering inadequate number of sensitive transactions may 
result in smaller search space of sensitive transactions. So the sanitized database may keep containing 
sensitive itemsets. The proposed approach in (Jadav et al., 2014) only modifies the transactions in the 
updated part and does not use any data structure to speed up the execution time. Although this approach 
guarantees hiding all sensitive itemsets, since the modification is always done on the incremental 
part, distortion on the database and loss of non-sensitive information cannot be kept at minimum.

In this paper a dynamic frequent itemset hiding algorithm DynamicPGBS with four major 
processes is proposed: Initialization, Increment Handling, Hiding and Publish Database. Hiding 
process is an extension of PGBS (Öztürk and Ergenç-Bostanoğlu, 2017). The DynamicPGBS is 
designed for hiding a given set of sensitive itemsets by deleting one or more items from adequate 
number of transactions while minimizing the execution time, memory requirement, distortion on 
the updated database and loss of non-sensitive knowledge. The main contributions of the dynamic 
algorithm are; 1) different sensitive support thresholds can be assigned to sensitive itemsets, 2) 
sanitization is done by considering whole transactions of the database that means large search space 
of sensitive transactions and less side effects on the sanitized database, 3) hiding process is designed 
for incremental environment, 3) it guarantees hiding all given sensitive itemsets. In the performance 
evaluation, DynamicPGBS is compared with similar counterparts SPITF (Dai and Chiang, 2010) and 



International Journal of Data Warehousing and Mining
Volume 14 • Issue 2 • April-June 2018

39

RHID (Jadav et al., 2014) algorithms. The performance evaluation is conducted in order to measure 
execution time, distortion given to the data and knowledge and memory requirement. The experiments 
demonstrate that DynamicPGBS achieves significant improvement over both SPITF and RHID 
algorithms in terms of execution time and non-sensitive information loss in the sanitized database.

This paper is organized as follows. Definitions, preliminary background information related 
to itemset mining, itemset hiding and dynamic itemset hiding are given in the second section. In 
section three detailed related work is presented and discussed with different attributes of heuristic 
based hiding algorithms. The proposed frequent itemset hiding solution for dynamic environment 
is introduced in the fourth section. Performance analysis of the proposed algorithm on 6 different 
databases in comparison to two different algorithms is given in the fifth section. Conclusion is given 
in the final section.

2. BACKGROUND

Notation and concepts related to itemset mining and itemset hiding are explained in the first two 
subsections. As one may notice itemset mining and itemset hiding are two sides of a coin; it is not 
possible to understand itemset hiding without prior knowledge on itemset mining. In the last subsection 
dynamic itemset hiding strategies are discussed with an example.

2.1. Itemset Mining
Association rule mining aims to find unforeseen correlations among items within a dataset. Association 
rule mining algorithms have two consecutive phases; 1) finding frequent itemsets which enumerates 
itemsets and check their frequency and 2) generating frequent association rules from frequent itemsets 
of the previous phase. Since first phase is computationally expensive most of the algorithms focus 
on this phase and contain different effective approaches and methods and the terms association rule 
mining and itemset mining are used interchangeably. In order to find frequent itemsets and frequent 
association rules, algorithms use two important thresholds known as support and confidence. 
Support is used to measure the interestingness of itemsets whereas confidence is used to measure 
the interestingness of association rules. Itemset mining and association rule mining algorithms have 
different concerns e.g. finding association rules with high support and confidence (Agrawal and 
Srikant, 1994; Han et al. 2000), finding frequent itemsets with multiple support thresholds (Kiran 
and Reddy, 2011; Darrab and Ergenc, 2017), finding exception rules (Daly and Taniar, 2004), finding 
redundant association rules (Bastide et. al., 2000; Ashrafi et al., 2007), finding closed or maximal 
itemsets (Agarwal et. al, 2000; Pei et.al., 2000).

Formally, an itemset is defined as follows: Let I = {i1, …, in} be a set of literals called items, an 
itemset X is a non-empty subset of I such that X⊂I. A transaction t is an ordered pair of items, i.e. 
t⊂I. A transactional database D is a database of transactions and total number of transactions in D is 
denoted as |D|. Support count of X is the number of transactions supporting X in D and it is denoted 
as scount(X), support of X is calculated as the ratio of scount(X) to |D| and denoted as supp(X). An 
itemset X is frequent if supp(X) ≥ σ, where σ is the user specified minimum support threshold and 
the set of frequent itemsets is denoted as FI. Association rule on the other hand is an implication 
of the form X=>Y, where X and Y are database itemsets. The rule X => Y has support s, if s% of 
all transactions contain both X and Y. The rule X => Y has confidence c, if c% of transactions that 
contain X, also contain Y.

2.2. Itemset Hiding
Itemset hiding is the process of converting a given database into a sanitized database which does not 
contain sensitive itemsets of the data owner. A sensitive itemset, is a frequent itemset to be hidden 
from database D based on some privacy concerns of the database owner. SI is the set of sensitive 
itemsets, i.e. SI⊂FI. The sanitization process is transforming D into a new database D’ from which 



International Journal of Data Warehousing and Mining
Volume 14 • Issue 2 • April-June 2018

40

none of the sensitive itemsets can be extracted with the sensitive support threshold defined by the 
database owner (Atallah et al., 1999). Support of a sensitive itemset is decreased by removing items 
of sensitive itemsets from transactions during transformation. This type of sanitization is called 
distortion based sanitization and the main objective of distortion based sanitization is to hide all 
itemsets in SI while keeping the change on data and loss of non-sensitive knowledge at minimum.

Distortion based sanitization has two main challenges as identifying the right transactions for 
modification and selecting the right items to be removed from identified transactions. The first 
challenge is discovering all transactions containing sensitive itemsets called sensitive transactions. 
Each different sensitive transaction set for modification gives different side effects to the database. 
Second challenge is selecting the items to be removed from selected sensitive transactions. Usually 
the items having the maximum cover degree are selected; cover degree of an item i, is the number 
of sensitive itemsets that contain item i. Selecting the item with highest cover degree makes sense 
since if more than one sensitive itemset have a common item then removing this common item may 
sanitize more than one sensitive itemset at once (Pontikakis et al, 2004).

Distortion based frequent itemset hiding algorithms prevent the disclosure of private information, 
while preserving the utility of non-sensitive information as much as possible by minimum modification 
on the database. However, manipulating the database in order to protect the confidentiality of sensitive 
information brings out some side effects. These side effects are:

•	 Hiding Failure (HF): Measure of the amount of sensitive itemsets that are not hidden by the 
sanitization process. HF = |SI’| / |SI|, where |SI’| is the total number of sensitive itemsets in 
D’ and |SI| is the total number of sensitive itemsets in D. The objective of majority of itemset 
hiding algorithms is to measure zero hiding failure whereas some of them allow tuning of hiding 
disclosure.

•	 Information Loss (IL): Measure of the amount of non-sensitive frequent itemsets (frequent 
itemsets except sensitive itemsets) lost by the sanitization process. IL = ((|FI| - |SI|) - (|FI’| - |SI’|)) 
/ (|FI| - |SI|) where |FI| is the number of frequent itemsets and |SI| is the number of sensitive 
itemsets in D, |FI’| is the number of frequent itemsets in D’ and |SI’| is the number of sensitive 
itemsets in D’. This metric mainly indicate the ratio of unintentionally removed itemsets by 
sanitization process.

•	 Distance: Measure of the total number of items removed by the sanitization process. Distance 
= (total number of items in D) – (total number of items in D’). This metric gives idea about the 
change on the original database caused by the sanitization process.

Besides these three metrics there is another metric named as “ghost rules” which shows the 
number of unintentionally created itemsets by the sanitization process. In other words ghost rules 
are the ones that do not exist in the original database but exist in the sanitized database. In this work, 
this side effect is not measured since proposed algorithm and the competitor algorithms do not create 
any ghost rules. They are mostly produced by reconstruction based itemset hiding algorithms where 
sanitization includes addition of non-sensitive itemsets in order to decrease the support of sensitive 
itemsets.

2.3. Dynamic Itemset Hiding
In dynamic environment transactional databases are continuously updated by receiving increments. The 
objective of dynamic itemset algorithms is to establish mechanisms that allow arrival of increments 
and generation of sanitized database whenever needed without requiring the repeat of sanitization 
process from scratch. Dynamic sanitization mechanisms face the challenge of maintaining large enough 
number of sensitive transaction search space in order to keep the potential side effects at minimum.

Dynamic itemset hiding algorithms hide sensitive itemsets by modifying only the incremental 
part or modifying the whole updated database. In the first strategy, original database D is already 
sanitized, then sanitizing only the incremental part d and combining it with D will result a sanitized 



International Journal of Data Warehousing and Mining
Volume 14 • Issue 2 • April-June 2018

41

updated database. Although this strategy is more efficient in terms of execution time and resource 
allocation, it gives more side effects such as information loss and distance to the sanitized database 
because all potential sensitive transactions will not be in the search space. In the second strategy 
when incremental part d arrives it is combined with the original part D and then the sanitization 
operation is performed on the whole updated database D d∪( ) . This strategy is more efficient in 
terms of side effects because the sensitive transaction search space with all potential transactions for 
modifications is greater than that of the first strategy. This strategy is inefficient in terms of execution 
time and resource allocation if necessary precautions are not taken.

Let us try to make the strategies clear with an example. Suppose a dynamic database as in Figure 
1 (a) with original part D and incremental part d is given. Suppose again three sensitive itemsets 
with multiple support thresholds as shown in Figure 1 (b) is given, meaning the third party should 
not find their supports more than predefined sensitive thresholds.

Actual support of sensitive itemsets “AD”, “CD” and “BD” are 28.6%, 14.3% and 0.0% 
respectively in the original part of the database. All these three sensitive itemsets are infrequent or 
already hidden in D that is their supports are less than the given sensitive thresholds. Assume after 
a certain time, a new batch of transactions called incremental part d is attached to the original part. 
The new support of sensitive itemsets “AD”,”CD” and “BD” in the updated database is now 50.0%, 
30.0% and 10.0% respectively where all sensitive itemsets become frequent and need to be hidden.

Sanitizing only the incremental part of the database is dealing with small number of transactions 
(TID8, TID9 and TID10) and this will keep the execution time and memory allocation at minimum. 
A possible approach may be removing the item “d” from transactions TID8, TID9 and TID10. As a 
result, 3 items will be removed from the new sanitized database and if the resulting database is mined 
with a frequent itemset mining algorithm with 10% minimum threshold then there are 28 frequent 
itemsets. This strategy cannot consider all potential modification operations and might not choose the 
optimum solution in terms of side effects (e.g. information loss) on the released database. Another 
disadvantage of this approach is third party might discover what is hidden by analyzing the overall 
database and notice unexpected support changes in different portions of the database.

If the whole updated database is sanitized, then the search space of sensitive transactions will 
include all ten transactions in Figure 1 (a). A possible approach may be removing item “d” from TID7, 
TID8 and TID10. This will result in 3 item removal again and if the resulting database is mined with 
a frequent itemset mining algorithm with 10% minimum threshold then there 32 frequent itemsets are 
found; that means information loss is less. Although sanitizing the whole updated database reduces 
the side effect on the sanitized database, it increases the execution time and resource allocation.

Figure 1. Motivating example; (a) dynamic transaction database and (b) sensitive itemsets and sensitive thresholds



International Journal of Data Warehousing and Mining
Volume 14 • Issue 2 • April-June 2018

42

3. RELATED WORK

Association rule hiding problem was first introduced in (Attalah et al, 1999), the authors proposed 
heuristic algorithm to conceal the sensitive association rules by decreasing the support of frequent 
itemsets and also, they proved the NP-hardness of the problem. Since then many different solutions 
are proposed and these can be classified into 4 categories; 1) Border Based Approaches (Moustakides 
and Verykios, 2008; Stavropoulos et al, 2016; Sun and Yu, 2005; Sun and Yu, 2007) separate the 
frequent and non-frequent itemsets with a border and then revise the border to hide the frequent 
itemsets. During the sanitization process they give less distortion to non-sensitive information when 
compared to heuristic and reconstruction based approaches but they are unable to identify optimal 
hiding solutions for some cases although there exists a solution. 2) Exact Approaches (Ayav and 
Ergenç, 2015; Gkoulalas-Divanis and Verykios, 2006; Gkoulalas-Divanis and Verykios, 2008; 
Gkoulalas-Divanis and Verykios, 2009; Menon et al., 2005) first formulate the sanitization problem 
as constraint based satisfaction problem and then apply a linear programming approach to find an 
optimal solution. Exact approaches manage to find a solution that least modifies the database but 
because of the nature of linear programming the execution time of exact approaches are seriously 
higher than other approaches. 3) Heuristic Based Approaches (Keer and Singh, 2012; Oliveria and 
Zaiane, 2002; Oliveria and Zaiane, 2003; Verykios et al., 2004; Pontikakis et al., 2004; Wu et al., 
2007) rely on heuristics and data structures while performing the sanitization process but they may 
give more side effects when compared to border based and exact approaches as non-sensitive itemsets 
unintentionally hidden or artificial frequent itemsets unintentionally generated. 4) Reconstruction 
Based Approches (Boora et al., 2009; Guo, 2007; Lin and Liu, 2007; Mohaisen et al., 2010) first 
mine the given database to generate the set of frequent itemsets next remove the sensitive itemsets 
and their supersets from this set and then using this set they generate the sanitized database from 
scratch. The biggest problem in reconstruction based approaches is putting the non-frequent itemsets 
into the sanitized database and as a result there may be a big difference between the sanitized and 
the original database.

Majority of the research focus on heuristic approaches because they are efficient, scalable and 
have less response time. Table 1 shows the basic attributes of distortion based heuristic association 
rule hiding or itemset hiding algorithms. The “Algorithm” column of the table gives the name of the 
algorithm. “Hiding” column gives whether the algorithm is designed for sanitizing sensitive itemset or 
sensitive association rule. The “Victim Item Selection” column shows the victim item selection criteria 
of the algorithm where the victim item is the item to be deleted from selected transactions; “Cover” 
shows the selection of the item is done depending on its cover which is the number of occurrences of 
the item in different sensitive itemsets, “Support” shows the selection of the item is done depending 
on its support,” Greedy” shows the selection of the item is done in trial and error and “None” shows 
the algorithm does not select any victim item and deletes the sensitive transaction completely from the 
database. The “Transaction Selection” column shows the approach of the algorithm in selecting the 
transaction for modification; “Length” indicates that the algorithm selects the transaction according 
to its length, “Degree” indicates that the selection is done by considering the number of sensitive 
itemsets or association rules that are contained by the transaction, “Greedy” indicates that the selection 
is done in trial and error style. The “Environment” columns show whether the algorithm is designed 
for incremental or static database. The Sensitive Support threshold indicates if the algorithm allows 
user to assign multiple sensitive support thresholds or not. “Itemsets/Rules” column shows whether 
the algorithm is designed for hiding more than one itemset or association rule at each iteration of the 
algorithm; “Overlap” indicates that the algorithm is designed for sensitive itemsets or sensitive rules 
sharing common item and “Disjoint” indicates that the algorithm is designed for sensitive itemsets 
or association rules that do not share any common item.

As it can be seen from Table 1, number of itemset hiding algorithms is more than association 
rule hiding algorithms. Many algorithms use different heuristics or assigns weights to select victim 



International Journal of Data Warehousing and Mining
Volume 14 • Issue 2 • April-June 2018

43

item while some do not select any victim item and remove the whole sensitive transaction from 
the database. Most of the algorithms assign weight to sensitive transactions, where the weight of 
a sensitive transaction is calculated depending on some heuristics and these weights are generally 
calculated by considering the number of sensitive itemsets or rules a transaction contains. Also, most 
of the studies are designed with the overlapping sensitive itemset or sensitive rule assumption where 
the terminology overlapping is used for sensitive itemsets or sensitive rules sharing common item.

After a throughout survey of heuristic based itemset/association rule hiding algorithms it is 
observed that there are only two algorithms which are multiple support threshold based and consider 
updates on the database. These are SPITF (Dai and Chiang, 2010) and RHID (Jadav et al., 2014) 
algorithms. SPITF considers all the transactions of the database for sanitization after the updates. 
This approach reduces side effects as distance and information loss since the search space of victim 
sensitive transactions is large. However, this algorithm becomes inadequate when the database is dense; 
it cannot guarantee zero hiding failure. RHID algorithm on the other hand does the sanitization on the 
update each time. Although this approach is practical, less resource consuming and guarantees zero 

Table 1. Summary of existing heuristic based hiding algorithms

Algorithm Hiding Victim 
Item 

Selection

Transaction 
Selection

Overlap/ 
Disjoint

Sensitive 
Support 
Thresh.

Environ.

RHID (Jadav et al., 2014) Rule Weight Weight Overlap Multiple Incremental

SPITF (Dai and Chiang, 2010) Itemset Degree Degree

TTBS (Kuo et al., 2008) Itemset Degree Degree Static

SWA (Oliveria and Zaiane, 2003) Itemset Support Length

MDSRRC (Oliveria and Zaiane, 2002) Rule Weight Weight

HSARWI (Dehkordi and Dehkordi, 
2016)

Rule Weight Weight Single

FHSAR (Weng et al., 2008) Rule Degree Weight

MICF (Li et al., 2007) Itemset Degree Weight

Aggregate (Amiri, 2007) Itemset None Greedy

Disaggregate (Amiri, 2007) Itemset Greedy Greedy

Hybrid (Amiri, 2007) Itemset Greedy Greedy

IGA (Oliveria and Zaiane, 2002) Itemset Degree Degree

RelevanceSorting (Cheng et al., 2016) Rule Support Weight Disjoint

EDSR (Norafkan et al., 2015) Itemset None Length

HRR (Garg et al, 2014) Rule Support All

SIF-IDF (Hong et al., 2013) Itemset Support Weight

Algorithm 2.b (Verykios et al., 2004) Itemset Support Length

Algorithm 2.c (Verykios et al., 2004) Itemset None Length

PDA (Pontikakis et al., 2004) Rule Greedy Weight

WDA (Pontikakis et al., 2004) Rule None Weight

Naïve (Oliveria and Zaiane, 2002) Rule All Degree

MaxFIA (Oliveria, and Zaiane, 2002) Itemset Support Degree

MinFIA (Oliveria, and Zaiane, 2002) Itemset Support Degree



International Journal of Data Warehousing and Mining
Volume 14 • Issue 2 • April-June 2018

44

hiding failure on all types of databases, the side effects are high since the search space of sensitive 
transactions is small. Also, this approach can cause unexpected support changes of items in different 
portions of the database. Therefore, novel and efficient algorithms that provide dynamic itemset 
hiding based on multiple support thresholds are required.

4. A NOVEL DYNAMIC ITEMSET HIDING ALGORITHM

This section describes the proposed DynamicPGBS (Dynamic Pseudo Graph based Sanitization) 
algorithm and illustrates it by an example. DynamicPGBS uses the similar concepts and data structures 
as PGBS algorithm (Öztürk and Ergenç-Bostanoğlu, 2017). Main difference is the environment; 
the PGBS algorithm is designed for static database whereas DynamicPGBS algorithm is designed 
for incremental database. Another difference is PGBS puts all transactions into pseudo graph while 
DynamicPGBS puts only the sensitive transactions into pseudo graph in order to reduce the memory 
allocation.

The first subsection explains how to convert a given transactional database into pseudo graph, 
the second subsection explains our hiding strategy and the last subsection illustrates our sanitization 
approach with an example.

4.1. Pseudo Graph
In order to speed up the execution time and minimize the resource allocation Pseudo Graph data 
structure is used (Öztürk and Ergenç-Bostanoğlu, 2017). A Pseudo Graph (PG) can be represented 
as PG = (V, E) where V is a set of vertices and E is an ordered set of labelled edges. PG allows both 
graph loops and multiple edges. Each vertex in PG contains item name (or item number) and each 
edge represents list of transaction ids that contain the items on the path between starting vertex and 
its direct successor.

The algorithm for creating pseudo graph of a given transactional database is depicted in Algorithm 
1. First each transaction is read one by one from the database D, if the transaction contains any 
sensitive itemset then it is inserted into the PG.

4.2. DynamicPGBS Algorithm
When a new batch of transaction arrives to the database, the state of a sensitive itemset may 
automatically change i.e. it may become infrequent, infrequent sensitive itemset may become frequent, 
or the state of the sensitive itemset may remain the same. The main challenge is hiding sensitive 
itemsets with minimum execution time, resource allocation and side effects while their states vary. 
As already explained, in order to speed up the execution time and minimize the resource allocation 
Pseudo Graph data structure is used as proposed in (Öztürk and Ergenç-Bostanoğlu, 2017). This 
time, only sensitive transactions are put into the Pseudo Graph structure because the modification 
of non-sensitive transactions does not affect the support of any sensitive itemset. Another reason for 
putting only sensitive transactions into PG is continuously increasing database size.

The main properties of our proposed DynamicPGBS algorithm are listed as follows i) it is designed 
for incremental environment and assumes that the sanitization operation is continuous, ii) it handles 
incremental arrivals, iii) it creates the sanitized database by using an internal data structures, iv) it 
allows database owner to assign multiple sensitive support thresholds to sensitive itemsets.

DynamicPGBS algorithm keeps the sensitive transactions in a pseudo graph; each increment 
is added on this data structure. Before sharing the database, our proposed algorithm modifies 
transactions for hiding the sensitive itemsets on this pseudo graph. This modification operation 
consists of deleting some items from sensitive transactions until support of every sensitive itemset falls 
below the corresponding sensitive support threshold by causing as minimum side effect as possible. 
DynamicPGBS algorithm does not modify any transaction in the actual database, it performs the 
modification operations on the internal data structure, because in an incremental environment the 



International Journal of Data Warehousing and Mining
Volume 14 • Issue 2 • April-June 2018

45

database is continuously updated and shared many times; original database should be kept as it is. 
When sharing the database is required, hiding operation is applied on the pseudo graph and summary 
of delete operations is prepared. With the help of this summary, sanitized database is generated as a 
copy of the actual database by applying necessary modifications.

The flowchart of DynamicPGBS is given in Figure 2. The algorithm takes database D, minimum 
support thresholds of sensitive itemsets (MST) and sensitive itemsets (SI) as input where SI and 
the MST are assumed to be defined by the preferences or privacy policies of the database owner. 
Initialization Process prepares internal data structure. After the initialization process, if a new batch of 
transactions (d) arrives then the algorithm performs the Increment Handling process which updates the 
database and the internal data structure. Either after the Initialization process or Increment Handling 
process if the database owner wants to release the database, the Hiding Process is performed. Hiding 
process defines the transactions to be modified and items to be deleted from these transactions. The 
objective here is to prepare summary of delete operations. After the Hiding Process is finished the 
database owner can share the database with the Publish Database process. This process creates a copy 
of the original database by making required modifications defined by Hiding Process. This copy is 
the sanitized database D’ in which sensitive itemsets are infrequent, in other words they are hidden. 
Another operation performed by this process is to restore the internal data structure to the state prior 
the sanitization process in order to be ready to accept a new increment and to be compliant with the 
original database.

There are three important internal data structures used by DynamicPGBS algorithm; Pseudo 
Graph (PG), the Sensitive Count Table (SCT) and the Sanitization Table (ST). PG keeps all sensitive 

Algorithm 1. Initialization Process



International Journal of Data Warehousing and Mining
Volume 14 • Issue 2 • April-June 2018

46

transactions. Second data structure SCT keeps the number of necessary modifications (NModify) related 
with the sensitive itemsets in order to reduce their actual supports below the given user defined 
sensitive thresholds. Equation (1) shows how to calculate NModify related with each sensitive itemset 

Figure 2. Flowchart of DynamicPGBS



International Journal of Data Warehousing and Mining
Volume 14 • Issue 2 • April-June 2018

47

in SCT. Base floor is used for the difference in the equation since support count calculations derived 
from support percentages may yield decimal numbers.

NModify=⌊actual support count of itemset - sensitive threshold count+1⌋	 (1)

As an example, in Table 2, NModify for sensitive itemset “ad” is 3; it means that if we delete either 
item “a” or item “d” 3 times, we reduce actual support count of itemset “ad” below the given sensitive 
threshold. If NModity value of any sensitive itemset is zero or less than zero, this implies that the given 
sensitive itemset is hidden in the database.

The third data structure ST keeps the modification information which will be applied to the 
database before it is released. The ST keeps the pairs of victim items and transactions, where the 
victim field shows which item will be deleted and the transactions field shows the ids of transactions 
that will be modified. As an example, if victim item “d” in Table 3 is removed from transactions 8, 7, 
10; it means all sensitive itemsets will be hidden. The objective of the Hiding Process is to prepare ST.

The DynamicPGBS consists of four major processes as seen in Figure 2; Initialization, Increment 
Handling, Hiding and Publish Database. Initialization process puts all sensitive transactions in dataset 
D to PG and Algorithm 1 presents this process. Increment handling process adds all transactions in 
increment d to D and then adds all sensitive transactions in d to PG. The Hiding process creates the 
Sanitization Table and it is depicted in Algorithm 2. The Publish Database process first prepares D’ 
as a copy of D by deleting each item from its corresponding transaction given in ST and then restores 
all removed items on PG. The restore operation is performed by putting each victim and transactions 
pairs stored in ST into the PG again.

In Algorithm 2 through Steps 1 to 2 first SCT is created by calculating NModify of each sensitive 
itemset and then sorted in decreasing order of NModify. In Step 3 cover degree of each item is 
calculated by counting occurrences of items in all sensitive itemsets whose NModify value is greater 
than zero. Whenever NModify of a record in SCT becomes less than or equal to zero, it indicates that 
the corresponding sensitive itemset in SCT is already sanitized. In Step 4 the sanitization operation 
starts from the first row r1 of SCT and keeps selecting victim items and corresponding transactions 
till NModify of all records in SCT become less than or equal zero. The first row r1 of SCT is selected to 
be sanitized first, because it keeps the sensitive itemset that needs more support decrease than others. 
In Step 5 the victim item is selected among items in r1.SI that has the maximum cover degree, if 
there is more than one victim item having the same cover degree the victim item is selected with the 
highest support in PG. Finally, if there is still more than one victim item, a random item is selected. 
The variable USI (Unified Sensitive Itemsets) is the unification of all sensitive itemsets of SCT whose 

Table 2. Sensitive count table (SCT)

SI Actual Support 
Count

Sensitive Threshold Sensitive Threshold 
Count

NModify

ad 5 30% 3 3

cd 3 15% 1 2

bd 1 10% 1 1

Table 3. Sanitization table (ST)

Victim Transactions

d 8, 7, 10



International Journal of Data Warehousing and Mining
Volume 14 • Issue 2 • April-June 2018

48

NModify value is greater than zero and contain the victim item. The USI is generated in Step 6 and 
then maximum r1.NModify number of transaction ids containing USI is uncovered in Step 7. In Step 8 
the victim is deleted from these transactions on PG and then in Step 9 these victim and transaction 
id pairs are added to the Sanitization Table (ST). Through Steps 10 to 18, if any sensitive itemset 
is a subset of USI then its NModify is decreased by the number of transaction ids uncovered and then 
sensitive itemsets whose NModify became less than or equal to zero are removed from the USI. In Step 
19 if the sensitive itemset in the first row of SCT is still not sanitized then the algorithm tries to find 
different transactions by changing the USI with removing the sensitive itemset having the least NModify.

When computational complexity of the Initialization process is analyzed it is seen that first the 
database is scanned in order to find sensitive transactions, time complexity of this Step is O(|D|) 
where |D| is the database size. During this scan each sensitive transaction is put into PG, the cost 
of this O(|V|) where |V| is the total number of vertices, in other word number of distinct items in 
the database. As a result, scanning the database to find sensitive transactions and putting them into 
PG brings total O(|D| * |V|) computational complexity. Hiding process on the other hand, uncovers 
transactions from PG in O(|V|) time. That is repeated as the number of victim items so at worst 
case computational complexity is O(|SI|*|V|) where |SI| is the number of items in all sensitive items 
assuming that there is no overlapping item.

4.3. Illustrating Example
Suppose the database given in Figure 1 (a) and sensitive itemsets with their sensitive thresholds as 
in Figure 1 (b) are given. First the Initialization Process puts all sensitive transactions into PG as 
shown in Figure 3 (a). Whenever an increment arrives, Increment Handling process updates D and 
PG, with the example the updated PG is shown in Figure 3 (b).

Let us continue by explaining Hiding Process; the algorithm uses the PG to create the Sensitive 
Count Table (SCT) with calculated NModify values (Step 1) as shown in Table 2, Cover degree of each 
item stored in SCT is calculated as a:1, b:1, c:1 and d:3 (Step 3; a, b and c is included in 1 sensitive 
itemset whereas d is included by 3 of the sensitive itemsets). The first row in SCT stores the sensitive 
itemset “ad” so the victim is selected among candidate victims “a” and “d” where “d” is selected as 
victim item because it has the maximum cover degree (Step 5). Then the algorithm unifies 3 of the 
sensitive itemsets because each of them contains the victim item “d”. The unified sensitive itemset is 
“abcd”(Step 6) and according to Figure 3 (b) only the transaction 8 contains “abcd” (Step 7). So the 
item “d” is removed from 8th transaction in PG as shown in Figure 3 (c) (Step 8), the victim item “d” 
and transaction 8 is added into the ST (Step 9) and NModify value of each sensitive itemset in SCT is 
decreased by 1. NModify value of the sensitive itemset “bd” becomes zero so the cover degree of items 
are updated as a:1, c:1 and d:2 (Steps 10-18). The algorithm selects new victim item, again the item 
“d” is selected because it still has the maximum cover degree, also the sensitive itemsets “ad” and 
“cd” are unifed because they both contain the item “d”. According to Figure 3 (c) transactions 7 and 
10 contain the unified itemset “acd”. The victim “d” is removed from transactions 7 and 10 as shown 
in Figure 3 (d) and these victim item and transaction pairs are added to the ST. The new NModify value 
of “ad” becomes 0 and “cd” becomes -1 so the hiding process terminates.

After the Hiding Process is finished the Publish Database Process prepares D’ by deleting each 
victim item and transactions pair stored in ST from D. The resulting ST for this example is given in 
Table 3 and according to this table the sanitized database D’ is given in Figure 4. After having sanitized 
dataset D’ ready, PG is recovered by again using the ST and then all records in ST are deleted. Now 
the system is ready to accept new increments.

5. PERFORMANCE EVALUATION

In this section the performance of DynamicPGBS is compared with SPITF (Dai and Chiang, 2010) 
and RHID (Jadav et al., 2014) algorithms. As DynamicPGBS both SPITF and RHID algorithms are 



International Journal of Data Warehousing and Mining
Volume 14 • Issue 2 • April-June 2018

49

designed for incremental environment. They differ in their sanitization methodologies. The SPITF 
performs the sanitization operation on the whole database after the incremental part has been added 
whereas the RHID algorithm performs the sanitization process on the incremental part and then 
combines it with the sanitized original database. Both SPITF and RHID enable the user to assign 
different sensitive thresholds to each sensitive itemset as DynamicPGBS.

All the experiments are conducted on a computer with Intel core i7-5500 2.4 GHZ processor 
and 8GB of RAM running on a Windows 10 operating system. Execution time includes I/O and CPU 
time. During performance evaluation, it is ensured that the system state is similar for all test runs and 
they give close results when repeated.

Our experiments are performed on 4 real databases; Chess, Connect and Mushroom and Retail 
where first three is obtained from UCI Repository (Blake and Merz, 1998) and last one is retrieved 
from (Brijs et al., 1999). In addition to 4 real databases 2 synthetic databases are used. The synthetic 

Algorithm 2. Hiding Process



International Journal of Data Warehousing and Mining
Volume 14 • Issue 2 • April-June 2018

50

databases with different characteristics are generated by using the IBM quest dataset generator 
(Bhalodiya, 2014). The characteristics of all databases in terms of number of transactions, number 
of distinct items, average transaction length, shortest and longest transaction length and density are 
given in Table 4. The density of a database is the average transaction length divided by number of 
distinct items. Density of a database shows whether it is dense or sparse. As indicated in (Bayardo et 
al., 1999; Gkoulalas and Divanis, 2009; Han et al., 2000; Pei et al., 2000) frequent itemsets generated 
from dense databases may be long. Databases with different densities allow the observation of the 
performance of the algorithm on dense and sparse databases and with short and long frequent itemsets.

To assess the performance of DynamicPGBS 10 sensitive itemsets are randomly selected and 
assigned them multiple sensitive thresholds for each database. To select the sensitive itemsets and 
assign them different sensitive support thresholds the databases are partitioned into 5 bins where the 

Figure 3. Pseudo Graph (PG) with the motivating example; (a) PG of the sensitive transactions in the original part of the database; 
(b) PG of the sensitive transactions in the whole updated database; (c) PG after item “d” is removed from transaction 8; (d) PG 
after item “d” is removed from transactions 7 and 10

Figure 4. Sanitized database D’



International Journal of Data Warehousing and Mining
Volume 14 • Issue 2 • April-June 2018

51

bins contain nearly equal number of itemsets. Then 2 itemsets are randomly selected from each bin 
and assigned the minimum support threshold as the minimum support given in the support range of 
the corresponding bin. The support ranges of the bins for each database are given in Table 5.

Main objective of the performance evaluation is to observe the impact of the increment size on 
the performance of the algorithms. The algorithms are compared for 10 increment sizes in the range 
of 10% to 100%. The performance of all algorithms is measured with respect to execution time, side 
effects and total memory consumption. As execution time, the time needed by each algorithm to 
perform the sanitization, as side effects hiding failure, distance and information loss caused by the 
sanitization algorithm and as total memory consumption the total memory allocated by each algorithm 
to perform the sanitization process are considered.

During the tests it is noticed that SPITF algorithm cannot guarantee zero hiding failure on 
dense databases. SPITF algorithm gives zero hiding failure in sparse databases like Retail and 
SyntheticSparse whereas it fails to hide some sensitive itemsets in dense databases as Chess, Connect, 
Mushroom and SyntheticDense. The hiding failure of DynamicPGBS and RHID algorithms is zero 
in all given six databases, which means these two algorithms successfully hide all given sensitive 
itemsets. Hiding failure results of SPITF algorithm for dense databases are given in Figure 5.

5.1. Execution Time
In Figure 6 execution time of DynamicPGBS, SPITF and RHID are demonstrated. Execution time 
of DynamicPGBS and SPITF does not change explicitly when new transactions are added on sparse 
databases as in Figure 6 (c) and (e) which is not the case in RHID algorithm. This is reasonable 
because sparse databases produce many short frequent itemsets and the sensitive itemsets for each 
database are selected randomly from the frequent itemsets, so this makes the size of the sensitive 

Table 4. Characteristics of experimental databases

Database 
Name

Number of 
Transactions

Distinct Items Average 
Length

Shortest 
Length

Longest 
Length

Density (%)

Chess 3,196 75 37 38 38 49.4

Connect 67,557 129 43 43 43 33.4

Mushroom 8,124 119 23 20 24 19.4

Retail 88,162 16,470 10.3 2 77 0.0625

SyntheticDense 29,166 99 43.09 2 44 43.5

SyntheticSparse 28,417 9,479 11.48 2 11 0.1212

Table 5. Support ranges of the databases

Chess Connect Mushroom Retail Synthetic 
Dense

Synthetic Sparse

Bin Support Range 
(%)

Support Range 
(%)

Support Range 
(%)

Support Range 
(%)

Support Range 
(%)

Support Range 
(%)

1 (60.01, 61.36] (85, 85.7] (11, 12.18] (0.1, 0.118] (30, 30.8] (0.5, 0.544]

2 (61.36, 63.08] (85.76, 86.72] (12.18, 13.88] (0.12, 0.142] (30.8, 31.85] (0.544, 0.6]

3 (63.08, 65.55] (86.73, 87.92] (13.88, 15.40] (0.144, 0.185] (31.85, 33.39] (0.6, 0.709]

4 (65.55, 69.74] (87.93, 89.85] (15.40, 20.53] (0.186, 0.287] (33.39, 36.19] (0.709, 0.935]

5 (69.74, 99.62] (89.86, 99.87] (20.53, 100] (0.288, 5.072] (36.19, 95.46] (0.935, 3.8]



International Journal of Data Warehousing and Mining
Volume 14 • Issue 2 • April-June 2018

52

itemsets chosen for sparse databases shorter than dense databases. As the size of a sensitive itemset 
decreases, the execution time to search and modify a given sensitive itemset in the data structures of 
both DynamicPGBS and SPITF decreases. The execution time of DynamicPBGS is less than SPITF 
and RHID in all databases and the RHID algorithm has the worst running time on Connect, Retail, 
SytheticSparse and SyntheticDense databases although it only sanitizes the incremental part, so it 
can be seen that the data structure of both SPITF and DynamicPGBS decreases the execution time. 
The execution time of RHID algorithm is better than SPITF when the database is dense and contains 
small number of transactions where this situation can easily be seen on Chess database (Figure 6 (d)).

5.2. Distance
The experimental results of the distance experiment show that the best distance result achieved by 
SPITF algorithm is in only dense and large database Connect (Figure 7). This may be due to fact that 
SPITF is unable to hide all sensitive itemsets on dense databases and as a result less than necessary 
number of transaction modification causes less item removal. DynamicPGBS achieves the best 
distance result in sparse databases Retail and SyntheticSparse and the RHID algorithm achieves the 
best distance in dense databases Chess and SyntheticDense databases.

5.3. Information Loss
The experiment results of Information Loss are given in Figure 8. The results show that SPITF 
causes less Information Loss than DynamicPGBS and RHID on dense databases like Chess, Connect 
and SyntheticDense because it is unable to hide 2 of the sensitive itemsets on these databases. On 
Mushroom database the DynamicPGBS causes minimum information loss when the increment 
sizes are 10%, 20%, 30%, 90% and 100% and between 40% and 80% the SPITF algorithm has the 
minimum value. The results for Mushroom depend on the increment size because the density of this 
database smaller than other dense databases. On sparse databases like Retail and SyntheticSparse the 
DynamicPGBS algorithm gives less information loss than the SPITF and RHID algorithms.

5.4. Memory Requirement
Figure 9 shows the total memory consumption in megabytes (MB). The RHID algorithm consumes 
the minimum amount of memory on dense databases and also its total memory consumption increases 
linearly with the increment size for all databases. This is because the average transaction lengths of 
dense databases (Chess, Connect, Mushroom and SyntheticDense) are greater than sparse databases 
(Retail and SyntheticSparse). As the average transaction length increases the memory consumption 
of data structures of both SPITF and DynamicPGBS algorithms increase if the arriving batch of 
transactions are different than the transactions previously added, whereas the RHID algorithm does 
not use any data structure to store the transactions the similarity of transactions in the original part and 
incremental part does not affect the memory consumption. The DynamicPGBS algorithm consumes 
the minimum amount of memory as in Figure 9 (c) and (e) when the databases are sparse, this is 
due to small average transaction length. Also in all databases the SPITF algorithm consumes the 
highest amount of memory because of its tree like data structure. In this data structure an item can 
be represented as node many times but this is not the case in DynamicPGBS’s graph data structure.

Figure 5. Hiding failure of SPITF algorithm



International Journal of Data Warehousing and Mining
Volume 14 • Issue 2 • April-June 2018

53

5.5. Discussion on the Results
The Pseudo Graph data structure used in DynamicPGBS has significant improvement on the execution 
time for each database used in the performance evaluation. On sparse databases the DynamicPGBS 
has the minimum distance and information loss value whereas it has the second-best results on dense 
databases. The SPITF algorithm seems to be good in distance and information loss on dense databases 
but the most important drawback of this algorithm is, it causes hiding failure on the resulting sanitized 
databases when the density of the databases is high.

The memory consumption of DynamicPGBS is proportional to density and the size of the given 
database. The total memory consumption of RHID algorithm is better than DynamicPGBS but this 
memory allocation comes with a tradeoff of higher execution time.

Figure 6. Execution time of sanitization process; (a) Mushroom Database; (b) Connect Database; (c) Retail Database; (d) Chess 
Database; (e) SyntheticSparse Database; (f) SyntheticDense Database



International Journal of Data Warehousing and Mining
Volume 14 • Issue 2 • April-June 2018

54

6. CONCLUSION

In this paper a new distortion based dynamic heuristic itemset hiding algorithm called DynamicPGBS 
for the problem of itemset hiding on updated databases is proposed. The DynamicPGBS algorithm 
is based on the hiding algorithm in (Öztürk and Ergenç-Bostanoğlu, 2017). Besides concealing 
the sensitive itemsets, the DynamicPGBS is designed for the challenges such as hiding sensitive 
itemsets under multiple sensitive support thresholds and dealing with the incremental environment. 
All sensitive transactions in the whole updated database are represented as Pseudo Graph structure 
thus scanning the sensitive transactions and modifying them become much easier than performing 
these operations on the actual database. After a sanitization operation DynamicPGBS restores all 
transaction modifications on this pseudo graph. Thus, it still utilizes all possible sensitive transaction 
modifications in the next sanitization operation.

Figure 7. Number of items removed during sanitization process; (a) Mushroom Database; (b) Connect Database; (c) Retail Database; 
(d) Chess Database; (e) SyntheticSparse Database; (f) SyntheticDense Database



International Journal of Data Warehousing and Mining
Volume 14 • Issue 2 • April-June 2018

55

The experimental results show that DynamicPGBS can achieve reasonable results when compared 
to other dynamic algorithms in the literature. Especially on sparse databases the DynamicPGBS 
achieves the best performance in terms of execution time, distance, information loss and total memory 
allocation. On the other hand, on dense databases the DynamicPGBS achieves the best performance in 
terms of execution time. Although the DynamicPGBS has the second-best results in term of distance, 
information loss and memory allocation on dense databases, it guarantees zero hiding failure.

As future work it is planned to; i) extend the algorithm to handle the deletions in the databases 
as well, ii) propose a new version of hiding process where degree of victim transactions will also 
be considered.

Figure 8. Information Loss during sanitization process; (a) Mushroom Database; (b) Connect Database; (c) Retail Database; (d) 
Chess Database; (e) SyntheticSparse Database; (f) SyntheticDense Database



International Journal of Data Warehousing and Mining
Volume 14 • Issue 2 • April-June 2018

56

ACKNOWLEDGMENT

This work is partially supported by The Scientific and Technological Research Council of Turkey 
(TUBITAK), under ARDEB 3501 Project No: 114E779.

Figure 9. Total memory consumption during sanitization process; (a) Mushroom Database; (b) Connect Database; (c) Retail 
Database; (d) Chess Database; (e) SyntheticSparse Database; (f) SyntheticDense Database



International Journal of Data Warehousing and Mining
Volume 14 • Issue 2 • April-June 2018

57

REFERENCES

Agrawal, R., Agarwal, C. C., & Prasad, V. V. V. Depth-first generation of long patterns. In ACM KDD Conference, 
(pp. 108-118).

Agrawal, R., Imilinski, T., & Swami, A. (1996). Mining association rules between sets of items in large databases. 
In Proceedings of the International Conference on Management of Data (pp. 207-216). Washington DC. 

Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. In Proceedings of the 20th 
International Conference on Very Large Databases, San Francisco, CA (pp.487-499).

Amiri, A. (2007). Dare to share: Protecting sensitive knowledge with data sanitization. Decision Support Systems, 
43(1), 181–191. doi:10.1016/j.dss.2006.08.007

Ashrafi, M. Z., Taniar, D., & Smith, K. A. (2007). Redundant association rules reduction techniques. International 
Journal of Business Intelligence and Data Mining, 2(1), 29–63. doi:10.1504/IJBIDM.2007.012945

Atallah, M., Bertino, E., Elmagarmid, A., Ibrahim, M., & Verykios, V. S. (1999). Disclosure limitation of 
sensitive rules. In Workshop on Knowledge and Data Engineering Exchange (pp. 45-52).

Ayav, T., & Ergenç, B. (2015). Full Exact approach for itemset hiding. International Journal of Data Warehousing 
and Mining, 11(4), 49–63. doi:10.4018/ijdwm.2015100103

Bastide, Y., Pasquier, N., Taouil, R., Stumme, G., & Lakhal, L. (2000). Mining Minimal Non-redundant 
Association Rules Using Frequent Closed Itemsets. In Proceedings of the 1st International Conference of 
Computational Logic. doi:10.1007/3-540-44957-4_65

Bayardo, R. J. Jr, Agrawal, R., & Gunopulos, D. (1999). Constraint based rule mining on large, dense data sets. 
Data Mining and Knowledge Discovery, 4(2/3), 217–240. doi:10.1023/A:1009895914772

Bhalodiya, D.J. (2014). IBM Quest Market-Basket Synthetic Data Generator.

Blake, C. L., & Merz, C. J. (1998). UCI Repository of Machine Learning Databases. University of California. 
Irvine: Dept. of Information and Computer Sciences.

Bodon, F. (2003). A fast APRIORI implementation. In Workshop Frequent Itemset Mining Implementations 
(FIMI’03) (Vol. 90, pp. 56-65).

Boora, R. K., Shukla, R., & Misra, A. (2009). An improved approach to high level privacy preserving itemset 
mining. International Journal of Computer Science and Information Security, 6(3), 216–223.

Brijs, T., Swinnen, G., Vanhoof, K., & Wets, G. (1999). The use of association rules for product assortment 
decisions: A case study. In Proceedings of the 5th International Conference on Knowledge Discovery and Data 
Mining, San Diego, CA (pp. 254–260).

Cheng, P., Roddick, J. F., Chu, S. C., & Lin, C.-W. (2016). Privacy preservation through a greedy, distortion-
based rule hiding method. Applied Intelligence, 44(2), 295–306. doi:10.1007/s10489-015-0671-0

Clifton, C., & Marks, D. (1996). Security and privacy implication of data mining. In ACM SIGMOD Workshop 
on Data Mining and Knowledge Discovery (pp. 15–19).

Dai, B. R., & Chiang, L. H. (2010). Hiding frequent patterns in the updated database. In Proceedings of the 
International Conference on Information Science and Applications (ICISA). doi:10.1109/ICISA.2010.5480385

Daly, O., & Taniar, D. (2004) Exception Rules Mining Based on Negative Association Rules. In Proceedings of 
the International Conference on Computational Science and Its Applications (pp. 543-552). doi:10.1007/978-
3-540-24768-5_58

Darrab, S., & Ergenc, B. (2017). Vertical Pattern Mining Algorithm for Multiple Support Thresholds. In 
Proceedings of the International Conference on Knowledge Based and Intelligent Information and Engineering 
Systems, Marseille, France, September 6-8 (pp. 417-426). doi:10.1016/j.procs.2017.08.051

Dehkordi, M. S., & Dehkordi, M. N. (2016). Introducing an algorithm for use to hide sensitive association 
rules through perturbation technique. Journal of Artificial Intelligence and Data Mining. doi:10.5829/-IDOSI.
JAIDM.2016.04.02.10

http://dx.doi.org/10.1016/j.dss.2006.08.007
http://dx.doi.org/10.1504/IJBIDM.2007.012945
http://dx.doi.org/10.4018/ijdwm.2015100103
http://dx.doi.org/10.1007/3-540-44957-4_65
http://dx.doi.org/10.1023/A:1009895914772
http://dx.doi.org/10.1007/s10489-015-0671-0
http://dx.doi.org/10.1109/ICISA.2010.5480385
http://dx.doi.org/10.1007/978-3-540-24768-5_58
http://dx.doi.org/10.1007/978-3-540-24768-5_58
http://dx.doi.org/10.1016/j.procs.2017.08.051
http://dx.doi.org/10.5829/-IDOSI.JAIDM.2016.04.02.10
http://dx.doi.org/10.5829/-IDOSI.JAIDM.2016.04.02.10


International Journal of Data Warehousing and Mining
Volume 14 • Issue 2 • April-June 2018

58

Garg, V., Singh, A., & Singh, D. (2014). A hybrid algorithm for association rule hiding using representative rule. 
International Journal of Computers and Applications, 97. doi:10.1007/978-3-319-07455-9_9

Gkoulalas-Divanis, A., & Verykios, V. S. (2006). An integer programming approach for frequent itemset 
hiding. In Proceedings of the 15th ACM International Conference on Information and Knowledge Management. 
doi:10.1145/1183614.1183721

Gkoulalas-Divanis, A., & Verykios, V. S. (2008). A parallelization framework for exact knowledge hiding in 
transactional databases. In IFIP International Federation for Information Processing (Vol. 278, pp. 349-363). 
doi:10.1007/978-0-387-09699-5_23

Gkoulalas-Divanis, A., & Verykios, V. S. (2009). Hiding sensitive knowledge without side effects. Knowledge 
and Information Systems, 20(3), 263–299. doi:10.1007/s10115-008-0178-7

Guo, Y. (2007). Reconstruction based association rule hiding. In SIGMOD Ph.D. Workshop on Innovative 
Database Research. Retrieved from http://www.borgelt.net/apriori.html

Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate generation. In ACM SIGMOD 
International Conference on Management of Data.

Hong, T.-P., Lin, C.-W., Yang, K.-T., & Wang, S.-L. (2013). Using tf-idf to hide sensitive itemsets. Applied 
Intelligence, 38(4), 502–510. doi:10.1007/s10489-012-0377-5

Imilinski, T., & Swami, A. (1996). Mining association rules between sets of items in large databases. In 
Proceedings of the International Conference on Management of Data, Washington DC (pp. 207-216).

Jadav, K.B., Vania, J., Patel, D.R. (2014). Efficient hiding of sensitive association rules for incremental datasets. 
International Journal of Innovations & Advancement in Computer Science IJIACS, ISSN 2347 – 8616, 3(4).

Keer, S., & Singh, A. (2012). Hiding sensitive association rule using clusters of sensitive association rule. 
International Journal of Computer Science and Network, 1(3).

Kiran, R., & Reddy, P. (2011). Novel techniques to reduce search space in multiple minimum supports based-
frequent pattern mining algorithms. In Proceedings of the International Conference on Extending Database 
Technology (pp. 11-20). doi:10.1145/1951365.1951370

Kuo, Y., Lin, P. Y., & Dai, B. R. (2008). Hiding frequent patterns under multiple sensitive thresholds. In Database 
and Expert Systems Applications (pp. 5–18). DEXA; doi:10.1007/978-3-540-85654-2_2

Li, Y. C., Yeh, J. S., & Chang, C. C. (2007). MICF: An effective sanitization algorithm for hiding sensitive 
patterns on data mining. Advanced Engineering Informatics, 21(3), 269–280. doi:10.1016/j.aei.2006.12.003

Lin, J., & Liu, J. Y. C. (2007). Privacy preserving itemset mining through fake transactions. In Proceedings 
of the 22nd ACM Symposium on Applied Computing, Seoul, Korea (pp. 375–379). doi:10.1145-/ 
doi:10.1145/1244002.1244092

Menon, S., Sarkar, S., & Mukherjee, S. (2005). Maximizing accuracy of shared databases when concealing 
sensitive patterns. Information Systems Research, 16(3), 256–270. doi:10.1287/isre.1050.0056

Mohaisen, A., Jho, N., Hong, D., & Nyang, D. (2010). Privacy preserving association rule mining revisited: 
Privacy enhancement and resource efficiency. IEICE Transactions on Information and Systems, 93(2), 315–325. 
doi:10.1587/transinf.E93.D.315

Moustakides, G. V., & Verykios, V. S. (2008). A maxmin approach for hiding frequent itemsets. Data & Knowledge 
Engineering, 65(1), 75–89. doi:10.1016/j.datak.2007.06.012

Nourafkan, M., Rastegari, H., Dehkordi, M.N. (2015). An algorithm for hiding sensitive frequent itemsets. 
International Journal of Advances in Soft Computing and its Applications, 7(1).

Oliveira, S. R. M., & Zaiane, O. R. (2002). Privacy preserving frequent itemset mining. In Proceedings of the 
International Conference on Data Mining (ICDM), Maebashi City, Japan (pp. 43-54).

Oliveira, S. R. M., & Zaiane, O. R. (2003). Algorithms for balancing privacy and knowledge discovery in 
association rule mining. In Proceedings of the 7th International Database Engineering & Applications Symposium 
(pp. 54–63). doi:10.1109/IDEAS.2003.1214911

http://dx.doi.org/10.1007/978-3-319-07455-9_9
http://dx.doi.org/10.1145/1183614.1183721
http://dx.doi.org/10.1007/978-0-387-09699-5_23
http://dx.doi.org/10.1007/s10115-008-0178-7
http://www.borgelt.net/apriori.html
http://dx.doi.org/10.1007/s10489-012-0377-5
http://dx.doi.org/10.1145/1951365.1951370
http://dx.doi.org/10.1007/978-3-540-85654-2_2
http://dx.doi.org/10.1016/j.aei.2006.12.003
http://dx.doi.org/10.1145/1244002.1244092
http://dx.doi.org/10.1287/isre.1050.0056
http://dx.doi.org/10.1587/transinf.E93.D.315
http://dx.doi.org/10.1016/j.datak.2007.06.012
http://dx.doi.org/10.1109/IDEAS.2003.1214911


International Journal of Data Warehousing and Mining
Volume 14 • Issue 2 • April-June 2018

59

Öztürk, A. C., & Ergenç-Bostanoğlu, B. (2017) Itemset hiding under multiple sensitive support thresholds. In 
Proceedings of the 9th International Joint Conference Knowledge Engineering and Knowledge Management 
(KMIS) (pp. 222-231), Madeira, Portugal.

Pei, J., Han, J., & Mao, R. (2000). CLOSET: An efficient algorithms for mining frequent closed itemsets. In 
Proceedings of the DMKD Workshop.

Pei, J., Han, J., & Mao, R. (2000). CLOSET: An efficient algorithm for mining frequent closed itemsets. In 
Proceedings of the ACM-SIGMOD Int. Workshop Data Mining and Knowledge Discovery (pp. 11–20).

Pontikakis, E. D., Tsitsonis, A. A., & Verykios, V. S. (2004). An experimental study of distortion-based techniques 
for association rule hiding. In Proceedings of the 8th Annual Conference on Data and Applications Security, 
Catalonia, Spain. doi:10.1007/1-4020-8128-6_22

Stavropoulos, E. C., Verykios, V. S., & Kagklis, V. (2016). A transversal hypergraph approach for the frequent 
itemset hiding problem. Knowledge and Information Systems, 47(3), 625–645. doi:10.1007/s10115-015-0862-3

Sun, X., & Yu, P. S. (2005). A border-based approach for hiding sensitive frequent itemsets. In Proceedings of 
the 5th IEEE International Conference on Data Mining (ICDM) (pp. 426-433).

Sun, X., & Yu, P. S. (2007). Hiding sensitive frequent itemsets by a border-based approach. Computing in Science 
& Engineering, 1(1), 74–94. doi:10.5626/JCSE.2007.1.1.074

Taniar, D., Rahayu, W. C. S., Lee, V., & Daly, O. (2008). Exception rules in association rule mining. Applied 
Mathematics and Computation, 205(2), 735–750. doi:10.1016/j.amc.2008.05.020

Verykios, V. S., Emagarmid, A. K., Bertino, E., Saygin, Y., Dasseni, E. (2004). Association rule hiding. IEEE 
Transactions on Knowledge and Data Engineering, 16(4), 434-447. doi:10.11-.09/TKDE.2004.1269668

Weng, C., Chen, S., & Lo, C., H. (2008). A novel algorithm for completely hiding sensitive association rules. In 
Proceedings of the 8th International Conference on Intelligent Systems Design and Applications. doi:10.1109/
ISDA.2008.180

Wu, Y. H., Chiang, C. M., & Chen, A. (2007). Hiding sensitive association rules with limited side effects. IEEE 
Transactions on Knowledge and Data Engineering, 19(1), 29–42. doi:10.1109/TKDE.2007.250583

Yildiz, B., & Ergenç, B. (2012). Integrated approach for privacy preserving itemset mining. Lecture Notes in 
Electrical Engineering, 110, 247–260. doi:10.1007/978-1-4614-1695-1_19

Ahmet Cumhur Öztürk received the BSc degree in Computer Engineering from Atılım University, Turkey. From 2006 
to 2009 he worked as a software engineer in IT industry. In 2010 he joined Adnan Menderes University as lecturer. 
He received the MS degree in Computer Engineering from Izmir Institute of Technology. He is currently a lecturer in 
Adnan Menderes University and PhD student in Computer Engineering department of İzmir Institute of Technology.

Belgin ERGENÇ received the Diploma Degree in Computer Science from Middle East Technical University, Ankara, 
Turkey in 1983. She worked with different titles and responsibilities in companies like Kordsa, Aksa, Dusa, and 
Tesco during 1983 – 2000. She received her Master’s Degree in Computer Engineering from Izmir Institute of 
Technology, Turkey in 2002. She continued her education and research in joint PhD program between Paul Sabatier 
University of Toulouse, France and Ege University, İzmir, Turkey between the years of 2002-2008 and received 
her PhD degree from both universities. After 17 years of industrial experience she joined academia in 2000. She 
is an associate professor in the Department of Computer Engineering at Izmir Institute of Technology, Turkey. Her 
main research interests include query optimization in distributed databases, association rule mining and query 
processing for linked data. She is managing the research laboratory of Dworld.

http://dx.doi.org/10.1007/1-4020-8128-6_22
http://dx.doi.org/10.1007/s10115-015-0862-3
http://dx.doi.org/10.5626/JCSE.2007.1.1.074
http://dx.doi.org/10.1016/j.amc.2008.05.020
http://dx.doi.org/10.1109/ISDA.2008.180
http://dx.doi.org/10.1109/ISDA.2008.180
http://dx.doi.org/10.1109/TKDE.2007.250583
http://dx.doi.org/10.1007/978-1-4614-1695-1_19

