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ABSTRACT

In this paper, a top-k pseudo labeling method for semi-supervised self-learning is proposed. Pseudo 
labeling is a key technology in semi-supervised self-learning. Briefly, the quality of the pseudo label 
generated largely determined the convergence of the neural network and the accuracy obtained. In 
this paper, the authors use a method called top-k pseudo labeling to generate pseudo label during the 
training of semi-supervised neural network model. The proposed labeling method helps a lot in learning 
features from unlabeled data. The proposed method is easy to implement and only relies on the neural 
network prediction and hyper-parameter k. The experiment results show that the proposed method 
works well with semi-supervised learning on CIFAR-10 and CIFAR-100 datasets. Also, a variant of 
top-k labeling for supervised learning named top-k regulation is proposed. The experiment results 
show that various models can achieve higher accuracy on test set when trained with top-k regulation.

Keywords
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INTRODUCTION

Semi-supervised learning is a special form of machine learning and deep learning method. The aim of 
semi-supervised learning is to utilize the unlabeled data that are often easy and cheap to be obtained. 
In practice, the availability of labeled data and unlabeled is asymmetrical. The unlabeled data is easy 
to obtain and large in amount, but there are fewer ways to utilize them fully. Semi-supervised learning 
solves the problem by training the classifier using both the labeled data and unlabeled data at the 
same time. Semi-supervised learning has recently become more popular and practically relevant due 
to the variety of problems for which vast quantities of unlabeled data are available, such as text on 
Web sites, protein sequences, or images (Zhu, 2005). Semi-supervised learning can be categorized 
into generative model (Kingma et al., 2014; Pu et al., 2016), co-training method (Blum & Mitchell, 
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1998; Sindhwani & Rosenbery, 2008), and self-training method (Berthelot et al., 2019; Lee, 2013; 
Sohn et al., 2020; Xie et al., 2020; Zhang et al., 2018). In recent years, researchers have focused more 
on the self-training method.

Generally, the idea of self-learning is to first train the classifier with labeled data, and then to 
use the trained classifier to classify, and get a predicted label for unlabeled data. In this study, the 
predicated label of unlabeled data can be used as the so-called pseudo label. Finally, the labeled data 
with real label and the unlabeled data with pseudo label can be used to train the classifier in the next 
iteration until the classifier converges. The ideal of self-learning is also that the quality of the classifier 
is largely determined by the quality of the pseudo label generated, and vice versa.

The pseudo label can be classified into hard (pseudo) label and soft (pseudo) label. The soft label 
method is to use the neural network prediction as the label of unlabeled data in semi-supervised training, 
which means the soft label is the SoftMax output of the model and represents the likelihood that unlabeled 
data belong to each class. The hard label method is to choose the class with the highest probability 
in SoftMax prediction as the label of unlabeled data (the hard label is a one-hot vector in most of the 
cases). It is clear that both soft label and hard label are inaccurate for unlabeled data. The soft label 
contains too much noises, and the hard label may be the incorrect with high probability. Both the noisy 
soft label and the incorrect hard label will prevent the semi-supervised model from being convergent.

In this study, the authors focused on the generating of pseudo label for self-learning based semi-
supervised learning, and proposed a new method to generate pseudo label. The new method is named 
top-k labeling (or top-k label guessing). Briefly, the proposed labeling method chooses the top-k elements 
in model prediction as pseudo label, and sets the other elements in pseudo label to zero. This method 
is different from existing methods. Also, the proposed method can collaborate with any existing semi-
supervised learning algorithms that were designed to train neural model with labeled data and unlabeled 
data at the same time, such as Mixup (Zhang et al., 2018) and MixMatch (Berthelot et al., 2019).

Among all the self-learning based semi-supervised learning algorithms, the authors thought 
Mixup (Zhang et al., 2018) and MixMatch (Berthelot et al., 2019) might be the best in terms of 
simplicity and efficiency. Thus, in this study, the authors chose Mixup and MixMatch as the base 
semi-supervised training algorithm. The integration of top-k pseudo labeling and Mixup/MixMatch 
semi-supervised training algorithm produces a powerful method. Indeed, the experiments demonstrate 
that it is robust to the number of labeled data, and exhibits fast convergence ability. Notably, using Wide 
Resnet (Zagoruyko & Komodakis, 2016) as the backbone, with the help of top-k pseudo labeling, the 
Mixup/MixMatch achieves 71.3%/90.10% top-1 test accuracy within 1000 epochs of training when 
there were only 25 labeled data per class (250 total labeled data) over CIFAR-10 dataset, respectively.

The main contributions of the paper are as follows:

1. 	 The authors propose a new method named top-k pseudo labeling to generate pseudo labels by 
the classifier being trained. The method is easy to implement and can be integrated into any 
self-learning based semi-supervised learning methods.

2. 	 To solve the problem of the choosing hyperparameter k, the authors propose dynamic schedule 
policies for k in top-k pseudo labeling method.

3. 	 The authors propose a variant of top-k labeling for supervised learning named top-k regulation. 
Experiment results show that it improves the accuracy of various models on CIFAR-10/100 dataset.

BACKGROUND

Cotraining (Blum & Mitchell, 1998) may be the first attempt to classify unlabeled data with the help of 
enormous labeled data. In many machine learning contexts, unlabeled data are more readily available 
than labeled data. A relevant example is the problem of Web page classification. Classifying Web 
pages into categories requires much time to manually label hundreds of millions of unlabeled Web 
pages. The purpose of cotraining (Blum & Mitchell, 1998) is to take advantage of many unlabeled 
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Web pages as much as possible. Cotraining provides a framework based on principal component 
analysis for learning from both labeled and unlabeled data.

Mixup (Zhang et al., 2018) is in fact a data augmentation method that effectively helps alleviating 
the confirmation bias problem (Tarvainen & Valpola, 2017). Mixup trains a neural network on convex 
combinations of pairs of examples and their labels; then, it regularizes the neural network to favor simple 
linear behavior in-between training examples. The Mixup random selects labeled data ( , )x y

i i
 and 

unlabeled data ( , )x y
j j

, and constructs a virtual training example l l l lx x x x
i i j j
+ −( ) + −( )( )1 1, , 

in which l ∈ 

0 1, . In this way, Mixup extends the training distribution by incorporating the prior 

knowledge that linear interpolations of feature vectors should lead to linear interpolations of the associated 
targets. Although the Mixup method is straightforward and introduces minimal computation overhead, 
it gave a new state-of-the-art performance on the CIFAR-10 and the CIFAR-100 dataset in 2018.

Mixup (Zhang et al., 2018) can be categorized into self-training and semi-supervised training 
algorithm, too. The idea of self-learning is to first train the classifier with labeled data and then 
to use the trained classifier to classify and get a predicted label for unlabeled data. Finally, Mixup 
combines labeled data and the data with the predicted label into a new training dataset. The classifier 
is re-trained with the new training dataset, and the procedure repeated until a satisfied classifier is 
got. This is why the method is called self-training.

The biggest problem of the vanilla self-training technique is that the classifier uses its own 
prediction to train itself. As a result, the mis-predicated labels will reinforce themselves, and then the 
classifier will overfit to incorrect labels. This is the so-called confirmation bias problem (Tarvainen 
and Valpola, 2017). The root cause of the problem is that the classifier is supervised by wrong labels, 
the classifier itself cannot reclaim the wrong labels, and this degenerates the model. Mixup (Zhang 
et al., 2018) is a good attempt to solve the problem, which demonstrates good generalization ability. 
Both MixMatch (Berthelot et al., 2019) and FixMatch (Sohn et al., 2020) extend Mixup method. 
MixMatch (Berthelot et al., 2019) guesses low-entropy labels for data-augmented unlabeled examples 
and mixes labeled data and unlabeled data using Mixup. MixMatch feeds N augmented unlabeled 
data into classifiers and uses the sharpened average of N prediction as pseudo label; this process is 
called label guessing or labeling.

FixMatch (Sohn et al., 2020) first generates pseudo-labels using the model’s predictions on 
weakly augmented unlabeled images. For a given image, the pseudo-label is only retained if the model 
produces a high confidence prediction. The model is then trained to predict the pseudo label when 
fed with a strongly augmented version of the same image (Sohn et al., 2020). Briefly, FixMatch feeds 
weakly augmented and strongly augmented unlabeled data into the classifier, and gets the two 
predictions P

weak
 and P

strong
. Then, FixMatch then clips the P

weak
with predefined threshold and uses 

the clipped P
weak

as the pseudo label. The model is trained to make its prediction on cross-entropy 
loss between P

weak
 and P

strong
.

Self-Learning with Multi-Prototypes (Han et al., 2019) is a pseudo labeling method that contains 
two phases of training. The first phase is the training phase; the sum of the weighted loss of cross-
entropy between prediction and noisy label and between prediction and corrected label is used as the 
total loss value. The second phase is the label correction phase; in this phase, the unlabeled data that 
randomly select the labeled images from each class are fed into the classifier, then the features of 
unlabeled images and features of labeled images are clustered and guide the correction of the noisy 
label to obtain a corrected label. The two phases are carried out iteratively.

Semi-Supervised Contrastive Learning (Zhang et al., 2022) is another pseudo label correction 
and generation method. It incorporates contrastive loss into semi-supervised learning by introducing 
a co-calibration mechanism to interchange predictions between the two branches. One branch uses 
cross-entropy loss for pseudo label generating, and the other branch uses the pseudo label to search 
for nearest neighbors for contrastive learning. The similarity embedding learned by the contrastive 
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branch is used in turn to adjust the pseudo label. Transudative Semi-Supervised Deep Learning (Shi 
et al., 2018) introduces confidence levels on unlabeled image samples to overcome unreliable label 
estimates on outliers and uncertain samples. It develops the Min-Max feature regularization that 
encourages deep convolutional neural networks to learn feature descriptors with better between-class 
separability and within-class compactness.

All the methods the authors briefly described in this section use a pseudo label that is generated 
and calibrated during training loops to train the model itself. Thus, how the pseudo label is generated 
for unlabeled data is important for the type of semi-supervised training algorithm.

MAIN FOCUS OF THE STUDY

In this study, the authors proposed a pseudo labeling method for semi-supervised learning, named 
top-k labeling. In a multi-class classification problem, SoftMax is always the last layer. In other words, 
SoftMax assigns decimal probabilities to each class in the classification problem. Those decimal 
probabilities are assumed to be summed to 1.0. This additional constraint helps the model converge 
more quickly than it otherwise would, and makes each decimal behave like likelihood of an image 
belonging to a particular class. As to the semi-supervised learning, how to choose appropriate pseudo 
labels for unlabeled data to guide the training process is very important. The choice of appropriate 
pseudo label is also called label guessing. A very direct label guessing method is to use the network 
prediction as pseudo label (Lee, 2013). In their work, Lee generated the pseudo labels after the warm-
up training stage. Shi et al. (2018) used the network prediction as hard pseudo labels for unlabeled 
data, and they used K-nearest neighbors algorithm to calculate the confidence level of each sample 
to discount influences from those adverse samples. In recent works such as MixMatch, scholars have 
used average of the predictions of multiple augmented unlabeled data as pseudo label, which is a type 
of soft pseudo labels, too (Berthelot et al., 2019).

Guessing labels from model prediction are sometimes incorrect, and, in turn, the incorrect labels 
of unlabeled data reinforce the model to predict incorrect labels. Overfitting to incorrect pseudo labels 
predicted by the network is known as confirmation bias (Arazo et al., 2020; Tarvainen & Valpola, 
2017). To help alleviate the confirmation bias problem, Berthelot et al. (2019) used the average of 
the predictions of multiple augmented unlabeled data as pseudo label, while Sohn et al. (2020) used 
cosine distance of unlabeled data to pre-selected labeled data as prior knowledge to reweighting the 
network prediction, and then used the reweighted prediction as pseudo label.

Top-k Labeling
In the classification task, the prediction output of the neural model is in the form of the SoftMax. 
Each element of the SoftMax output can be treated as the likelihood of the input to belong to each 
class. Normally, the argmax of the SoftMax of the logits is treated as the prediction. As an example, 
the authors assume that the prediction of the network is h xq ( )  in which q  represents the model 
parameters and x  represents the input (labeled or unlabeled data). If the output of the model h xq ( ) , 
is produced by the SoftMax layer, then [ , , , ]y y y h x

C0 1 1
 − = ( )q ,in which C  is the number of classes 

in the dataset. If the model is very confident that x  belongs to class i , then y
i
 has the maximum 

value among [ , , , ]y y y
C0 1 1

 - . Ideally, y
i
 is near to 1.0, and the sum of reset elements is near to 0.

Firstly, the authors define the noise of guessed label for unlabeled data in the neural model output. As 
they previously stated, considering x  is the unlabeled data, and y  is the model prediction of x , then 

[ , , , ]y y y h x
C0 1 1

 − = ( )q . Typically, the model output is calibrated by the SoftMax layer, then 
i

C

i
y

=

−

∑ =
0

1
1 0. . 

If y
i
 is treated as the probability that x  belongs to class i , and the ground truth label of x  is y

true
 then the 

noise can be defined as Equation 1, in which p
i
 is the probability that y

i
 is the true label for x :
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noise y x
i y i i

true
q = ⋅

≠∑ 	 (1)

Obviously, the noise from the guessed label will influence the convergence of the semi-supervised 
model, thus the lower the noise the higher the accuracy. For labeled data, the ground truth label has 
zero noise.

As the ground truth label of unlabeled data is unknown, the noise cannot be well defined as Equation 
1 because p

i
 is unknown. The aim of the top-k labeling method is to reduce the label noise to facilitate 

the training of the semi-supervised model. The assumption is that the model may have a level of 
confidence on that fact that unlabeled data x  do not belong to the subset of labels top

K
, also known 

as y top
i K
Ï , where top

K
 is the set of index i  so that y

i
 is the K  top most value from [ , , , ]y y y

C0 1 1
 - , 

in which C  is the number of classes and K  (in upper case) is some specific value for hyperparameter 
k . Then the noise of guessed label can be separated into two parts, as Equation 2 and Equation 3 state:

noise y x y x
i top i i i top i i

k k
q = ⋅ + ⋅

∈ ∉∑ ∑ 	 (2)

noise
y p

K
y

y p

K
y

i top i i

i top i

i top i i

i top i
k

k

k

k
q =

⋅
+

⋅
∈

∈

∉

∉

∑
∑

∑
∑ 	 (3)

i top i
K

p
∈∑  and 

i top i
K

p
∈∑  can be estimated on a validation set as posterior in the context of 

supervised learning. However, in semi-supervised learning, Equation 3 is ill-formed. Taking semi-
supervised training on CIFAR-10 as an example, as the training in progress of the top-k accuracy is 
increasing steadily, the top-9 accuracy of the model being trained will achieve a considerable level 
quickly; thus, for any unlabeled x  there is a label y

i
 in which i topÏ

9
. It is possible to conclude 

that y
i
 is not the true label for x , and thus remove it (i.e., set the corresponding elements to zero) 

from the guessed label y  will reduce the noise. Based on this assumption, Equation 3 can be revised 
into Equation 4:

noise x
p

K
y noise x

i top i

i top i
K

K
q q
' ( ) ≈ ≤ ( )∈

∈

∑
∑ 	 (4)

In the context of semi-supervised learning, the ground truth labels of the unlabeled data are unknown, 
and the model h xq ( )  is trained by guessed labels. To help the model get optimal q , if it is not possible 
to tell the optimizer which label is right, why not telling the optimizer which label is wrong? Based on 
this idea, the authors developed an algorithm named top-k labeling. The aim was to keep only the top-k 
elements of SoftMax prediction untouched and set others to zero when guessing labels for unlabeled 
data. Making full use of the top-k elements of the guessing label may help to alleviate confirmation 
bias problem by reducing the noise from the guessed label and may help to achieve higher prediction 
accuracy on unlabeled data. The top-k label guessing can be described as the algorithm in Figure 1.

For semi-supervised learning algorithms such as Mixup, the top-k label guessing can be applied 
directly. For semi-supervised learning algorithms with data augmentation, such as MixMatch, there 
are two ways to apply top-k label guessing. The first is to apply the top-k label guessing algorithm 
(as described in Figure 1) on the average of prediction of the augmented unlabeled data; the second 
is to apply the top-k label guessing algorithm to each of the prediction of the augmented unlabeled 
data firstly, and then use the average of the output of top-k label guessing algorithm as the guessed 
label. In this study, the authors used only the first method.
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Choosing k
The k in top-k labeling is a hyperparameter. If k equals to the number of classes, the label generated 
by the top-k labeling degenerates to soft label. If k is fixed to 1, the top-k labeling generates a hard 
label. The choice of k may influence the convergence of the model. Choosing a bigger value for k 
implies the guessed pseudo label will include likelihoods of more possible classes and introduce 
more noise. Selecting a smaller value for k means the guessed pseudo label will include likelihoods 
to less possible classes but may opt out the true class from label. As a result, the authors empirically 
developed the following three kinds of methods for choosing the value for k for semi-supervised 
learning, and named these methods as schedule policies of k:

1. 	 Constant policy: Using the same k during training. k can be chosen from 2 to C (C is the number 
of classes). Usually, the authors do not set k to 1 because the prediction of the model is incorrect 
in most cases, especially during the early stage of training. The constant policy is denoted as kN, 
in which N is the value of k.

2. 	 Descendent policy: k value monotonic descendent from high value to low value. The value of k is 
set to C at the beginning and decreases to 2 linearly till the end of training. This policy is denoted as 
p1, p5, and p6, in which k descendent linearly in p1 and descendent like a parabola in p5 and p6.

3. 	 Repeated descendent policy: The training progress is divided into multiple stages, k descendent 
from high value to low value inside each stage. k is set to C at the beginning and decrease to 2 
linearly till the end of each stage. The policy is denoted as p3.

The descendent policy of k is intuitive. At the beginning of the training, the model cannot tell 
which class is incorrect with confidence, so a bigger k is appropriate. As the training progresses, the 
model gets more accurate and a smaller k makes pseudo label closer to the real label. Figure 2 shows 
policies p1, p3, p5, and p6.

Semi-Supervised Training With Top-k Labeling
The top-k labeling method can be directly integrated into any self-learning based semi-supervised training 
algorithm. In this study, the authors applied the top-k labeling method to Mixup and MixMatch. MixMatch 
is based on Mixup, and MixMatch exhibits state-of-the-art performance by a large margin across many 
datasets and labeled data amounts. In the experiments, with Wide Resnet 28x2 as the backbone and only 
250 labeled data on CIFAR-10 dataset, Mixup and MixMatch algorithms get the accuracy of 71.9% and 
90.52% respectively with the help of top-k labeling. The section Experiments provides relevant details.

The MixMatch algorithm is a powerful method and presents the current state-of-the-art performance. 
In the experiments, the authors simply applied the top-k labeling method to MixMatch to generate 
pseudo labels from the model outputs. The Mixup algorithm with top-k labeling (Figure 3) describes 

Figure 1. 
Top-k label guessing algorithm
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a training step of model hq  with labeled data x y
l l
,( )  and unlabeled data ˆ ,_x

u( ) . At the beginning of 
the training step, unlabeled data x̂

u
 are randomly augmented twice, the result is x̂

u1
 and x̂

u2
, respectively.

Top-k Regulation in Supervised Learning
In supervised learning, the model is trained by the data with ground truth labels, and there is no need 
to use guessed labels as target. In this section, the authors introduce a variant of top-k labeling for 
supervised learning named top-k regulation. The top-k regulation for supervised learning differs from 
the top-k labeling for semi-supervised learning, but it is still simple enough to implement, that is, simply 
leaving top-k elements in the SoftMax output of the model along and setting the other elements to zero.

Figure 2. 
Example of k scheduling in top-k labeling, assuming the number of classes is 100 and 1000 epochs of training

Figure 3. 
Mixup with top-k labeling algorithm



International Journal of Data Warehousing and Mining
Volume 19 • Issue 2

8

The assumption is y h x= ( )q , in which x  is the data fed into the neural model h xq ( ) , y  is the 

label of x , ˆ , , ,y y y yC= 



=

� � ��0 1 1  is the SoftMax output and C  is length of target vector. The top-k 

regulation method is to set ŷ
i
 to 0 for all i argmax y

K
Ï ( )̂  and then normalize ŷ  as ˆ ˆ

ˆ
y

y

y
i

C

i

=

=

−

∑ 0

1
. 

The loss value is then computed by loss y y, ˆ( )  but not loss y h x, q ( )( ) , in which loss is the loss function.
In supervised learning, k can be chosen during the training progress according to the top-k 

accuracy on validation or testing set. This policy is named as p0. For policy p0, k is chosen as the 
lowest k that makes top-k accuracy on test set greater or equal to the threshold at the end of each 
epoch. Obviously, the threshold can be a hyperparameter, too. For simplicity, the authors fixed the 
threshold value to 0.99, in this study.

In this section, the authors evaluate the top-k labeling method with MixMatch and Mixup 
algorithm on CIFAR-10/100 datasets (Krizhevsky, 2009), and top-k regulation with various base 
models on CIFAR-10/100 datasets.

For top-k labeling with MixMatch and Mixup, the authors chose Wide Resnet 28x2 as the 
backbone for CIFAR-10 dataset, and Wide Resnet 28x4 for CIFAR-100 dataset. When training the 
model with MixMatch, l

u
 and a  are set to 75 and 0.5, for CIFAR-10, and to 150 and 0.75 for 

CIFAR-100, respectively. When training the model with Mixup, a  is set to 2.0, for CIFAR-10 dataset, 
and set to 0.5, for CIFAR-100 dataset. The mean squared error loss is used in all experiments for both 
labeled data and unlabeled data with Mixup and MixMatch algorithm.

For supervised learning with top-k regulation experiments, the authors tested various base models 
including Wide Resnet 28x2 and Wide Resnet 28x4. Those models are trained by Adam optimizer 
and cross-entropy loss, and the learning rates are fixed to 0.002 in all experiments.

The hardware and software configuration in the experiments are abbreviated as follows: Ubuntu 
Linux 18.04 LTS/amd64, Nvidia RTX 2080Ti GPU, CUDA 11.2, PyTorch 1.10.

Dataset
To demonstrate the efficiency of the proposed method, the authors provided comprehensive 
comparison results on CIFAR-10/100 datasets. The CIFAR-10 and CIFAR-100 dataset are two sets 
of images with reliable labels. The CIFAR-10 dataset has 6000 examples of each of 10 classes, and 
the CIFAR-100 dataset has 600 examples of each of 100 non-overlapping categories. As the authors 
mentioned, both CIFAR-10 and CIFAR-100 dataset have 60000 images in total. In training, both 
labeled and unlabeled data are randomly cropped and randomly flipped (horizontally and vertically).

Experiment Setup
In the experiments, each dataset is split into a training set (labeled), a validation set (unlabeled), and 
a testing set. The number of labeled data are selected from 250, 500, 1000, 2000, and 4000. The 
labeled data and unlabeled data for training are randomly chosen from the training split of the dataset. 
An example is CIFAR-10 dataset and 250 labeled data, which are 250 labeled images and 49,250 
unlabeled data for training, 500 labeled data from the training split of the dataset for validation, and 
10000 labeled data from the testing split of the dataset for testing. Also, the authors applied different 
schedule policies of k in the experiments. As to k, k5 means k is a constant of value 5 during the 
training, p3 means k is scheduled by policy 3 during training, and so on. Finally, the authors presented 
in the Figures and Tables only top-1 accuracy on test split of the dataset.

Experiments on CIFAR-10
The authors used Wide Resnet 28x2 as the base model on CIFAR-10 dataset to evaluate the accuracy of 
the model with top-k labeling with different k values and schedule policies. The value of k varies from 2 
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to 3, 4, 5 if k is a constant, and the schedule policy of k can be p1, p3, p5 and p6 if k is a scheduled. The 
experiments on CIFAR-10 dataset with different numbers of labeled data are shown in Fig 4 and Table 1.

As Figure 4(a) illustrates, the MixMatch algorithm with top-1 labeling achieved the worst accuracy 
among all the configurations. The Mixup algorithm with top-p3 and top-2 are the best and the second 
best, respectively. The results are not unexpected, as in semi-supervised learning labels guessed 
during the early stage of the training are mostly incorrect; setting k to 1 will obviously reinforce the 
confirmation bias problem. MixMatch with the top-p3 labeling method showed an excellent accuracy 
of 90.1%, which is better than MixMatch without the top-k labeling by almost 2%.

Figure 4(b), Figure 4(c), and Figure 4(d) are the test accuracy curves of Wide Resnet 28x2 model 
trained by MixMatch with top-k labeling; the number of labeled data are 500, 1000, and 2000 respectively. 
As Figure 4 and Table 1 show, top-p3 labeling gets the best accuracy when the number of labeled data 
is 250 and 4000, top-p5 labeling gets best accuracy when the number of labeled data are 500 and 2000, 
and top-p6 gets the best accuracy when the number of labeled data is 2000. In all experiments, MixMatch 
with top-k labeling outperforms original MixMatch by different levels. Also, the experiment results in 
Table 1 suggest that the accuracy improvement by top-k labeling method decreases as the number of 
labeled data increase, which means the top-k labeling performs well, especially when guessed labels 
have more noises. It is clear that the less the labeled data, the more the noise in the guessed label.

Figure 4. 
Accuracy Obtained on CIFAR-10 Test Set, Model Trained by MixMatch with Top-k Labeling with 250, 500, 1000, and 2000 Labeled 
Data, Respectively
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Considering MixMatch already presents state-of-the-art semi-supervised performance on 
CIFAR-10 dataset, the authors chose to apply the top-k labeling method for the Mixup algorithm, which 
is less accurate than many of the semi-supervised training algorithms today. The authors designed 
experiments to show the accuracy improved by the top-k labeling method, but not to outperform 
the state-of-the-art performance; so, for each combination of the k and number of labeled data, the 
training only takes 300 epochs. Figure 5 and Table 2 show the experiment results.

The top-k labeling contributes almost 20% percent to the accuracy when there are 250, 500, and 1000 
labeled data, and 5.5% when there are 2000 labeled data for training (Table 2 and Figure 5). In all the 
experiments, Mixup with top-k labeling outperforms the original Mixup algorithm (without top-k labeling).

Based on the experiment results in this section, the authors concluded that top-k labeling 
effectively improves the test accuracy on Wide Resnet 28x2 trained by MixMatch and Mixup 
algorithm. When there are fewer labeled data for training, the model is less accurate, and then the 
guessed label (generated by model prediction) contains more noise. Obviously, the top-k labeling 
method helps much in this situation.

Experiments on CIFAR-100
Unlike the CIFAR-10 dataset, the CIFAR-100 dataset has 100 classes, and CIFAR-100 dataset has 
fewer data per class than CIFAR-10 dataset. Thus, the authors used Wide Resnet 28x4 (5.9 million 
parameters) as the backbone model. The experiment settings are the same as in the previous section, 
and in the experiments the authors used 2000, 3000, 4000, and 10000 labeled data for training. k 
was chosen from 2, 5, 10, p1, p3, p5, and p6. Table 3 and Figure 6 show the experiment results using 
MixMatch training algorithm, while Table 4 and Figure 7 show the experiment results using Mixup 
training algorithm. The results show that for both MixMatch and Mixup training algorithm and a 
different number of labeled training data, the semi-supervised training algorithm with top-k labeling 
outperforms the original algorithm at different levels of improvement in many cases.

The experiment results above confirm that the top-k labeling performs better when there are 
less labeled data for training, or, briefly, when there are more noises in the guessed (pseudo) labels.

Top-k Regulation in Supervised Learning
The experiments in this section demonstrated the efficiency of the top-k regulation in supervised 
learning. Table 5 and Table 6 show the results on Wide Resnet 28x2 model with CIFAR-10 and with 
CIFAR-100 datasets, respectively.

As Table 5 shows, in most cases top-k regulation will not bring negative impact to the convergency 
of the training. On the contrary, the accuracy is improved at different level respectively on different 

Table 1. 
Accuracy of Wide Resnet 28x2 Model Trained by MixMatch Algorithm With and Without Top-k Labeling After 1000 Epochs of 
Training on CIFAR-10 Dataset, Learning Rate Fixed to 0.0002, and l

u
 = 75.0

Nlabeled MixMatch with top-k labeling MixMatch

k=2 k=3 k=4 k=5 k=p1 k=p3 k=p5 k=p6

250 88.78 88.23 87.84 87.88 89.10 90.10* 87.45 88.69 88.47

500 90.85 90.30 90.89 90.21 91.45 90.79 91.76* 90.93 90.12

1000 90.86 91.49 91.38 91.32 91.49 91.11 91.54 91.81* 90.81

2000 92.79 92.94 92.96 92.70 92.79 92.84 92.99* 92.71 92.59

4000 93.97 93.88 93.88 94.07 93.82 94.09* 93.86 94.02 93.86

Note: * best accuracy in each row. k is chosen from 2, 3, 4, 5, p1, p3, p5 and p6, the number of labeled data is chosen from 250, 500, 1000, 2000, and 
4000.
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k. Although the improvement is small, it does prove that top-k labeling/regulation method is effective 
in supervised training. Besides, comparing the result between Table 2 and Table 5, the authors found 

Figure 5. 
Accuracy Obtained on CIFAR-10 Test Set, Model Trained by Mixup with Top-k Labeling With 250, 500, 1000, 2000 Labeled Data, 
Respectively

Table 2. 
Accuracy of Wide Resnet 28x2 Model Trained by Mixup Algorithm With and Without Top-k Labeling After 300 Epochs of 
Training on CIFAR-10 Dataset, Learning Rate Fixed to 0.002

Nlabeled Mixup with top-k labeling Mixup

k=2 k=3 k=4 k=5 k=p1 k=p3 k=p5 k=p6

250 59.23 67.37 68.91 68.40 62.91 71.28* 59.60 60.18 57.18

500 78.82 80.99 81.58* 78.75 75.32 80.86 68.89 80.38 64.06

1000 87.32 87.55 86.97 86.64 86.68 87.28 78.34 88.23* 73.77

2000 90.23 90.31 89.74 89.26 89.71 89.58 88.28 90.54* 85.45

4000 91.73 91.53 91.44 91.77 91.13 91.53 91.12 91.90* 90.64

Note: * best accuracy in each row. k is chosen from 2, 3, 4, 5, p1, p3, p5, and p6; the number of labeled data is chosen from 250, 500, 1000, 2000, and 4000.
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that the Mixup semi-supervised training algorithm with top-k labeling achieves the same level of 
accuracy as supervised training if the number of labeled data is greater or equal to 4000.

The results in Table 5 also indicate that Wide Resnet 28x2 fits CIFAR-10 dataset well with or 
without top-k regulation. For datasets with a smaller number of classes and many samples per class 
such as CIFAR-10, the prediction by Wide Resnet 28x2 model has little noise, which is why top-k 
regulation helps little. To demonstrate how the top-k regulation contributes to the fitting of the model, 
the authors conducted a series of experiments on the CIFAR-100 dataset and various base models.

The results in Table 6 and Figure 8 and in Table 7 and Figure 9 show that top-k regulation with 
a smaller k value brings negative impact on the convergence of the training. This is due to the slow 
convergency of the base model on the CIFAR-100 dataset. If the model cannot converge to a reasonable 
accuracy quickly, top-k regulation with the smaller k will introduce extra noise in predictions.

On the other side, top-k with p0, p1, p3, p5, and p6 behaves very well. The nature of the 
abovementioned policies is starting k at 100 and decreasing as the pace of training epochs. These k 
policies mimic the warm-up process indeed, and finally achieve higher accuracy (Table 6 and Table 
7). Figure 8 and Figure 9 highlight the top-p0 and top-p1 regulations exhibit strong regulation effects 
on model prediction; thus, this allows to observe a significant relative improvement in test accuracy, 
and to conclude that the top-k regulation reduces the noise effectively from model prediction.

Table 6 and Table 7 show that can be found that top-p0 and top-p1 are better than the other k 
policies. Thus, the authors tried to examine how the top-k regulation would do if the model was trained 
for more epochs (Table 8). The experiment evidence that the top-k regulation effectively improves 
the performance of both the smaller model and the larger model.

The authors conducted further experiments on MobileNet (Sandler et al., 2018), DenseNet 
(Huang et al., 2017), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016). They aimed 

Table 3. 
Accuracy of Wide Resnet 28x4 Model Trained by MixMatch Algorithm With and Without Top-k Labeling After 200 Epochs of 
Training on CIFAR-100 Dataset, Learning Rate Fixed to 0.002, a  set to 0.75, and l

u
 set to 150

Nlabeled MixMatch with top-k labeling MixMatch

k=2 k=5 k=10 k=p1 k=p3 k=p5 k=p6

2000 51.96 51.74 51.14 50.45 52.21 52.25* 49.88 50.77

3000 57.10 59.25* 58.03 56.82 57.87 57.66 55.59 57.65

4000 61.49 61.46 61.61 59.67 60.84 60.27 59.67 61.86*

10000 71.02 70.64 69.97 70.09 69.53 68.80 70.33 71.41*

Note: * best accuracy in each row. k is chosen from 2, 5, 10 p1, p3, p5 and p6, the number of labeled data is chosen from 2000, 3000, 4000, 10000.

Table 4. 
Accuracy of Wide Resnet 28x4 Model Trained by Mixup Algorithm With and Without Top-k Labeling After 500 Epochs of 
Training on CIFAR-100 Dataset, Learning Rate Fixed to 0.002

Nlabeled Mixup with top-k labeling Mixup

k=2 k=5 k=10 k=p1 k=p3 k=p5 k=p6

2000 22.33 40.99 44.00 45.92 48.74 41.71 48.95* 44.35

3000 38.40 49.98 50.24 55.22* 54.68 54.58 54.41 54.40

4000 40.46 54.33 56.75 58.19* 56.77 57.36 57.94 57.23

10000 63.51 63.74 65.12 66.71* 65.27 66.57 66.70 65.39

Note: * best accuracy in each row. k is chosen from 2, 5, 10, p1, p3, p5 and p6, the number of labeled data is chosen from 4000, 10000.
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to test how top-k regulation helps the model to converge, but not to achieve a state-of-the-art result. 
Table 8 show the experiment results. For each of the base models, top-p0, top-p1, top-p3, top-p5, 
and top-p6 are deployed. The results show that top-k regulation outperforms the base model much 
on test accuracy, from 5% to 10%, respectively.

The experiments in this section demonstrate that properly selecting k value of top-k regulation 
in supervised learning will help the model to get higher accuracy by reducing prediction noise. 
Typically, top-k regulation with scheduled k value, such as p0 and p1, consistently performs well as 
a result of the warm-up process in the policy. The constant k value is not a good choice if the model 
tends to under-fit. Finally, k as a hyperparameter needs to be carefully selected to make the model 
fitting and generalization better.

CONCLUSION

In this study, the authors identified the noise inside pseudo label as a primary obstacle preventing 
self-learning based semi-supervised learning to get higher accuracy on unlabeled data, and then 
introduced top-k labeling method to generate pseudo labels for self-learning based semi-supervised 
learning. The method is easy to implement and easily integrated into any self-learning algorithms. 

Figure 6. 
Accuracy Obtained on CIFAR-100 Test Set, Model Trained by MixMatch With Top-k Labeling With 2000, 3000, 4000, and 10000 
Labeled Data, Respectively
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Figure 7. 
Accuracy Obtained on CIFAR-100 Test Set, Model Trained by Mixup With Top-k Labeling With 2000, 3000, 4000, and 10000 Labeled 
Data, Respectively

Table 5. 
Accuracy of Wide Resnet 28x2 Model Trained in Supervised Manner With and Without Top-k Labeling After 300 Epochs of 
Training on CIFAR-10 Dataset, With Learning Rate Fixed to 0.002

k 2 3 4 5 6 7 8 9 p0 p1 p3 p5 p6 n/a

Acc. 93.76 93.71 93.66 93.69 93.78 93.62 93.74 93.63 93.78 93.63 93.71 93.91* 93.58 93.64

Note: * best accuracy. k is chosen from 2 to 9, p0, p1, p3, p5 and p6, the best accuracy is in bold face. “n/a” means not applying the top-k regulation. The 
accuracy is computed on CIFAR-10 test set

Table 6. 
Accuracy of Wide Resnet 28x2 Model Trained in Supervised Manner With and Without Top-k Labeling After 300 Epochs of 
Training on CIFAR-100 Dataset, With Learning Rate Fixed to 0.002

k 2 3 4 5 6 7 8 9 p0 p1 p3 p5 p6 n/a

Acc. 38.53 36.62 38.29 34.45 35.80 33.81 37.29 39.73 65.40 70.22 67.47 69.97* 69.53 63.55

Note: * best accuracy. k is chosen from 2 to 9, p0, p1, p3, p5 and p6, the best accuracy is in bold face. “n/a” means not applying the top-k regulation. The 
accuracy is computed on CIFAR-100 test set.
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Figure 8. 
Test Accuracy Obtained on Wide Resnet 28x2 and CIFAR-100 Dataset in Supervised Manner With and Without Top-k Regulation

Table 7. 
Accuracy of Wide Resnet 28x4 Model Trained in Supervised Manner With and Without Top-k Labeling After 300 Epochs of 
Training on CIFAR-100 Dataset, With Learning Rate Fixed to 0.002

k 2 3 4 5 6 7 8 9 p0 p1 p3 p5 p6 n/a

Acc. 43.69 45.13 37.99 36.76 41.69 41.01 44.68 42.11 74.69* 73.11 71.52 72.22 70.17 68.71

Note: * best accuracy. k is chosen from 2 to 9, p0, p1, p3, p5 and p6, the best accuracy is in bold face. ’n/a’ means not applying the top-k regulation to 
neural model output. The accuracy is computed on CIFAR-100 test set.

Figure 9. 
Test Accuracy Obtained on Wide Resnet 28x4 and CIFAR-100 Dataset in Supervised Manner With and Without Top-k Regulation
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The experiment results indicate that the method did help the self-learning based semi-supervised 
algorithm to get better accuracy on unlabeled data at different level. Also, the authors found that the 
top-k regulation, which is a variant of top-k labeling, can help the model generalize better and get 
higher accuracy in supervised learning.

One major limitation of this study is that the authors did not find out how to choose k in top-k 
labeling effectively. The choice of hyperparameter k is empirical, so many rounds of experiment 
may be necessary to find a good k. It would be interesting to further investigate how to choose k 
automatically during the training process. Lastly, the authors would like to conduct more experiments 
on various datasets to further investigate the efficiency of the top-k labeling method in the future.
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Table 8. 
Accuracy of Various Base Model Trained in Supervised Manner With and Without Top-k Regulation After 1000 Epochs of 
Training on CIFAR-100 Dataset, With Learning Rate Fixed to 0.002

Base Model Base Model With Top-k Regulation n/a

k=p0 k=p1 k=p3 k=p5 k=p6

WideResNet 28x4 76.04 76.86* 76.05 75.43 74.59 71.31

WideResNet 28x8 77.94* 77.65 77.22 77.77 75.60 66.69

MobileNet v2 47.10 59.94* 55.89 55.14 54.06 50.53

ResNet 18 73.64* 72.54 72.69 72.33 73.50 62.68

GoogleNet 65.64 68.18 67.99 68.40* 66.43 59.68

DenseNet 121 62.49 54.50 61.58 65.06* 56.17 56.36

DenseNet 161 62.35 65.80 65.08 64.84 63.78 66.13*

Note: * best accuracy in each row. k is chosen from p0, p1, p3, p5 and p6, the best accuracy in each row is in bold face. “n/a” means not applying the 
top-k regulation to neural model output. The accuracy is computed on CIFAR-100 test set.
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