
HAL Id: hal-01140171
https://paris1.hal.science/hal-01140171

Submitted on 7 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mining Users’ Intents from Logs
Ghazaleh Khodabandelou, Charlotte Hug, Camille Salinesi

To cite this version:
Ghazaleh Khodabandelou, Charlotte Hug, Camille Salinesi. Mining Users’ Intents from Logs. Inter-
national Journal of Information System Modeling and Design, 2015, Special Issue from the 8th IEEE
International Conference on Research Challenges in Information Science (RCIS): 2014, Marrakesh,
Morocco, 6 (2), pp.43-71. �10.4018/IJISMD.2015040102�. �hal-01140171�

https://paris1.hal.science/hal-01140171
https://hal.archives-ouvertes.fr


Mining Users' Intents from Logs 
 

Ghazaleh Khodabandelou, Charlotte Hug, Camille Salinesi 

Centre de Recherche en Informatique, Université Paris 1 Panthéon – Sorbonne, France 

 

 

ABSTRACT 
Intentions play a key role in information systems engineering. Research on process modeling 

has highlighted that specifying intentions can expressly mitigate many problems encountered 

in process modeling as lack of flexibility or adaptation. Process mining approaches mine 

processes in terms of tasks and branching. To identify and formalize intentions from event 

logs, this work presents a novel approach of process mining, called Map Miner Method 

(MMM). This method automates the construction of intentional process models from event 

logs. First, MMM estimates users' strategies (i.e., the different ways to fulfill the intentions) in 

terms of their activities. These estimated strategies are then used to infer users' intentions at 

different levels of abstraction using two tailored algorithms. MMM constructs intentional 

process models with respect to the Map metamodel formalism. MMM is applied on a real-

world dataset, i.e. event logs of developers of Eclipse UDC (Usage Data Collector). The 

resulting Map process model provides a precious understanding of the processes followed by 

the developers, and also provide feedback on the effectiveness and demonstrate scalability of 

MMM.  

 

Keywords: Intentional Process Models, Machine Learning, Process Mining, Hidden Markov 

Models 

 

 
INTRODUCTION 
 
Process mining approaches aim at modeling users' behaviors in terms of sequences of tasks 

and branching in an automatic way (Van der Aalst, 2004) (Agrawal, 1998) (Cook, 1998) 

(Datta, 1998) (van Dongen, 2004) (Weijters, 2003) (Herbst, 2000) where the mined process 

models are activity-oriented models. However, processes can be seen as teleological (Ralph, 

2008). A teleological process is a process that takes into account the teleological behaviors of 

process enactment (behaviors attached to the notion of goal). It describes the intentions (goals, 

objectives) associated with a result that an individual wants to obtain. In the late 90s, Rolland 

introduced a new category of process models, called intentional process models (Rolland, 

1999), which takes into account the notions of intention and strategy to model the process 

enactment. A strategy is an approach, a manner or a means to achieve an intention (Rolland, 

2007). Specifying intentions and strategies has proved to be a powerful tool to better 

understand the deep nature of processes, to see how processes interweave and combine, to 

abstract processes and visualize them under man-manageable form, even when they are 

extremely complex (Rolland, 2005). Intentional process models have emerged to offer a 

flexible structure to model processes. Many research works in intentional process modeling 

demonstrate that the fundamental nature of processes is mostly intentional and the processes 

should be modeled from an intentional point of view (Davis, 1989) (Plihon, 1996) (Rolland, 

1999). According to these approaches, an enacted process is a reflection of humans' intention 

performed as a sequence of activities. Therefore, it is not possible to model humans' cognitive 

operators, e.g., thinking, deciding, and acting process only in terms of a simple sequence of 

activities. Indeed, an intention is a goal that a user wants to achieve regarding the context in 



which he/she is working (Plihon, 1996). The notion of context plays a key role for the 

intention, since a given intention emerges in a given context, which not only promotes its 

appearance, but also influences the realization of this intention (Rolland, 2005). In the method 

engineering context (Jankovic, 2013), it is essential to capture intentions that led to the 

implementation of activities to understand methods used by stakeholders and their ways of 

working. 

Intentions are a first class concept of information systems engineering (Rolland, 2005). In the 

early 80s, intentional process models have been proposed in information systems community 

(Swanson, 1974) (Christie, 1981) as a potential theoretical foundation to determine user's 

behavior (Davis, 1989). Intention models take root in a former work Technology Acceptance 

Model (TAM) (Davis, 1989) one of the extensions of Theory of Reasoned Action (TRA) 

(Ajzen, 1975) designed to model humans' behavioral intention, especially for computer usage 

behavior. 

The TRA has proven effective in predicting and explaining humans' behavior through various 

domains. Since the early 90s, intentional software process specification have been promoted 

as a driving paradigm to study strategic alignment (Thévenet, 2007) (Etien, 2006) to define 

actors and roles, to specify the outcome of business process models (Salinesi, 2003) and name 

them, to analyze, to support guidance (Rolland, 1993) (Deneckère, 2010) to describe 

intentional services (Rolland, 2010), to handle traceability issues (Jarke, 1993) to express 

pervasive information systems (Najar, 2011) to define systems requirements (Ralyté, 1999), 

to study users' behavior to identify and name use cases, to tailor methods (Ralyté, 2003) or to 

design more flexible methods (Mirbel, 2006), etc. Further, research on guidance in method 

engineering shows that many method engineering issues, such as rigidity or lack of 

adaptation, are solved more effectively when intentions and strategies are explicitly specified 

(Rolland, 2005).  

Many works (Rolland, 1998) on intentional process modeling indicate how to express the 

intentions, formalize them in models, relate them with other concepts and analyze them to 

solve a series of information systems engineering issues. However many questions still 

remain: can all the intentions be identified using those approaches? Do the theoretical 

intentions in models fit with the actual real life intentions, and how to check this? As process 

mining approaches aim at discovering and modeling activity process models from event logs, 

in the same manner, intentions could be identified and modeled from event logs. To the best 

of our knowledge, event logs have been neglected to model intentional process models so far. 

Therefore, the main challenge of this work is how to identify and formalize intentions from 

event logs. 

This paper proposes a novel approach of process mining, called Map Miner Method (MMM) 

that mines users' activities within a given process using event logs. MMM stands out from 

process mining approaches by modeling the process in terms of users' intentions and 

strategies instead of users' activities. MMM takes users' traces as input to find users' intentions 

and strategies and constructs a Map process model (Rolland, 1999). More precisely, MMM 

consists in inferring the implicit users' intentions and strategies from users' traces recorded 

during the enactment of a given process. The discovery of intentions and strategies allows 

constructing a Map process model and thereby rebuilding the actual process model, i.e., the 

model followed by users. MMM is a generic approach which can be useful at different stages 

of process model life-cycle, for instance: (i) at the requirements level, to semi-automatically 

construct the actual processes enacted by users in organizations, from their daily activities 

recorded in logs; (ii) at the project management level, to check the alignment between a 

prescribed process model and what users actually do and possibly adapt and improve it to 

actual practice, (iii) at the application level, to monitor users activities and provide them 

recommendations at run-time according to their intentions. 



MMM generates intentional process models specified with the Map formalism (Rolland, 

2005). In this work, this formalism is chosen rather than other goal-oriented formalisms as i* 

(Yu, 2011) or KAOS (Dardenne, 1993) since, (a) it has already proven effective for specifying 

software engineering processes (Rolland, 1993), (b) it supports process variability and multi-

process specification (Rolland, 1999), (c) it combines intentions and strategies at multiple 

levels of abstraction (Rolland, 2005), and (d) it scales well to large and complex processes 

(Rolland, 2009). 

 

 
 

Figure 1. Overview of Map Miner Method. 

 

From a technical point of view, MMM consists of three stages (see Figure 1 for an overview 

of MMM): (i) Estimating users' strategies: MMM uses Hidden Markov Models (HMMs) 

(Rabiner, 1989) to model users' activities into a multi-level topology of users' activities and 

corresponding strategies. Then using different techniques of learning, the users' strategies can 

be estimated. Mining the intentions needs the design of new algorithms and tools to generate 

Map process models. In this perspective, two algorithms are developed: (ii) Deep Miner 

algorithm: from estimated users' strategies, Deep Miner algorithm identifies users' intentions 

and discovers Map process models comprising  low-level intentions, which are called pseudo-

Maps, and (iii) Map Miner algorithm: starting from pseudo-Maps, Map Miner algorithm 

constructs Map process models by clustering low-level intentions into high-level intentions 

with respect to the definition of intention in the Map formalism. 

The entire proposed method was applied and validated on a large-scale dataset, i.e., on event 

logs of developers of Eclipse UDC (Usage Data Collector) (Eclipse, 2013) which 

demonstrates the scalability of MMM. The resulting Map process model provides a precious 

understanding of the processes followed by the developers.  

 

The reminder of this work is organized as follows: Section 2 presents the more salient process 

mining approaches and techniques which are used for mining processes. This current work is 

then positioned regarding these approaches. Section 3 investigates Map Miner Method which 

consists in three stages; first, we present Hidden Markov Models and how they can be adapted 

to estimate users' strategies; second, Deep Miner algorithm is introduced to explain how users' 

intentions can be modeled in a low-level of abstraction; finally, Map Miner algorithm is 

presented to explain how users' intentions can be modeled in a high-level of abstraction. 

Results of the case study are presented in Section 4. Finally, Section 5 concludes this work 

and gives the perspectives.  

 

RELATED WORKS 
 
The idea of mining process models from workflow logs was introduced by Agrawal 

(Agrawal, 1998). At the same time, Datta proposed to discover business process models 

(Datta, 1998) by using their own process mining technique. Cook et al. investigated similar 

issues in the context of software engineering processes (Cook, 1998). The majority of the 

process mining techniques focus on process models discovery based on observed event logs 



(Van der Aalst, 2004) (Agrawal, 1998) (Cook, 1998) (Datta, 1998) (van Dongen, 2004) 

(Weijters, 2003) (Herbst, 2000). An overview of the early work in this domain is given in 

(Van der Aalst, 2003). The most important process mining techniques are described as 

follows: 

 

 Inference methods: these methods infer process models with a trade-off between results 

accuracy and noise robustness. Cook compares in (Cook, 1995) three inference algorithms 

of RNet (Das, 1994), Ktail (Biermann, 1972) and Markov models (Baum, 1966) for 

process discovery. The latter two are considered as the most promising approaches.  

 

 α-algorithm (Van der Aalst et al., 2004): this algorithm was proposed by Van der Aalst et 

al. to rebuild the causality in the Petri nets workflow from the existing relations in the 

event log. α-algorithm cannot handle noise and certain complicated routing constructs of 

workflow nets as loops and long-term dependencies, particularly during complex situations 

(Rozinat, 2010).  

 

 Directed acyclic graphs (Agrawal, 1998): this approach proposes to transform events into 

dependency graphs or workflow graphs using directed acyclic graph, representing events 

and their causal relations without loop. However, using this kind of graphs to model the 

processes is delicate due to the existing loops in process models.  

 

 Inductive workflow acquisition (Herbst, 2000) (Herbst, 2004): in the context of workflow 

management, this technique aims at finding the best Hidden Markov Models (HMMs) 

(Rabiner, 1989) that reflect the process models acquisition out of workflow models as well 

as their adaptation to requirements changes. A notable difference of this technique with 

others is that the same task can appear multiple times in the workflow model, i.e., the 

approach allows for duplicate tasks. However, some works using this approach are limited 

to sequential models (Herbst, 2000). 

 

 Hierarchical clustering (Greco 2005) (Song, 2009): this technique separates a set of event 

logs for a given process into clusters and finds the dependency graph for each log. Some 

clustering techniques use theory of regions to discover processes (van der Aalst et al., 

2010) (van der Werf, 2008) (Carmona, 2008).  

 

 Genetic algorithm (De Medeiros, 2005): this technique provides process models (Petri 

nets) built on causal matrix, i.e., input and output dependencies for each activity. This 

technique tackles problems as noise, incomplete data, non-free-choice constructs, hidden 

activities, concurrency, and duplicate activities. Nevertheless, it requires the configuration 

of many parameters to deal with irrelevant data, which is a complex task. 

 

 Heuristic algorithm (Weijters, 2003) (van der Aalst et al., 2002) (Weijters, 2001): this 

technique is based on α-algorithm. It calculates the frequencies of relations between the 

tasks, e.g., causal dependency, loops, etc. and construct dependency/frequency tables and 

dependency/frequency graphs. However, heuristic algorithm needs a complex 

configuration phase since there are several parameters to adjust.  

 

 

The process mining approaches use many well-known or particular algorithms, classification 

or clustering techniques, ontologies-based techniques, etc. For instance, they mainly use 



α-algorithm to model event logs. MMM derives the essential principle of process mining 

field, which means mining event logs to find users' behaviors pattern within a process. 

However, contrary to process mining approaches, MMM models users' behaviors in terms of 

their intentions and strategies. It adopts intention-oriented process model to design the 

processes while process mining approaches specify users' behaviors in terms of sequences of 

tasks and branching. Process mining approaches adopt an operational view focusing on how 

the process is performed, i.e., they do not consider users' intentions as a part of the process 

enactment. In contrast, MMM focus on what the process is intended to achieve, thus 

providing the rationale underlying the process, i.e. why the process is performed. In other 

words, MMM follows the humans' intentions during the process enactment as the force that 

drives the process, and concentrate on what the process must do, i.e., on its rationale. 

Intentions are fundamental to human behavior, playing a central role in both its enactment and 

its understanding . In addition, the Map process models discovered by MMM are not 

hampered by the problem of loops. This is due to the fact that Map process models can handle 

the loops as its sections can be enacted several times, until the desired intention is achieved.   

 

From a technical point of view, due to the multi-levels structure of MMM (users' activities, 

strategies and intentions), there has to be a mathematical model (i.e., HMM) to set up, at least, 

a two-level topology for the users' activities and strategies.  None of the existing techniques 

considers the hidden states of HMMs as humans' cognitive process (e.g., users' strategies). 

The proposition of this paper is to model an HMM makes a huge difference of the application 

of HMMs on the logs to model users' behaviors. 

 

The mathematical model used in MMM is Hidden Markov Models (HMMs). Among the 

techniques to model different aspects of humans' behavior (Gray, 1992), HMMs have been 

proven to be appropriate for modeling the real world process, particularly unobservable 

cognitive processes (Hayashi, 2003) (Hoey, 2007). HMMs are stochastic finite automaton and 

a special kind of Bayesian Network (Friedman, 1997). HMMs offer all the properties of the 

stochastic model in both statistical and probabilistic framework. HMMs have been used in a 

wide variety of contexts and have proven valuable in diverse fields such as speech recognition 

(Juang, 1991), signal processing (Kil, 1996), etc. Several reasons motivate this choice, which 

are described hereafter. The real-world processes generate a sequence of signals - observable 

discrete or continuous symbols (representation of a physical phenomenon) (Rabiner, 1989). 

Due to the nature of the input data - the users' activities - and the output data - the users' 

intentions and strategies - a stochastic model should be chosen because it allows: 

(i) describing a given system as a theoretical statistical model, e.g., knowing the significance 

of the observed sequences, (ii) analyzing the observed sequences over time, (iii) modeling and 

predicting the latent states of these observed sequences, (IV) extracting the characteristics of 

observed and latent sequences. 

 

Discovering intentions from event logs is not limited to MMM. Mining humans' goals is a 

challenging issue that is widely studied today in the contexts of business process (Outmazgin, 

2013) and information retrieval (Yu, 1987) (Hashemi, 2008) (Baeza-Yates, 2006) (Chen, 

2002). Intention mining approaches usually identify individual intentions for individual 

activities. Analyzing single activities leads to low-level intentions, also called basic intentions 

or action-intentions (Chen, 2002), which are closer to activities than proper intentions. On the 

contrary, MMM offers a model that integrates the concept of high-level intentions by 

developing a new method that is based on extracting the information out of users' traces. This 

information (intentions and strategies of users) is then modeled by an intentional process 

model. Analyzing a sequence of activities allows determining the high-level intentions, e.g., 



organizational goals. Indeed, intentions in a process are related to each other to reach the 

ultimate goal; thus, intentions cannot be considered as independent entities resulting from a 

single activity. 

 

MAP FORMALISM 
 
Map process model 
 
Map is an intentional process metamodel (Rolland et al., 1999). Map process model (an 

instance of Map metamodel) allows representing process models in terms of users' intentions 

and strategies. Figure 2 illustrates a Map process model where the nodes represent the 

intentions and the edges represent the strategies. A set of <Source Intention, Target Intention, 

Strategy> represents a section in the Map. Map allows representing flexible process models, 

enacted in a dynamic way since the sections of a Map can be executed non-sequentially and 

as long as intentions are not completely fulfilled.  

An intention is a goal that a user wants to achieve regarding the context in which he/she is 

working. Indeed, if intentions do not produce any activity, they cannot be directly detected 

from traces. In other words, we are only able to determine users' intentions through analyzing 

their performed activities. From a technical point of view, the notion of intention in MMM 

highly depends on the definition of the intention in the Map formalism, since MMM 

formalizes the intentions by using this formalism. 

 

 
 

Figure 2. An example of Map process model. 

 

Pseudo-Map  
 

The intentions that MMM discovers have a higher degree of precision in the sense that they 

are more precise than the prescribed intentions. The notion of sub-intentions does not exist in 

the Map semantic. This led us to create a new concept in the Map formalism: sub-intention. 

Therefore, this notion can be considered as an extension of the Map metamodel. Sub-

intentions are the finest intentional objects, which are associated to a parent intention, and an 

intention is fulfilled if at least one of its sub-intention is fulfilled. They are shown with small 

nodes in Figure 3 and indexed by 1 2, ,SI SI . A process model containing sub-intentions, 

strategies, the Start and Stop intentions is called a pseudo-Map. MMM first discovers the 

sub-intentions and then it clusters them into high-level intentions to obtain a Map process 

model. The relationships between users' activities, strategies, and intentions are defined as: 

performing one or several activities relates to the enactment of a strategy and consequently to 



the fulfillment of an intention. The relationships between users' activities and strategies are 

defined in the matrices. This is explained in the next section. 

 

 
 

Figure 3. An example of a pseudo-Map. 

 
MAP MINER METHOD 
 
Map Miner Method (MMM) aims at inferring underlying users' intentions and strategies from 

users' traces recorded during the process enactment. As mentioned earlier, the definition of 

intention in MMM highly depends on the definition of the intention in the Map formalism. In 

Map formalism, intentions can be fulfilled with different alternative ways, i.e., strategies. 

These strategies must lead to intentions. Indeed, the relationships between users' activities, 

strategies, and intentions are defined as: performing one or several activities relates to the 

enactment of a strategy and consequently to the fulfillment of an intention. . MMM uses this 

rule to discover the intentions. The relationships between users' activities and strategies are 

estimated in the matrices. Then it uses the relationships between the strategies and intentions 

defined in the Map formalism to discover the intentions by using Deep Miner and Map Miner 

algorithms. This all is explained throughout this section. 

 

Applying Hidden Markov Models  
 

A HMM can be considered as the simplest Dynamic Bayesian Network (DBN) (Murphy, 

2002). It turns out that the topology of HMMs is particularly adapted to model the relations 

between strategies and activities in the Map formalism. To make it clear, let us consider an 

example for a Map process model enacted with 2 strategies and an HMM realized with 2 

hidden states (see Figure 4). As shown in this figure, strategies are used to pass from one 

intention to another and are made of one or several activities. For instance, strategy 1 allows 

moving from intention a to intention b and is made of activities 
1a ,

3a  and 
4a  (the order is not 

important).  

 

The same structure can be found in a HMM, where hidden states generate observations. In 

other words, hidden state 1 generates the activities 
1a , 

3a  and 
4a . This similar topology 

motivates using HMMs to model hidden states as strategies, and transitions between the 

strategies as intentions. The next sections will describe how to obtain the intentions from the 

transitions. 

 



 
 

Figure 4. An example for a Map process model enacted with 2 strategies (above) and a HMM 

realized with 2 hidden states (below). 

 

 
Mathematical Definition of HMMs 
 
HMMs are stochastic Markov chains used for modeling a hidden sequence by a finite number 

of states. HMMs allow modeling the structure of complex temporal dependencies. In order to 

use HMMs, one needs to determine their topology and estimate their statistical parameters. 

The flexible nature of HMMs, due to their topological structure, allows defining dependencies 

between hidden states and observed data from the past to the future ones, according to the 

context. HMM consists of two complementary Markov processes: hidden and observed 

processes. The states of hidden processes generate the symbol of observed processes. The 

states in hidden processes are not visible but the probability of being in a given state can be 

inferred by computing the Maximum Likelihood (ML) of symbols in observed process. Thus, 

there are two probability parameters: probabilities of the symbol emission and the 

probabilities of the states ‘transition. Let X  be a stationary and discrete source which 

generates a random observable sequence ( , , )x x , of length . The generation process 

follows a Markov chain of order m  (or with memory m), where m is finite, if the transition 

probability from one state to another depends on the m previous states. The choice of the 

order of Markov process ( m ) allows determining how far in the past one has to look to know 

the probability of the next state. The generation process can be written as follows: 

 

 
( 1) ( 1) ( 2) ( 2) 1 1

( 1) ( 1) ( 2) ( 2) ( ) ( )

Pr( | , , , )

Pr( | , , , )m m

X x X x X x X x

X x X x X x X x for m

   

     

    

    
(1.1) 

 
 
 
 



Hidden Markov Models Adapted to MMM 
 
Hereafter, the formal definition of HMM and unsupervised learning approach to compute its 

parameters are discussed. On the one hand, in the Map metamodel, strategies are used to 

move from one intention to another. A strategy is made of one or several activities; 

consequently, intentions are not directly related to activities. Furthermore, activities are 

observable through event logs while strategies are hidden and must be inferred from 

observations. On the other hand, the topology of HMM permits modeling observed process 

(observations) in terms of hidden states (hidden part of observations). Therefore, to model the 

relationships between activities and strategies, HMM models activities as observed process 

and strategies as hidden states. Interestingly, this model also allows inferring intentions since 

once a strategy is inferred from activities, according to the Map formalism, a strategy leads to 

a target intention. For this reason in this framework, the hidden states of HMM are modeled 

as users' strategies and the observed process as users' activities. The set of possible strategies 

is denoted as  and the set of possible activities as . For both Markov processes of an 

HMM, i.e., hidden and observed processes, the topology (the order of the Markov process) is 

defined next. 

 

Topology of HMM in MMM Framework 
 
For each Markov process of an HMM, i.e., for the hidden and the observed process, the 

topology (the order of process) must be defined. When the transition to the next state depends 

only on the current state, the Markov chain is of order 1 (model 1M ). When the transition to 

the next state does not depend on any state, the Markov chain is of order 0 (model 0M ). The 

1 0M M  topology is chosen to model activities and related strategies. 1M  is chosen to model 

the users' strategies transitions and 0M  is chosen to model the users' activities transition. This 

choice is justified by the fact that strategies are performed in a logical order by users; a 

strategy in one step impacts the transition to the next strategy in the next step. Even though 

the chosen model for users' activities is 0M , an activity in a given step depends indirectly on 

the previous performed activity. 

 

 

Hidden process: users' strategies 
 

Let 1( , , ) L

Ls s  s  be a temporal sequence of users' strategies of length L . The topology 

1M  is chosen for hidden process, which means that the strategy 1s  at step  only depends on 

the strategy at step 1 . A homogeneous Markov chain, which parameters are denoted by T  

and π , models the hidden process of strategies with: 

 

     1 1( , ) Pr | , , 2, , ( ) Pru v s v s u u v L u s u u         T (1.2) 

 

The vector   contains the probabilities of strategy at the initial state and the matrix T  

contains the transition probabilities for the following strategies, i.e., the transition 

probabilities from any strategy at step 1  to any other strategy at step  (including itself). 

 

 
 



Observed process: users' activities 
 

Let  1, , L

La a  a  be the temporal sequence of users' activities of length L . 

The model 0M  is chosen for observed process, meaning that the emission of a , at a given 

step , does not depend on any previous observation. It only depends on the hidden strategy 

at the same time step. The emission probability of an a  for a given strategy u  is 

given by: 

 

 ( , ) Pr |a u a uE (1.3) 

 

The matrix E  contains the emission probabilities of any activity for any strategy. Assuming 

that ,  and π  are known, the HMM model is fully described by { , } E T , which 

represents the core information about the HMM behavior. The transition probabilities are the 

probabilities of a hidden state at step  to reach another hidden state at step 1  (or to stay 

in the same state). Let | |N   and | |M   be the cardinals of  and , i.e. the total 

number of hidden states and observed data, respectively. The following constraints must be 

verified by the parameters of an HMM: 

1 1

( , ) 1, ( ) 1,
N M

u

v a

u v a u
 

    T E (1.4) 

 

where 

 

( , ) 1, ( , ) ; ( ) 1, ,uu v u v a u a       T E  

 

From an initial hidden state given by  , an observation is generated according to E , then and 

for each step of the process a new hidden state is generated according to T and a new 

observation is generated according to E . 

 
 

Figure 5. An example of a HMM with three hidden states. 



 

 

Figure 5 illustrates an example of the relationships between hidden states, observations as 

well as transition matrix T , and emission matrix E in an HMM. For instance, 

3 2( , )State StateT  represents the transition probability from 3State  to 2State  and 3 2( )aE  

represents the emission probability of observation 2a  in the state 3State . As mentioned earlier 

in MMM, the observations represent the users' activities and the hidden states represent users' 

strategies. Henceforth in this work, the activities and the strategies are used instead of 

observations and hidden states, respectively. 

 

 

Estimating the Model Parameters 
 

As discussed in the previous section, MMM highly relies on the emission matrix E  and the 

transition matrix T to respectively characterize the occurrence of activities in each strategy 

and the transition probabilities from one strategy to another. For these reasons, it is extremely 

important that these two matrices precisely match the process under study. Therefore, it is 

essential to choose a learning approach to estimate the model parameters (  = { T  and E }) 

which fit the process model optimally. Estimating the parameters of an HMM depends on the 

learning approach. There are two learning approaches for estimating these matrices: 

Supervised or Unsupervised learning. These approaches, their conditions of use as well as 

their respective performances are discussed in (Khodabandelou et al., 2014a) (Khodabandelou 

et al., 2014b) (Khodabandelou , 2014c) (Khodabandelou et al., 2014d)(Deneckère et al., 

2014). The results demonstrate that several issues hinder the application of supervised 

learning in modeling humans' cognitive process, such as considerable humans' involvement in 

terms of data labeling, introducing inherent humans' biases and lack of accurate ground truth. 

Therefore, unsupervised learning offers better results than supervised learning to discover 

intentional process models (Maps). In this work, unsupervised learning will be explained in 

details and will be applied on a case study.  

 

Unsupervised Learning 
 

Unsupervised learning estimates the matrices E  and T  based only on traces of activities. 

Since there is no prior knowledge on the strategies set , this method is significantly less 

biased than supervised learning but the associated computational complexity is high. Figure 6 

depicts an overview of unsupervised learning for Map Miner Method.  

  

 
 

Figure 6. An overview of MMM using unsupervised learning. 

 

The Baum-Welch algorithm (BWA) (Baum 1970) is the most commonly used algorithm in 

HMM framework to estimate the model parameters E  and T . Given N observed sequences 

of activities  1, , Na a , the BWA finds the HMM parameters that locally maximize the 



probability of having these sequences generated by the HMM. More precisely, the BWA 

maximizes the likelihood of . 

Indeed, a large number of intentions can produce the traces of activities that are observed. 

However, all these intentions do not have the same probability to produce the observed traces. 

Thus, the challenge is to find the intentions that maximizes the probability to produce the 

observed traces. The Baum-Welch algorithm is the key for solving this challenge. Precisely, 

given a set of observed activities, it outputs the parameters of an HMM that is the most likely 

to have produced the observed activities. 

BWA uses the Expectation Maximization (EM) algorithm (Dempster, 1977). The aim of the 

EM algorithm is to estimate the Maximum-Likelihood Estimation or maximum a posteriori of 

the statistical models (with latent variables) parameters in an iterative way. The EM algorithm 

consists in two steps that alternate between an expectation (E-Step) and a maximization step 

(M-step). Through an iterative procedure, it is proven that BWA converges to a local 

optimum (Rabiner, 1986). This property ensures that the parameters found by the BWA are 

locally the parameters with the highest probability of generating the observed activities. 

 

Conditions of Use: 
 

For unsupervised learning, the required knowledge includes the set of activities , some 

traces of activities  1, , La a  and the cardinality of the set | | , i.e., the number of possible 

strategies. Regarding strategies, neither the set  nor some traces of strategies  1, , Ls s  

should be known, only the number of possible strategies is required. This parameter can be 

chosen by experts (e.g. as a way to set the level of complexity of the model) or can be set with 

techniques as BIC (Burnham 2002). Similarly to supervised learning, this choice introduces a 

bias, but given that only the number of strategies is set and not the strategies themselves, this 

bias is less important. The advantage of unsupervised learning is being applicable on traces 

comprising only activities traces and there is no need to have strategies traces, contrarily to 

supervised learning. 

 

Performance: 
 

Given a trace made of N observed sequences of activities  1, , La a , the BWA finds the 

HMM matrices E  and T  that locally maximize the probability of having these sequences 

generated by the HMM. More precisely, the BWA maximizes the likelihood of E  and T : 

 

   ,

1

, arg max Pr | ,
N

n

n

 E TE T a E T (1.5) 

As it is mentioned earlier, the number of strategies is required to know the dimensions of 

matrices E  and T  since the BWA cannot run without E  and T  being initialized. 

What is interesting to note here is the fact the likelihood is not maximized depending on some 

traces of strategies 1, , Ns s , as it was the case for supervised learning. It means that the space 

in which the likelihood is maximized is larger than the space for supervised learning. As a 

consequence, 

   , ,

1 1

max Pr | , max Pr | , ,
N N

n n n

n n 

 E T E Ta E T a s E T . (1.6) 

In other words, the maximum likelihood of unsupervised learning is always higher than the 

maximum likelihood obtained by supervised learning since the latter comes from a 



constrained space. Unfortunately, the BWA cannot guaranty to converge to the global 

maximum likelihood since it is only proved to converge to a local optimum (Rabiner, 1989). 

The limit of convergence depends on the initialization of the matrices E  and T  and it is 

verified by experimental results (see Khodabandelou, 2014c), that a simple initialization of E  
and T  leads to a maximum likelihood of unsupervised learning higher than supervised 

learning. 

 
 
Determining the Number of Strategies 
 

The BWA requires the sets  and  to be known or at least, their cardinality, i.e. | |  and 

| |  for the algorithm to run. Regarding the set of activities , it can simply be obtained by 

identifying the different activities in the trace. However, obtaining the set of strategies  is 

impossible since there is no information about strategies in the trace. There are several ways 

to obtain the number of strategies (Khodabandelou, 2014c). The method that is used in this 

work to set the right number of strategies is heuristic. It consists in generating several HMM 

models with different numbers of strategies and observing the associated emission matrices. It 

occurs that as the number of possible strategies increases, the number of different strategies 

obtained in the emission matrices reaches a threshold. It means that when the number of 

possible strategies is too high, the BWA produces an emission matrix with several identical 

strategies. Consequently, to set the right number of strategies of the model, this observed 

threshold is chosen. This method has the advantage of being adaptable for different traces. 

The drawback of this method is its computation complexity. 

 

 
Developing Deep Miner Algorithm 
 
Once the strategies are estimated, a pseudo-Map process model can be extracted from these 

matrices generated by the BWA. This can be realized by Deep Miner algorithm that was 

especially developed to construct the sections of Map process model out of the transition 

matrix. However, the question of measuring the quality of this Map remains.  

 

 We recall that the matrices generated by the BWA are: 

 

  An emission matrix E , giving the probabilities of generating any activity while 

performing a strategy. In other words, for any strategy s , it gives the activities the 

strategy is composed of. 

  A transition matrix T , giving the probabilities of transition between any couple of 

strategies 
2( , )s s  . 

 

Clearly, there is a strong link between the transition matrix and the topology of the Map 

process model to be extracted. However, in the general case, it is a difficult task to manually 

extract a Map from a transition matrix while verifying the two following constraints: (i) any 

transition between the strategies in the transition matrix should be possible in the Map, (ii) 

any transition between the strategies in the Map should be possible in the transition matrix. 

The first constraint can be seen as a criterion for fitness since it ensures that all the transitions 

learned from the trace are present in the Map. The second constraint corresponds to a criterion 

of precision since it aims at avoiding introducing extra transitions in the Map that are not 

learned from the trace. Our goal is to find the Map that best satisfies both of them. 



Additionally, transitions probabilities in T have different values according to their respective 

importance for the model. This means that some transitions are more important than others 

and in consequence, the fitness and the precision are also more important for these transitions. 

In the next part, a metric is defined which is a trade-off between fitness and precision and also 

captures the relative importance of transitions. 

 

 

Proposed Metrics of Fitness and Precision 
 
The topology of a Map m  can be defined by the set of its sections, each one comprising a 

source sub-intention, a strategy and a target sub-intention. It can be formally written as: 

{1, , }( ) ,k k Km  m  

 

where k  denotes the index of a section and K is the total number of sections of the Map. For 

each {1, , }k K  , ( , , )km i j s    . The component (1)km  is the source sub-intention 

of section k , (2)km  is the target sub-intention, and (3)km  is the strategy of section k . On 

the Map m , a transition from strategy s  to strategy s' is possible if and only if there exist 
2( , ) {1, , }k k K    such that (3)km s , (3)km s

 , and (2) (1)k km m  . In the following, the 

symbol   is used to denote if a transition is possible or not in the Map: 

 
2

,
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In the transition matrix T , the only valid transitions are considered with a probability above a 

given threshold  . The value of   has to be chosen heuristically, to counter the effects of 

noise and artifacts in the trace. Figure 7 depicts an example showing the effect of threshold (

  =0.2) before and after applying it on the transition matrix. As shown on the right part of 

the figure, all the transitions lower than 0.2 are eliminated. Therefore, according to the value 

of  , Deep Miner takes into account certain transitions. This can be defined as follows: 
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Classically, the criteria of fitness and precision between T and m can be expressed by the 

expressions known as recall and precision. In our context, these two expressions are defined 

as: 

, , , ,

, ,

, ,

, ,

Rec( , ) ,Pre( , ) .

s s s s s s s s

s s s s

s s s s

s s s s
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 

 

 

 

 

 
T m T m (1.7) 

 

The numerator of both expressions is the number of significant transitions in T  that are 

present on the Map m, while the denominators are the number of significant transitions in T  



 
 

Figure 7. The effect of applying the threshold ( ) on the transition matrix. 

 

and the number of transitions on m , respectively. Since our goal is to find a Map that fits best 

the transition matrix with respect to both recall and precision, the classical F-measure can be 

used, which expression is: 

 

1

Pre( , )Rec( , )
( , ) 2 .

Pre( , ) Rec( , )
F 



T m T m
T m

T m T m
 (1.8) 

 

Optimization problem 
 

Once the proper metric has been defined, a Map that maximizes this metric must be found. 

The solution of this problem belongs to the set 

 

1arg max ( , ).F m T m (1.9) 

 

Since the goal is obtaining a Map with the simplest structure, the solution with the lowest 

number of sections is chosen. In other words, the solution is  

 
* arg min | |, mm m  (1.10) 

 

where | |m  stands for the number of sections in | |m . However, finding *
m  is a difficult task 

since m  generally belongs to a high-dimension space. Indeed, it can be shown that there are 
2| |2 possible Maps for | |  different strategies. Consequently, computing all the possible 

Maps with a brute force method then comparing their F-measures is not an option. Instead, an 

algorithm is developed that solves (1.10) with a complexity bounded by | | *(| | 1) . This 

algorithm is detailed below. The first part of algorithm 1 associates a target sub-intention to 

each strategy of . In the second part, if a transition probability from strategy s to strategy s ' 

is above the threshold  , a section is added to the Map from the target sub-intention of s ' to 

the target sub-intention of s . This section ensures that the transition given by T  is also 

present in the Map. 

 

 

 

 
 



Algorithm 1.  

Input: strategy set , transition matrix T , threshold   

Output: Pseudo-Map 
*

m  

For each strategy s  

 associate to s  a target sub-intention si ; 

end 

For each strategy s  

 For each strategy ,s s s    

 If ( , )s s  T  

 create a section from si  to si   with strategy s'; 

 end 

 end 

end 

  

With this algorithm, recall and precision, defined in (1.7), have the advantage of being equal 

to 1. Indeed, ε defines the granularity of the Map. When   is close to 0, almost all the 

transitions from the unsupervised model are present in the obtained Map. Consequently, the 

likelihood of the obtained Map is high but the Map is hardly understandable by humans since 

it has too many sections. However, when   increases, the number of sections, as well as the 

likelihood of the obtained Map, decrease. The Map gets more easily understandable by 

humans but it is not as accurate in terms of transition. Figure 8 depicts an overview of the 

Deep Miner algorithm. Its input are the estimated strategies and its output is a pseudo-Map. 

 

 
Figure 8. Overview of Deep Miner Algorithm. 

 

 

Developing Map Miner Algorithm 
 

Granularity refers to the level of detail of a process model. While a Map process model with a 

coarse-grained granularity represents intentions with a high-level of abstraction (e.g. 

organizational intentions), a Map process model with a fine-grained granularity, called a 

pseudo-Map, provides intentions with a low-level of abstraction , called sub-intentions.  

 

 

Determining the Level of Abstraction for the Intentions 
 
Given that the pseudo-Map obtained from Deep Miner algorithm has a high degree of 

granularity (in terms of sub-intentions and sections), it can be useful to extract some higher-



level Maps of the same process from this pseudo-Map. An algorithm has been developed to 

automatically perform this task and is presented in this section. It falls into three main parts: 

 

1. The sub-intentions from the pseudo-Map are represented in a space in which they can be 

classified into clusters. 

2. A clustering algorithm, namely K-means (Hartigan et al., 1979), is applied on the sub-

intentions in order to group them into clusters of intentions. This allows determining the 

level of abstraction for the intentions. Note that the number of intentions is a parameter that 

has to be chosen. The choice of this parameter allows researchers obtaining Maps with 

different levels of granularity. 

3. Finally, a Map process model is rebuilt from the new groups of intentions with updated 

sections.  

 

Figure 9 represents an overview of Map Miner Algorithm. 

 

 
 

Figure 9. Overview of Map Miner Algorithm. 

 

 

Sub-intentions Representation in a Space 

 

Before clustering sub-intentions into groups of intentions, we need to represent each sub-

intention in a space that trustfully accounts for the topology around the sub-intention in the 

pseudo-Map. Given that each sub-intention is connected to other sub-intentions by strategies, 

a proper way to represent sub-intentions is to indicate to which other sub-intentions it is 

connected. Since the Map is an oriented graph, a difference is made between sub-intentions 

from which there is a strategy going to the sub-intention to be represented and sub-intentions 

that can be fulfilled with strategies from the sub-intention to be represented. 

From a formal perspective, let us consider a pseudo-Map with N sub-intentions. The sub-

intention ni   is represented by a vector nv  in a space of dimension 2 N  such that the first N 

coefficients correspond to the sub-intentions from which there is a strategy going to ni , and 

the final N  coefficients correspond to the sub-intentions that can be fulfilled from ni . 

 

 For all [1, ]n N , if there is a section from ni   to ni  then ( ) 1nv n  , otherwise ( ) 0nv n   

 For all [1, ]n N , if there is a section from ni  to ni   then (2 ) 1nv n  , otherwise (2 ) 0nv n   

 Since ni  is implicitly considered to be connected to itself, then ( ) 1nv n   and (2 ) 1nv n   

 

With this representation, two sub-intentions connected to similar sub-intentions will be 

represented with a short distance between them, while two sub-intentions connected to 



different sub-intentions will be represented with an important distance between them. This 

way, the clustering algorithm that is applied on the sub-intentions can group sub-intentions 

efficiently. 

 

Clustering sub-intentions into high-level intentions 

 

Once the sub-intentions are represented in the space, a clustering algorithm can be applied to 

group them into clusters of intentions. In this work, the K-means (Hartigan, 1979) algorithm 

is applied to perform this task. This algorithm works as the following way: given a number K

of clusters and a set of points  
[1, ]n n N

v


, the algorithm determines the gravity center kc  of 

each cluster k , such that the sum of the distances from the points to the center of their cluster 

is minimized. In other words, it minimizes the sum,  

 

  
1:

, ( ) ,n n

N

d v c v (1.11) 

 

where ( )nc v  is the center of gravity which is the closest to nv . For example, if nv is closer to 

kc , ( )n kc v c . And (.,.)d  is a distance between two points. Said in another way, the K-means 

algorithm finds K  groups of sub-intentions such that in each group, sub-intentions are in a 

same area of the Map process model. The mapping between the sub-intentions and the 

intentions is called g , such that ( )g n is the intention of sub-intention n . 

 

Rebuilding the Map 
 
To obtain a new Map from the clusters of intentions, all the previous sub-intentions are 

replaced by the intention of their group. The sections also need to be updated to take into 

account the simplified topology of the Map. We recall that the pseudo-Map discovered by the 

Deep Miner algorithm is denoted by *
m . Note that the identical sections have to be removed 

from the discovered Map. Algorithm 2 shows how to rebuild a Map process model from K  

clusters of intentions given that the mapping from sub-intentions to intentions obtained from 

K-means is denoted by g . 

 
Algorithm 2. 

Input: Map 
*

m , mapping g  

Output: Map m  

For each section 
*

um , [1, ]u U  

  *(1) : (1)u um g m  

  *(2) : (2)u um g m  

end  

Remove identical sections in m  

 

 

For applying MMM on real dataset, one needs to adjust some parameters: threshold  to 

compromise between the accuracy of the model and its complexity, number of strategies to 

determine how many strategies the model could generate and number of high-level intentions 

to determine how many high-level intentions the final Map process model should generate. 

We note that these parameters can also be obtained heuristically.  



 

 

CASE STUDY: USAGE DATA COLLECTOR OF ECLIPSE  
 
Presentation of the Case Study 
 
This case study demonstrates the capability of MMM to handle the large-scale data along with 

providing comprehensive and reliable results. Eclipse Usage Data Collector (UDC) (Eclipse, 

2013) is a system which collects information about how developers use the Eclipse platform. 

The Eclipse Foundation provides these data to help committers and organizations to better 

understand how the community makes use of Eclipse (UDC, 2013). In this perspective, this 

case study aims at modeling the UDC developers' activities in terms of intentions and 

strategies by constructing automatically a Map process model that is actually followed by 

developers. The discovered Map process model is useful to analyze developers' behaviors (see 

5.1.3). 

 

Usage Data Collector Event logs 
 

The event logs of this case study are event logs of developers who committed their activities 

to Usage Data Collector (UDC) of Eclipse (Eclipse, 2013). The event logs are uploaded to 

servers hosted by the Eclipse Foundation. The event logs contain 1, 048, 576 event logs from 

developers who agreed to send their data back to the Eclipse Foundation. These data 

aggregate activities from over 10, 000 Java developers between September 2009 and January 

2010. The activities are recorded by timestamps for each developer, which allows knowing 

when and by whom activities were committed. 

 

 

Developers' Activities 
 

In order to apply MMM, it is important to prepare the traces. The number of unique 

developers' activities per month exceeds 500 activities. This number contains both the 

recurring activities and the non-recurring activities (i.e., activities which are not frequently 

performed by developers). The non-recurring activities are not representative of the 

developers' behavior characteristics because they have not been repeated enough to be a 

behavioral-pattern. For this reason, and also for readability, the case study is limited to the 

130 most frequent activities performed by developers. Table 1 contains the list of these 

activities. Some of these activities are the commands performed directly by developers; some 

of them are the frameworks, plug-ins or built-in features of Eclipse used by developers during 

their development process. For readability reasons, the prefix org.eclipse of the activities is 

removed. The plug-ins and frameworks are shown in bold letters and the related activities are 

inside brackets.  

 

Applying MMM on the Traces 
 
Once the trace is ready, BWA estimates the transition matrix (developers' strategies). Note 

that, once again the number of strategies obtained by the heuristic method for this case study 

is 10. The strategies are represented in Table 1 with their corresponding groups of activities.  

 

 

 



Table 1. Strategies index and related activities for UDC Eclipse traces.  

Strategies 

Index 

Activities Names 

1S  

mylyn.tasks.ui.commands.[OpenTask, AddTaskRepository, activateTask, 

SearchForTask], mylyn.context.ui.commands.[Open.context.dialog, 

AttachContext, interest.Increment, interest.Decrement], mylyn.monitor.ui, 

mylyn.team.ui 

2S  
core.[jobs, net, filesystem, resource, runtime, variables, contenttype, 

databinding.observable], equinox.p2.ui.sdk.install 

3S  

mylyn.context.ui.commands.[Open.context.dialog, AttachContext, 

interest.Increment, interest.Decrement],team.cvs.ui.[branch, replace, 

GenerateDiff, ShowHistory, Add, Tag,merg, compareWithTag], jsch.core, 

mylyn.[monitor.ui, team.ui, commons.ui, bugzilla.ui] 

4S  

pde.ui.EquinoxLaunchShortcut.run, equinox.p2.ui.sdk.update, equinox.[ds, 

simpleconfigurator.manipulator, frameworkadmin, app, common, 

directorywatcher, engine, core, metadata.repository, garbagecollector, 

ui.sdk.scheduler, repository, preferences, exemplarysetup, registry, 

updatechecker] 

5S  

core.[databinding.observable, core.net, core.filesystem, core.resource, 

core.runtime, core.variables, core.contenttype], debug.ui.commands.[RunLast, 

Debuglast, eof, StepOver, TerminateAndRelaunch, execute, AddBreakPoint, 

TogglebreakPoint], jdt.debug.ui. [commands.Execute, commands.Inspect], 

jdt.junit.[junitShortcut.rerunLast, gotoTest,junitShortcut.debug], 

ltk.ui.refactoring.commands. [deleteResources, renameresources, 

moveResources], compare.selectPreviousChange 

6S  
ui.edit.[delete, paste, copy undo, text.goto.lineEnd, text.contentAssist.proposals, 

text.goto.wordNext], ui.file.save 

7S  

cdt.ui.editor, jdt.junit.[junitShortcut.rerunLast, gotoTest, junitShortcut.debug], 

team.cvs.ui.[CompareWithRevision, CompareWithLatestRevisionCommand, 

CompareWithWorkingCopyCommand],ui.edit.[delete, paste, copy undo, 

text.goto.lineEnd, text.contentAssist.proposals, text.goto.wordNext] 

8S  
team.ui.[synchronizeLast, TeamSynchronizingPerspective, synchronizeAll, 

applyPatch], ltk.core.refactoring.refactor.[create.refactoring.script, 

show.refactoring.history] 

9S  
mylyn.monitor.ui, mylyn.context.ui, mylyn.commons.ui, 

team.cvs.ui.[commitAll, Commit, CompareWithRemote, Sync] 

10S  
mylyn.monitor.ui, mylyn.bugzilla.core, mylyn.bugzilla.ui, 

team.cvs.ui.[commitAll, Commit, CompareWithRemote, Sync] 

 

Figure 10 depicts the effect of the choice of the threshold ε on the likelihood and the number 

of sections of the obtained Map. As mentioned earlier the sub-section of Developing Deep 

Miner Algorithm, ε expresses the level of granularity for a Map. An expert can choose the 

value of ε regarding the expected level of granularity. In this case study, the value of ε is set to 

0.06 to have a good trade-off between having a likelihood with a relative high value and a 

reasonable number of sections. 

 

 



 
Figure 10. Likelihood and Number of sections of the Discovered Map with respect to   for 

the Eclipse Traces. 

 

Finally, the Pseudo-Map obtained by Deep Miner is shown in Figure 11. Figure 12 presents 

the Map process model obtained by Map Miner algorithm with manual inference of the labels 

of intentions and strategies. 

 

 
 

Figure 11. The obtained pseudo-Map for Eclipse UDC by MMM. 



 
 

Figure 12. The obtained Map process model for Eclipse UDC by MMM with manual labeling. 

 

Regarding the obtained Map, 22 sub-intentions are grouped by Map Miner algorithm into 7 

groups of high-level intentions. Note that MMM can discover accurately the beginning and 

the end of a process; thus the intentions Start and Stop are clearly determined on the obtained 

Map. The transition probabilities from one intention to another are annotated on the strategies 

(the edges). These values correspond to the probabilities that the developers selected a 

strategy from a given intention. The values on the reflexive strategies indicate the 

probabilities that the developers enacted the process having in mind the same intention. 

 

 

Strategies and Intentions Naming Procedure 
 
MMM discovers the strategies that lead to intentions. In other words, MMM reconstructs the 

topology of the Map process model from traces; the names of the strategies and intentions are 

not fully automatically generated. Nevertheless, it is possible to infer the names of strategies 

and intentions from the emission matrix E . Indeed, E specifies the activities associated to 

each strategy discovered by the MMM (see Table 1). Therefore, based on the names of the 

activities grouped into a strategy, it is possible to manually infer the names of the strategies 

through a semantic analysis of their properties and interrelationships. In the same way, since 

the strategies lead to intentions, the names of intentions can be inferred by analyzing the 

strategies leading to each intention. For instance, the main activities grouped into the strategy

5S  are 'refactoring.commands', 'jdt.junit', 'debug.ui.commands', etc. From these activities one 

can infer the developers wanted to debug, to refactor and to test the code; thus, the name 



inferred for this strategy is ‘by refactoring, testing and debugging’. Further, the main activities 

for strategy 6S are 'delete', 'paste', 'copy', 'undo', etc. This means the developers wanted to 

modify a code or a file; the name inferred for this strategy is ‘by file modification’. Since both 

strategies lead to an intention, it is possible to infer that the developers who performed 5S  and 

6S intended to Fix a bug. By applying this procedure, the names of all strategies (denoted on 

the edges) and intentions are inferred. Table 2 presents the topics obtained by E and the 

inferred strategies names. The inferred names of intentions are Start, Initiate the development, 

Manage tasks, Fix a bug, Improve the code, Commit the code. This naming protocol remains 

to be fully automated by building sophisticated ontologies. 

 

Table 2. Strategies index, topics and inferred strategies names for UDC Eclipse. 

Strategies 

Index 

Topics Obtained by E Inferred Strategies 

Names 

1S  

OpenTask, AddTaskRepository, activateTask, 

SearchForTask, Open.context.dialog, AttachContext, 

interest.Increment, interest.Decrement, 

mylyn.monitor.ui, mylyn.team.ui 

By project tracking 

and team Planning 

2S  
jobs, net, filesystem, resource, runtime, variables, 

contenttype, databinding.observable, 

equinox.p2.ui.sdk.install 

By regular 

programming 

activities 

3S  

Open.context.dialog, AttachContext, interest.Increment, 

interest.Decrement, branch, replace, GenerateDiff, 

ShowHistory, Add, Tag,merg, compareWithTag, 

jsch.core, monitor.ui, team.ui, commons.ui, bugzilla.ui 

By code/tasks 

sharing 

4S  

pde.ui.EquinoxLaunchShortcut.run, ds, 

simpleconfigurator.manipulator, frameworkadmin, app, 

common, directorywatcher, engine, core, 

metadata.repository, garbagecollector, ui.sdk.scheduler, 

repository, preferences, exemplarysetup, registry, 

updatechecker 

By OSGI-based 

design  

5S  

databinding.observable, core.net, core.filesystem, 

core.resource, core.runtime, core.variables, 

core.contenttype, RunLast, Debuglast, eof, StepOver, 

TerminateAndRelaunch, execute, AddBreakPoint, 

TogglebreakPoint, commands.Execute, 

commands.Inspect, junitShortcut.rerunLast, 

gotoTest,junitShortcut.debug, deleteResources, 

renameresources, moveResources, 

compare.selectPreviousChange 

By refactoring, 

testing and 

debugging 

6S  

delete, paste, copy undo, text.goto.lineEnd, 

text.contentAssist.proposals, text.goto.wordNext, 

ui.file.save 

By file modification 

7S  

junitShortcut.rerunLast, gotoTest, junitShortcut.debug, 

CompareWithRevision, 

CompareWithLatestRevisionCommand, 

CompareWithWorking, CopyCommand,delete, paste, 

copy undo, text.goto.lineEnd, text.goto.wordNext 

text.contentAssist.proposals 

By reviewing and 

testing 



8S  
synchronizeLast, TeamSynchronizingPerspective, 

synchronizeAll, applyPatch, 

create.refactoring.script,show.refactoring.history 

By patch applying  

9S  
mylyn.monitor.ui, mylyn.context.ui, mylyn.commons.ui, 

commitAll, Commit, CompareWithRemote, Sync 
By CVS committing  

10S  
mylyn.monitor.ui, mylyn.bugzilla.core, 

mylyn.bugzilla.ui, commitAll, Commit, 

CompareWithRemote, Sync 

By updating issues 

tracking  

 
Analysis of Eclipse Developers' Behavior 
 

Discovering the Map for developers of Eclipse UDC allows understanding the developers' 

behaviors during the development process. As shown in Figure 12, they selected different 

paths (sequences of strategies) with different probabilities to fulfill their intentions. An expert 

can analyze these behaviors in order to understand how, why and with which probabilities 

developers make use of different components or plug-ins of Eclipse: where they follow the 

best practice of software development projects and where they deviate from these rules, which 

components or plug-ins are more involved than others, which paths are more/less taken or 

where are the system problems, etc. The Map can also be used to provide recommendations to 

developers in order to choose the best path to fulfill their intentions. In this case study, there is 

no prior model to compare with the obtained Map. Hereafter, some observations are detailed 

to address some of the aforementioned claims in practice. 

 

Observation 1. The developers' activities involve the usage of frameworks and plug-ins such 

as Mylyn, Equinox, team/CVS, Junit, built-in features of Eclipse such as Eclipse Core, Debug 

and API such as ltk (Language Toolkit). Figure 13 depicts the usage probabilities of these 

frameworks in each strategy. It is possible to observe the usage frequency of each 

framework/plugin/tools among the strategies. For instance, Mylyn framework is used in 4 

strategies amongst 10 and its usage probabilities for strategy 1S is 1 whereas for strategy 5S  it 

is 0. These values help detecting if any of these frameworks or tools is underused. For 

instance, one observation is that the refactoring tool ltk is underused since it has a low usage 

probability (see also observation 4). 

 

Observation 2. The developers who start a development process choose one of the 4 first 

strategies i.e. 1S , 2S , 7S , 9S . If they already have an ongoing program at hand, they tend to 

adopt either strategy S7: by reviewing and testing to Improve the code or strategy 9S : by CVS 

committing to Commit the code. On the other hand, the developers who start a new 

development choose either the strategy 2S : by regular programming activities to Initiate the 

development or choose strategy S1: by project tracking and team planning to Manage tasks 

with probability 0.39 and 0.12 respectively. This observation suggests that the developers of 

this case study tend to start programming by building first the baselines for software 

architecture through dividing the programs into different modules/packages using OSGI-

based design. After decomposing the software into sub-modules, the developers apply 

strategy S3: by code/task sharing which involves mainly Mylyn framework (described in 

observation 3) which can be integrated with the Bugzilla bugtracker system and issue system. 

Therefore, tasks and the content of these tasks can be shared among developers. The high 

transition probability of this strategy means the developers tend to share code/task in order to 

fulfill Manage tasks. 



 

 
 

Figure 13. Usage probabilities of different Eclipse elements for each strategy. 

 

Observation 3. The developers who have the intention to ‘Manage tasks’ choose strategies 

S1 and S3. Regarding Table 1, the activities related to these strategies involve Mylyn 

framework which is the task and application life-cycle management (ALM) framework for 

Eclipse. It helps the developers to work efficiently with many different tasks such as bugs, 

problem reports or new features. It monitors users' activities and preserve the context of the 

task-at-hand to focus the Eclipse UI on the related information. For instance, while working 

on a current task, if the developers have to work on another task, e.g. an occurred bug, Mylyn 

preserves the context of the current task. Thus, the developers can work on another task 

without losing the context of the previous task. This procedure is discovered in the obtained 

Map of Eclipse. The activities of the developers while they Manage tasks are interrupted (e.g., 

for an urgent bug) and they choose strategy 5S to Fix a bug. To switch to the previous task, 

they first commit and report the bug then they continue managing tasks. This means the 

Mylyn framework has reliable and relevant functionalities for developers and it is not 

underused since they work with it 47% (transition probability of 0.47) of their time and they 

use it frequently (Figure 13). 

 

Observation 4. When the activities of the developers during Manage tasks are interrupted, 

they choose strategy 5S to Fix a bug. The procedure of fixing a bug may involve refactoring 

existing code, writing unit tests, editing and modifying involved code and finally fixing the 

affected code. Strategy 5S : by refactoring, testing and debugging represents this procedure. 

This strategy is defined as a best practice to fix a bug, which means the developers who adopt 

this strategy respect the guidelines of software development. However, they perform this 

strategy with a probability of 0.22 whereas they prefer to Fix a bug by file modification with a 

higher transition probability (0.33). Moreover, Figure 13 shows a low usage frequency and 

usage probability for ltk (Language Toolkit) which is an API for automated refactoring in 



Eclipse-based IDEs. This means the developers prefer manual refactoring instead of using the 

refactoring and debugging tools of Eclipse provided for this purpose. This confirms some 

results of empirical research (Vakilian, 2012) (Fowler, 1999) (Xing, 2006) that refactoring 

tools are seldom used and that they are not developer-friendly enough. 

 

Observation 5. Bug fixing includes debugging and refactoring of different software modules. 

Once developers have fixed a set of bugs, they choose either strategy 8S : by patch applying 

with a probability of0.05 or strategy 7S : by reviewing and testing with a probability of 0.07 to 

fulfill the intention ‘ Improve the code’. This observation means when debugging and 

refactoring have an impact on different parts of the program, the developers improve their 

code by patch applying. If debugging and refactoring change the program locally, they 

manually change the code and send it for reviewing and testing. The probabilities describe 

that developers tend to manually modify the code. 

 

Observation 6. The Map can be used as a behavioral pattern to build recommender system 

for assisting developers in their daily development tasks. For example, this recommender 

system can suggest developers to avoid some problematic paths/strategies which might 

deviate from organizational best practices and to take some more effective paths/strategies. 

For instance, since the procedure of refactoring and debugging might affect the code in 

different parts of the program, it is recommended to check the coherence integrity of the 

program. To do so, after fixing a bug, the developers can be recommended to apply strategy

4S : by OSGI-based design to Initiate the development, to check if the refactoring and 

debugging have impacted the OSGI-based design (e.g. if the dependencies between the 

modules changed, etc.). 

A qualitative experiment was conducted in (Khodabandelou, 2014c) which allows evaluating 

the Map process model produced in the case study. This evaluation provided the developers' 

feedback on the perception, effectiveness and usability of MMM in practical use. 

 

 

CONCLUSION 
 

This work proposed a new vision of process mining by focusing on the intentional perspective 

of processes. This means discovering the actual processes from event logs and modeling them 

using intentional process model as Map. This method is called Map Miner Method (MMM), 

which models processes automatically in terms of users' intentions and strategies. Intentional 

process models permit modeling humans' cognition operators, i.e., thinking, reasoning and 

deciding during creative process, which is not possible with activity-oriented process models. 

The discovered Map process model answers to the problems of why a process is enacted.  

The proposed method finds the relationships between activities to discover the strategies and 

where they lead, i.e. the intentions. MMM  is appropriate for recorded users' logs performing 

a process from the beginning to the end. In logs, activities should at least contain timestamp 

and the users' ID. It is also important to have a sufficiently large number of traces in order to 

capture all the possible behaviors users can have while enacting the process. The names of 

these strategies and intentions are still inferred manually in the sense that the proposed 

method is able to extract automatically some topics related to each strategy. This establishes a 

base to infer manually the names of strategies and intentions. In the future, this procedure can 

be fully automated by building sophisticated ontologies from these discovered topics. These 

ontologies should take into account the context in which the processes are enacted as well as 

the situation at hand. This will make the discovered Map more context-sensitive. 



Although this work mainly focuses on the discovery of intentional process models, the 

usefulness of the MMM is not only limited to process discovery. In the future, the discovered 

process models could help improving the software usability by using anterior users’ activities 

as a guideline by assisting the novice or unfamiliar ones. For example, when users' intentions 

are known, they can be recommended which strategies and activities that might be useful to 

fulfill their intentions. This guideline is adapted to the users' context taking into account the 

experiences of previous users and the actual users' intentions. These phases can be automated 

and integrated as modules of MMM. Furthermore, the discovered Map enables users to be 

more efficient in their tasks by adapting the system to the users' intentions. Assisting users 

step by step using a Map increases their confidence and satisfaction in the enactment of a 

process. All these points contribute to improve the usability of the software products. New 

applications of intention mining will be found in the near future: to improve guidance, provide 

better recommendations, facilitate process modeling, identify the gap between a prescribed 

business requirements and actual information systems users' goals, help users in a pro-active 

way, to monitor the intentions of users, and many more. 
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